Effects of Eutrophication on Stream Ecosystems

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Eutrophication on Stream Ecosystems EFFECTS OF EUTROPHICATION ON STREAM ECOSYSTEMS Lei Zheng, PhD and Michael J. Paul, PhD Tetra Tech, Inc. Abstract This paper describes the effects of nutrient enrichment on the structure and function of stream ecosystems. It starts with the currently well documented direct effects of nutrient enrichment on algal biomass and the resulting impacts on stream chemistry. The paper continues with an explanation of the less well documented indirect ecological effects of nutrient enrichment on stream structure and function, including effects of excess growth on physical habitat, and alterations to aquatic life community structure from the microbial assemblage to fish and mammals. The paper also dicusses effects on the ecosystem level including changes to productivity, respiration, decomposition, carbon and other geochemical cycles. The paper ends by discussing the significance of these direct and indirect effects of nutrient enrichment on designated uses - especially recreational, aquatic life, and drinking water. 2 1. Introduction 1.1 Stream processes Streams are all flowing natural waters, regardless of size. To understand the processes that influence the pattern and character of streams and reduce natural variation of different streams, several stream classification systems (including ecoregional, fluvial geomorphological, and stream order classification) have been adopted by state and national programs. Ecoregional classification is based on geology, soils, geomorphology, dominant land uses, and natural vegetation (Omernik 1987). Fluvial geomorphological classification explains stream and slope processes through the application of physical principles. Rosgen (1994) classified stream channels in the United States into seven major stream types based on morphological characteristics, including entrenchment, gradient, width/depth ratio, and sinuosity in various land forms. These morphological characteristics affect stream ecosystem processes and community structure and functions. Stream order classification (Strahler 1964) is also widely applied for organizing drainage networks in the United States. These stream classification systems describe hydrology and material transport, which in turn influence physical, chemical, and biological processes. Another classification scheme is to classify streams based on nutrient conditions (EPA 2001a). EPA divides the country into 14 level III nutrient ecoregions (Omernik 2000) with common land use characteristics to better assess background nutrient concentrations in different geographic regions. This classification reflects spatial and geographic variations that influence nutrient concentrations in streams (Rohm et al. 2002, Wickham 2005) and natural background nutrient concentrations should be established for each region (Smith et al. 2003). Dodds (1998, 2006) proposed classifying streams into trophic state classes similar to those developed for lakes and reservoirs (EPA 2001b). One of the most important processes in streams is nutrient cycling. Stream channels receive nutrients from upstream, terrestrial runoff, ground water, and the atmosphere. The proportion of each source is variable depending on stream geology, elevation, and regional setting. Different landforms (forest vs. agricultural catchments) and spatial and temporal variables also significantly affect nutrient concentrations and loadings into streams (Arheimer and Liden 2000). Internal nutrient cycling also provides nutrients to streams (Mulholland 1996). Stream biota use nutrients and convert them into biomass; thus, nutrients are important to ecosystem structure and function. Two major nutrients, nitrogen (N) and phosphorus (P), occur in streams in various forms as ions or dissolved in solution. Aquatic plants convert dissolved inorganic forms of nitrogen (nitrate, nitrite, and ammonium) and phosphorus (orthophosphate) into organic or particulate forms for use in higher trophic production. The right balance of nitrogen and phosphorus is essential for maintaining natural biological communities and ecosystem functions in aquatic systems. In freshwater systems, phosphorus and nitrogen 3 are limiting nutrients, that is, the levels of these nutrients limit the biological productivity of such systems. 1.2 Limiting nutrients in streams Stream primary producers, i.e., algae and macrophytes, absorb natural energy from sunlight to fix carbon and convert inorganic forms of N and P into organic forms through photosynthesis, storing the energy produced in their cells. In most streams, either N or P concentrations or both limit this process. Different algae have been reported to require different N and P concentrations for growth. One study found that diatoms require less P (0.3-0.6 µg/L P, Bothwell 1988) to saturate growth than filamentous green algae (25-50 µg/L P, Bothwell 1989). Nitrogen limitation has been reported when ambient N concentration was 55 µg/L in a desert stream in Arizona (Grimm and Fish 1986) and when it was less than 100 µg/L in an Ozark stream (Lohman et al. 1991). Rier and Stevenson (2006) found that algal growth was 90% of maximum rates or higher in nutrient concentrations of 16 µg/L P and 86 µg/L N. The Redfield ratio (molar ratio of 106:16:1 for C:N:P) has been proposed as a community-wide optimum nutrient ratio (Redfield 1958, Borchardt 1996). High ambient or cellular N:P ratios (N:P >20:1) indicate P is limiting growth; low N:P ratios suggest that N is limiting (N:P<10:1). However, levels of nutrient concentrations and ratios for nutrient limitation are also regulated by other abiotic and biotic factors. Regional differences may determine limiting nutrients for plant growth. Phosphorus used to be and is still considered the sole limiting nutrient in aquatic systems by a number of authors (Huchinson 1957, Correll 1998, Khan and Ansari 2005). With increasing experimental manipulation of nutrient limitation, especially bioassays using nutrient diffusing substrates and artificial streams, N limitation and N and P co-limitation are quite commonly discovered (Grimm and Fisher 1986, Peterson and Grimm 1992). Borchardt (1996) reviewed studies in North America and concluded that roughly the northern half of the United States is P limited while the Southwest and Missouri Ozarks are N limited. The Pacific Northwest may be limited by both N and P. A meta-analysis of 237 nutrient enrichment studies in temperate streams revealed that 16.5% indicated an N response, 18.1% indicated a P response, 23.2% required N and P be added together for a response, 5% had N or P inhibition, and 43% had no response to N or P (Francoeur 2001). These proportions have been confirmed by a similar literature review (Tank and Dodds 2003). 4 1.3 Eutrophication problems Eutrophication means “good food”. In freshwater systems, eutrophication is a process whereby waterbodies receive excess inorganic nutrients, especially N and P, which stimulate excessive growth of plants and algae. Eutrophication can happen naturally in the normal succession of some freshwater ecosystems. However, when the nutrient enrichment is due to the activities of humans, sometimes referred to as “cultural eutrophication”, the rate of this natural process is greatly intensified. Eutrophication was recognized as a pollution problem in North American lakes and reservoirs in the mid- 20th century (Rohde 1969). Although nutrient pollution has long been recognized as a major problem in streams and rivers (USEPA 2000), the concept of eutrophication has been less commonly used with respect to nutrient enrichment problems in streams (Dodds 1998, 2006). Nutrient enrichment of streams in the United States is widespread (Carpenter 1998, Correll 1998, Smith et al. 1999, 2006). EPA assessed approximately 840,000 river and stream miles nationwide and reported that 10% of assessed rivers and streams had nutrient enrichment problems, which contributed to 30% of reported water-quality problems in the impaired rivers and streams (~ 291,000 miles). (USEPA 2002). Nitrate concentration has more than doubled in the Mississippi River since 1965 and concentrations in many major rivers in the Northeast have increased by from 3- to 10-fold since the early 1900s (see reviewed by Vitousek 1997). Smith et al. (1987) found that at 381 riverine sites in the continental United States, the mean total phosphorus concentration was 130 mg/m3, which is almost double the threshold value for eutrophication (75 mg/m3) proposed by Dodds (1998) for streams. 1.4 Sources of nutrient enrichment: point and nonpoint sources Nutrient concentrations in streams and rivers have been strongly correlated with human land use and disturbance gradients. Both N and P enrichment are linked to agricultural and urban land uses in the watershed. Fluxes of total N in temperate-zone rivers surrounding the North Atlantic Ocean are highly correlated with net anthropogenic input of N to their watersheds (Howarth et al. 1996). Total N and nitrate fluxes and concentrations in rivers are also correlated with human population density (Cole et al. 1993, Howarth et al. 1996). Nitrogen fertilization is the main source of N in streams and rivers (Goolsby and Battaglin 2001). Similarly, urbanization generally leads to higher phosphorus concentrations in urban catchments (see review by Paul and Meyer 2001). Increasing imperviousness, increased runoff from urbanized surfaces, and increased municipal and industrial discharges all result in increased loadings of nutrients to urban streams. This makes urbanization second only to agriculture as the major
Recommended publications
  • BIG RIVER ECOSYSTEM: Program 2
    BIG RIVER ECOSYSTEM: A Question of Net Worth PURPOSE To explore biodiversity at the ecosystem level. KERA CONNECTIONS to Life Science Program 2 Core Content: Structure and Function in Living Systems Academic Expectations: 2.2 Patterns, 2.3 Systems, 2.4 Models & Scale ANSWERS TO Process Skills: Observation, Modeling aFIELD NOTES OBJECTIVES 1. In a hot and hostile environment, Students should be able to: the evaporated water cannot be 1.identify five “big river” organisms incorporated into living cells (as 2.construct a diagram showing interactions between living and we know them). nonliving parts of an ecosystem 2. An extremely cold environment, 3. discuss factors that affect the level of biodiversity in their river basin. or frozen desert, does not allow cells to utilize water. VOCABULARY 3. Answers will vary but should Teachers may wish to discuss the following terms: display logical flow of water and aquatic, commercial, ecosystem, water cycle and watershed. allow for recirculation in a loop. 4. Arteries and veins. aFIELD NOTEBOOK 5. A pumping heart. Ideas for Teachers 6. Diagram A shows many different A. Develop a concept map for the water cycle. Include these items in types of ecosystems in close the concept map: clouds, groundwater, apple tree, stream, precipita- proximity. tion, condensation, evaporation, harvest mouse, snowflakes, sun and 7. Add a watering hole, plant a humans. What other cycles are needed to maintain an ecosystem? miniature forest, create a B. Biospheres, containing algae, brine shrimp and water, are often meadow of wildflowers. Most shown in advertisements. Analyze how the biosphere is self-main- importantly, break up a monocul- taining.
    [Show full text]
  • Ecosystem Services Generated by Fish Populations
    AR-211 Ecological Economics 29 (1999) 253 –268 ANALYSIS Ecosystem services generated by fish populations Cecilia M. Holmlund *, Monica Hammer Natural Resources Management, Department of Systems Ecology, Stockholm University, S-106 91, Stockholm, Sweden Abstract In this paper, we review the role of fish populations in generating ecosystem services based on documented ecological functions and human demands of fish. The ongoing overexploitation of global fish resources concerns our societies, not only in terms of decreasing fish populations important for consumption and recreational activities. Rather, a number of ecosystem services generated by fish populations are also at risk, with consequences for biodiversity, ecosystem functioning, and ultimately human welfare. Examples are provided from marine and freshwater ecosystems, in various parts of the world, and include all life-stages of fish. Ecosystem services are here defined as fundamental services for maintaining ecosystem functioning and resilience, or demand-derived services based on human values. To secure the generation of ecosystem services from fish populations, management approaches need to address the fact that fish are embedded in ecosystems and that substitutions for declining populations and habitat losses, such as fish stocking and nature reserves, rarely replace losses of all services. © 1999 Elsevier Science B.V. All rights reserved. Keywords: Ecosystem services; Fish populations; Fisheries management; Biodiversity 1. Introduction 15 000 are marine and nearly 10 000 are freshwa­ ter (Nelson, 1994). Global capture fisheries har­ Fish constitute one of the major protein sources vested 101 million tonnes of fish including 27 for humans around the world. There are to date million tonnes of bycatch in 1995, and 11 million some 25 000 different known fish species of which tonnes were produced in aquaculture the same year (FAO, 1997).
    [Show full text]
  • Continental and Marine Hydrobiology Environmental Impact and Ecological Status Assessment
    Continental and marine hydrobiology Environmental impact and ecological status assessment EUROFINS Hydrobiologie France is your unique partner to evaluate and monitor aquatic environments. • Evaluate the effectiveness of your installations or the impact of your discharges aquatic ecosystems • Characterize the waterbodies states according to the Water Framework Directive (WFD) requirements Our analytical offer On continental ecosystems On marine ecosystems Benthic and pelagic microalgae Microalgae • Biological Diatom Index (IBD, NF T90-354) • Marine phytoplankton: quantitative and qualitative analyzes, • Phytoplankton in waterbodies and streams (NF EN 15204, IPLAC) detection of potentially toxic species (NF EN 15204 and NF EN 15972) • Cyanobacteria (NF EN 15204) Marine phanerogams • Conservation status of marine phanerogam meadows (Posidonia sp, Macrophytes Zostera ssp., Cymodocea sp., etc) • Macrophytic Biological Index in Rivers (IBMR, NF T90-395) • Average Index of Coverage • Macrophytic Biological Index in Lakes (IBML, XP T90-328) • Search for protected species by professional diving Invertebrates (macro and micro) Invertebrates (macro and micro) • Standardized Global Biological Index (IBGN, NF T90-350) • Zooplankton study • WFD protocols: MPCE and I2M2 (NF T90-333 and XP T90-388) • Soft bottom macrofauna communities (WFD, REBENT, NF ISO 16665, etc.) • Large streams: Adapted Global Biological Index (IBGA) • Protected species: European/international protection • Bioindication Oligochaeta Index in Sediment (IOBS)/ Bioindication • Evaluation
    [Show full text]
  • Selected Papers on “Avian Diversity and Hydrobiology”
    Selected Papers on “Avian Diversity and Hydrobiology” Dr. M. Y. Kulkarni Head Dept. of Zoology N.S.B. College, ACS Nanded – 431 602 (Ms.) Dr. R. D. Barde Head Dept. of Zoology SGB College, Purna Dist.Parbhani ________________________________________________ Siddhi Publications, Nanded Maharashtra (India) Selected Papers on Avian Diversity and Hydrobiology I 1 ISBN No. 978-81-940206-5-3 © Authors All Rights Reserved No part of this publication may be reproduced, in retrieved system or transmitted in any form by any means without prior written permission. Published By SIDDHI PUBLICATION HOUSE Srinagar, Nanded 431605. Mob. 9623979067 Email: [email protected] Typesetting Rajesh Umbarkar Printers Anupam Printers, Nanded. Price: 100/- First Edition : 05 Feb. 2020 Selected Papers on Avian Diversity and Hydrobiology I 2 INDEX Sr. Name of Page Title of Papers No. Authors No. 1. SYNURBIZATION - R. S. Sonwane ADAPTATION OF BIRD WILD and A. B. Harkal 4 LIFE TO NANDED URBAN DEVELOPMENT 2. CONSERVATION OF AVIAN V.S. Jadhav, DIVERSITY AT SITAKHANDI V.S. Kanwate 12 FOREST IN BHOKAR TAHSHIL and A.B. Harkal OF NANDED DISTRICT [M.S.] 3. DIVERSITY AND POPULATION P. V. Darekar OF AVIFAUNA OF SANGVIKATI A.C.Kumbhar PERCOLATION TANK, TAL. 20 TULJAPUR DIST.OSMANABAD (M.S.) 4. DEEP SEA FISHERY BIO V.S.N Raghava RESOURCES - BIODIVERSITY Rao 30 AND STOCK ASSESSMENT 5. ASSESSMENT OF GROUND M. Maqdoom WATER QUALITY IN GOKUNDA TALUKA KINWAT OF NANDED 35 DISTRICT, MAHARASHTRA (INDIA). 6 LIFE BECOMES MEASURABLE J.U. Deshmukh DUE TO EXCESS FLUORIDE IN GROUND WATER NEARBY 43 NANDED CITY DISTRICT NANDED 7 STUDIES OF DISSOLVED V.K.
    [Show full text]
  • Microscale Ecology Regulates Particulate Organic Matter Turnover in Model Marine Microbial Communities
    ARTICLE DOI: 10.1038/s41467-018-05159-8 OPEN Microscale ecology regulates particulate organic matter turnover in model marine microbial communities Tim N. Enke1,2, Gabriel E. Leventhal 1, Matthew Metzger1, José T. Saavedra1 & Otto X. Cordero1 The degradation of particulate organic matter in the ocean is a central process in the global carbon cycle, the mode and tempo of which is determined by the bacterial communities that 1234567890():,; assemble on particle surfaces. Here, we find that the capacity of communities to degrade particles is highly dependent on community composition using a collection of marine bacteria cultured from different stages of succession on chitin microparticles. Different particle degrading taxa display characteristic particle half-lives that differ by ~170 h, comparable to the residence time of particles in the ocean’s mixed layer. Particle half-lives are in general longer in multispecies communities, where the growth of obligate cross-feeders hinders the ability of degraders to colonize and consume particles in a dose dependent manner. Our results suggest that the microscale community ecology of bacteria on particle surfaces can impact the rates of carbon turnover in the ocean. 1 Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 2 Department of Environmental Systems Science, ETH Zurich, Zürich 8092, Switzerland. Correspondence and requests for materials should be addressed to O.X.C. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:2743 | DOI: 10.1038/s41467-018-05159-8 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05159-8 earning how the composition of ecological communities the North Pacific gyre20.
    [Show full text]
  • The Nature of Cumulative Impacts on Biotic Diversity of Wetland Vertebrates
    The Nature of Cumulative Impacts on Biotic Diversity of Wetland Vertebrates I.ARRu D. HARRIS about--makes using food chain support as a variable for Department of Wildlife and Range Sciences predicting environmental impacts very questionable. School of Forest Resources and Conservation Historical instances illustrate the effects of the accumula- University of Florida tion of impacts on vertebrates. At present it is nearly impos- Gainesville, Florida 32611, USA sible to predict the result of three or more different kinds of perturbations, although long-range effects can be observed. One case in point is waterfowl; while their ingestion of lead ABSTRACT/There is no longer any doubt that cumulative shot, harvesting by hunters during migration, and loss of impacts have important effects on wetland vertebrates. Inter- habitat have caused waterfowl populations to decline, the actions of species diversity and community structure produce proportional responsibility of these factors has not been de- a complex pattern in which environmental impacts can play termined. a highly significant role. Various examples show how wet- Further examples show muttiplicative effects of similar ac- lands maintain the biotic diversity within and among verte- tions, effects with long time lags, diffuse processes in the brate populations, and some of the ways that environmental landscape that may have concentrated effects on a compo- perturbations can interact to reduce this diversity. nent subsystem, and a variety of other interactions of in- The trophic and habitat pyramids are useful organizing creasing complexity. Not only is more information needed at concepts. Habitat fragmentation can have severe effects at all levels; impacts must be assessed on a landscape or re- all levels, reducing the usable range of the larger habitat gional scale to produce informed management decisions.
    [Show full text]
  • The Effects of Urbanization on Natural Resources in Jamaica
    Doneika Simms. The Effects of Urbanization on Natural Resources in Jamaica . 44th ISOCARP Congress 2008 THE EFFECTS OF URBANIZATION ON NATURAL RESOURCES IN JAMAICA BACKGROUND OF STUDY AREA Jamaica is the third largest island in the Caribbean, comprising of approximately 4,400 sq. miles or 10,991 square kilometers in area. Over two-thirds of the country’s land resources consist of a central range of hills and mountains, with the Blue Mountain Range being the most significant, ranging over 6000 ft. in height (GOJ, 1994; Clarke, 2006). This means that urban development in areas such as the capital city of Kingston and other principal towns such as Montego Bay and Ocho Rios is limited to the relatively small amount of flat lands most of which has a coastal location (see figure 1). Figure 1 Showing a Map of Jamaica and the Various Cities along the Coast Source: http://www.sangstersrealty.com/jamaica_map.htm Although a significant portion of the terrain is mountainous, in several places the coastal plain extends to form broad embayments. Among these, a dry embankment on the south side of the island known as the Liguanea Plain has been occupied by the city of Kingston. The built-up area of the city spreads over 50 sq. miles and comprises the parish of Kingston and the suburban section of St. Andrew. The city is located on the eastern side of the island which is sheltered from the north-east trade winds by the Blue Mountains, hence being ideal for the major seaport of the country- the Kingston Harbour (Clarke, 2006).
    [Show full text]
  • Plankton Community Composition, Organic Carbon and Thorium-234 Particle Size Distributions, and Particle Export in the Sargasso Sea
    Journal of Marine Research, 67, 845–868, 2009 Plankton community composition, organic carbon and thorium-234 particle size distributions, and particle export in the Sargasso Sea by H. S. Brew1, S. B. Moran1,2, M. W. Lomas3 and A. B. Burd4 ABSTRACT Measurements of plankton community composition (eight planktonic groups), particle size- fractionated (10, 20, 53, 70, and 100-␮m Nitex screens) distributions of organic carbon (OC) and 234Th, and particle export of OC and 234Th are reported over a seasonal cycle (2006–2007) from the Bermuda Atlantic Time-Series (BATS) site. Results indicate a convergence of the particle size distributions of OC and 234Th during the winter-spring bloom period (January–March, 2007). The observed convergence of these particle size distributions is directly correlated to the depth-integrated abundance of autotrophic pico-eukaryotes (r ϭ 0.97, P Ͻ 0.05) and, to a lesser extent, Synechococcus (r ϭ 0.85, P ϭ 0.14). In addition, there are positive correlations between the sediment trap flux of OC and 234Th at 150 m and the depth-integrated abundance of pico-eukaryotes (r ϭ 0.94, P ϭ 0.06 for OC, and r ϭ 0.98, P Ͻ 0.05 for 234Th) and Synechococcus (r ϭ 0.95, P ϭ 0.05 for OC, and r ϭ 0.94, P ϭ 0.06 for 234Th). An implication of these observations and recent modeling studies (Richardson and Jackson, 2007) is that, although small in size, pico-plankton may influence large particle export from the surface waters of the subtropical Atlantic.
    [Show full text]
  • Urbanization As a Threat to Biodiversity: Trophic Theory, Economic Geography, and Implications for Conservation Land Acquisition
    Proceedings of a Symposium at the Society for Conservation Biology 2004 Annual Meeting URBANIZATION AS A THREAT TO BIODIVERSITY: TROPHIC THEORY, ECONOMIC GEOGRAPHY, AND IMPLICATIONS FOR CONSERVATION LAND ACQUISITION Brian Czech1 ABSTRACT—Habitat loss is often cited as the primary cause of species endangerment in the United States, followed by invasive species, pollution, and direct take. Urbanization, one type of habitat loss, is the leading cause of species endangerment in the contiguous United States and entails a relatively thorough transformation from the “economy of nature” to the human economy. Principles of economic geography indicate that urbanization will continue as a function of economic growth, while principles of conservation biology indicate that the most thorough competitive exclusion occurs in urban areas. These findings suggest the need for an ecologically macroeconomic approach to conservation land acquisition strategies. “Habitat loss” is often cited as the primary cause of species these types of habitat loss are considered separate causes of endangerment in the United States, followed by invasive species endangerment, invasive species are identified as the species, pollution, disease, and direct take. However, vari- leading cause of species endangerment in the United States, ous types of habitat loss are readily identified, such as log- including Hawaii and Puerto Rico (Czech et al. 2000). On ging, mining, agriculture, and urbanization (table 1). When the mainland United States, however, urbanization is the Table 1.— Causes of endangerment for the first 877 (of the current 1,262) species in the United States and Puerto Rico classified as threatened or endangered by the United States Fish and Wildlife Service (from Czech et al.
    [Show full text]
  • A View of Physical Mechanisms for Transporting Harmful Algal Blooms to T Massachusetts Bay ⁎ Yu Zhanga, , Changsheng Chenb, Pengfei Xueb,1, Robert C
    Marine Pollution Bulletin 154 (2020) 111048 Contents lists available at ScienceDirect Marine Pollution Bulletin journal homepage: www.elsevier.com/locate/marpolbul A view of physical mechanisms for transporting harmful algal blooms to T Massachusetts Bay ⁎ Yu Zhanga, , Changsheng Chenb, Pengfei Xueb,1, Robert C. Beardsleyc, Peter J.S. Franksd a College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, PR China b School for Marine Science and Technology, University of Massachusetts-Dartmouth, New Bedford, MA 02744, USA c Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA d Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA ARTICLE INFO ABSTRACT Keywords: Physical dynamics of Harmful Algal Blooms in Massachusetts Bay in May 2005 and 2008 were examined by the Harmful algal bloom simulated results. Reverse particle-tracking experiments suggest that the toxic phytoplankton mainly originated Massachusetts Bay from the Bay of Fundy in 2005 and the western Maine coastal region and its local rivers in 2008. Mechanism Ocean modeling studies suggest that the phytoplankton were advected by the Gulf of Maine Coastal Current (GMCC). In 2005, Lagrangian flow Nor'easters increased the cross-shelf surface elevation gradient over the northwestern shelf. This intensified the Eastern and Western MCC to form a strong along-shelf current from the Bay of Fundy to Massachusetts Bay. In 2008, both Eastern and Western MCC were established with a partial separation around Penobscot Bay before the outbreak of the bloom. The northeastward winds were too weak to cancel or reverse the cross-shelf sea surface gradient, so that the Western MCC carried the algae along the slope into Massachusetts Bay.
    [Show full text]
  • Impact of Feeding Activity of Silver Carp on Plankton Removal from a High-Rate Pond Effluent
    Water Qual. Res. J. Canada, 2005 • Volume 40, No. 2, 191–201 Copyright © 2005, CAWQ Impact of Feeding Activity of Silver Carp on Plankton Removal from a High-Rate Pond Effluent Nadia Berday,1* Driss Zaoui,1 Abdeljaouad Lamrini2 and Mustapha Abi3 1Department of Biology, Faculty of Sciences, University of Chouaib Doukkali, P.B. 20, El Jadida, Morocco 2Department of Fisheries, Hassan II Agronomic and Veterinary Medicine Institute, P.B. 6202, Rabat Institutes, 10101, Morocco 3National Center of Hydrobiology and Fish-Culture of Azrou, P.B. 11, Azrou, Morocco The effect of silver carp (Hypophthalmichthys molitrix Val.) feeding activity on the plankton communities in a high-rate pond technology system (HRPTS) effluent was investigated over a period of 100 days. The experiment was conducted at the experimental wastewater treatment plant of the Agronomic and Veterinary Medicine Institute (AVI) of Rabat, Morocco, using a HRPTS in a fish pond receiving the plant effluent. The effluent was highly dominated by phytoplankton (99.95%). Silver carp could survive and grow in the fish pond. Production was 37 kg with a very low mortality rate (12%). The high specific intestine weight (7%) and intake rates of biomass and phytoplankton by silver carp (616 g kg-1 of fish day-1 and 1.6 x 1011 cell kg-1 of fish day-1, respectively) demonstrated the importance of the feeding activity of the fish. Zooplankton intake rates were lower (2 x 107 bodies kg-1 of fish day-1). The high intestine index (3 to 4.3 for fish sizes of 14 to 22 cm) and the dominance of phytoplankton in the gut contents (99.95%) confirmed an omnivorous/ phytoplanctivorous diet.
    [Show full text]
  • Safe Use of Wastewater in Agriculture Safe Use of Safe Wastewater in Agriculture Proceedings No
    A UN-Water project with the following members and partners: UNU-INWEH Proceedings of the UN-Water project on the Safe Use of Wastewater in Agriculture Safe Use of Wastewater in Agriculture Wastewater Safe of Use Proceedings No. 11 No. Proceedings | UNW-DPC Publication SeriesUNW-DPC Coordinated by the UN-Water Decade Programme on Capacity Development (UNW-DPC) Editors: Jens Liebe, Reza Ardakanian Editors: Jens Liebe, Reza Ardakanian (UNW-DPC) Compiling Assistant: Henrik Bours (UNW-DPC) Graphic Design: Katja Cloud (UNW-DPC) Copy Editor: Lis Mullin Bernhardt (UNW-DPC) Cover Photo: Untited Nations University/UNW-DPC UN-Water Decade Programme on Capacity Development (UNW-DPC) United Nations University UN Campus Platz der Vereinten Nationen 1 53113 Bonn Germany Tel +49-228-815-0652 Fax +49-228-815-0655 www.unwater.unu.edu [email protected] All rights reserved. Publication does not imply endorsement. This publication was printed and bound in Germany on FSC certified paper. Proceedings Series No. 11 Published by UNW-DPC, Bonn, Germany August 2013 © UNW-DPC, 2013 Disclaimer The views expressed in this publication are not necessarily those of the agencies cooperating in this project. The designations employed and the presentation of material throughout this publication do not imply the expression of any opinion whatsoever on the part of the UN, UNW-DPC or UNU concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Unless otherwise indicated, the ideas and opinions expressed by the authors do not necessarily represent the views of their employers.
    [Show full text]