Ecosystem Services Generated by Fish Populations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Education in Ecological Engineering—Aneedwhose Time Has Come
Circular Economy and Sustainability https://doi.org/10.1007/s43615-021-00067-4 ORIGINAL PAPER Education in Ecological Engineering—aNeedWhose Time Has Come Glenn Dale1,2 & Gabriela Dotro3 & Puneet Srivastava 4 & David Austin5 & Stacy Hutchinson6 & Peter Head7 & Ashantha Goonetilleke8 & Alexandros Stefanakis9 & Ranka Junge10 & José A. Fernández L. 11 & Vanessa Weyer12 & Wayne Truter 12 & Devi Bühler10 & John Bennett 2 & Hongbo Liu13 & Zifu Li14 & Jianqiang Du 15,16 & Petra Schneider17 & Jochen Hack18 & Andreas Schönborn 10 Received: 4 March 2021 /Accepted: 8 March 2021/ # The Author(s) 2021 Abstract Overcoming Limitations of Ecology and Engineering in Addressing Society’sChallengesBy providing an integrated, systems-approach to problem-solving that incorporates ecolog- ical principles in engineering design, ecological engineering addresses, many of the limitations of Ecology and Engineering needed to work out how people and nature can beneficially coexist on planet Earth. Despite its origins in the 1950s, ecological engineer- ing remains a niche discipline, while at the same time, there has never been a greater need to combine the rigour of engineering and science with the systems-approach of ecology for pro-active management of Earth’s biodiversity and environmental life-support sys- tems. Broad consensus on the scope and defining elements of ecological engineering and development of a globally consistent ecological engineering curriculum are key pillars to mainstream recognition of the discipline and practice of ecological engineering. The Importance of Ecological Engineering in Society In this paper, the importance of ecological engineering education is discussed in relation to the perceived need of our society to address global challenges of sustainable development. The perceived needs of industry, practitioners, educators and students for skills in ecological engineering are also discussed. -
Freshwater Ecosystems and Biodiversity
Network of Conservation Educators & Practitioners Freshwater Ecosystems and Biodiversity Author(s): Nathaniel P. Hitt, Lisa K. Bonneau, Kunjuraman V. Jayachandran, and Michael P. Marchetti Source: Lessons in Conservation, Vol. 5, pp. 5-16 Published by: Network of Conservation Educators and Practitioners, Center for Biodiversity and Conservation, American Museum of Natural History Stable URL: ncep.amnh.org/linc/ This article is featured in Lessons in Conservation, the official journal of the Network of Conservation Educators and Practitioners (NCEP). NCEP is a collaborative project of the American Museum of Natural History’s Center for Biodiversity and Conservation (CBC) and a number of institutions and individuals around the world. Lessons in Conservation is designed to introduce NCEP teaching and learning resources (or “modules”) to a broad audience. NCEP modules are designed for undergraduate and professional level education. These modules—and many more on a variety of conservation topics—are available for free download at our website, ncep.amnh.org. To learn more about NCEP, visit our website: ncep.amnh.org. All reproduction or distribution must provide full citation of the original work and provide a copyright notice as follows: “Copyright 2015, by the authors of the material and the Center for Biodiversity and Conservation of the American Museum of Natural History. All rights reserved.” Illustrations obtained from the American Museum of Natural History’s library: images.library.amnh.org/digital/ SYNTHESIS 5 Freshwater Ecosystems and Biodiversity Nathaniel P. Hitt1, Lisa K. Bonneau2, Kunjuraman V. Jayachandran3, and Michael P. Marchetti4 1U.S. Geological Survey, Leetown Science Center, USA, 2Metropolitan Community College-Blue River, USA, 3Kerala Agricultural University, India, 4School of Science, St. -
BIG RIVER ECOSYSTEM: Program 2
BIG RIVER ECOSYSTEM: A Question of Net Worth PURPOSE To explore biodiversity at the ecosystem level. KERA CONNECTIONS to Life Science Program 2 Core Content: Structure and Function in Living Systems Academic Expectations: 2.2 Patterns, 2.3 Systems, 2.4 Models & Scale ANSWERS TO Process Skills: Observation, Modeling aFIELD NOTES OBJECTIVES 1. In a hot and hostile environment, Students should be able to: the evaporated water cannot be 1.identify five “big river” organisms incorporated into living cells (as 2.construct a diagram showing interactions between living and we know them). nonliving parts of an ecosystem 2. An extremely cold environment, 3. discuss factors that affect the level of biodiversity in their river basin. or frozen desert, does not allow cells to utilize water. VOCABULARY 3. Answers will vary but should Teachers may wish to discuss the following terms: display logical flow of water and aquatic, commercial, ecosystem, water cycle and watershed. allow for recirculation in a loop. 4. Arteries and veins. aFIELD NOTEBOOK 5. A pumping heart. Ideas for Teachers 6. Diagram A shows many different A. Develop a concept map for the water cycle. Include these items in types of ecosystems in close the concept map: clouds, groundwater, apple tree, stream, precipita- proximity. tion, condensation, evaporation, harvest mouse, snowflakes, sun and 7. Add a watering hole, plant a humans. What other cycles are needed to maintain an ecosystem? miniature forest, create a B. Biospheres, containing algae, brine shrimp and water, are often meadow of wildflowers. Most shown in advertisements. Analyze how the biosphere is self-main- importantly, break up a monocul- taining. -
A White Paper on the Status and Needs of Largemouth Bass Culture in the North Central Region
A WHITE PAPER ON THE STATUS AND NEEDS OF LARGEMOUTH BASS CULTURE IN THE NORTH CENTRAL REGION Prepared by Roy C. Heidinger Fisheries and Illinois Aquaculture Center Southern Illinois University-Carbondale for the North Central Regional Aquaculture Center Current Draft as of March 29, 2000 TABLE OF CONTENTS INTRODUCTION AND JUSTIFICATION OF THE DOCUMENT ....................2 CURRENT STATUS OF THE INDUSTRY ........................................2 Markets ...................................................................2 Supply/Demand ..........................................................2 Legality ...................................................................3 BIOLOGY/AQUACULTURE TECHNOLOGY .....................................3 Biology ...................................................................4 Culture ....................................................................4 Brood Stock ............................................................4 Fry and Fingerling Production ................................................5 Diseases and Pests ........................................................6 Water Quality, Handling, and Transport ........................................7 CRITICAL LIMITING FACTORS AND RECOMMENDATIONS ....................7 Nutrition ..................................................................7 Production Densities ..........................................................8 Marketing .................................................................8 Diseases ..................................................................8 -
The Role of a Fish Pond in Optimizing Nutrient Flows in Integrated Agriculture-Aquaculture Farming Systems
The role of a fish pond in optimizing nutrient flows in integrated agriculture-aquaculture farming systems Dang Kieu Nhan Promotor: Prof. Dr. J.A.J. Verreth Hoogleraar Aquacultuur en Visserij Wageningen Universiteit Co-promotor: Dr. M.C.J. Verdegem Universitair Docent, Leerstoelgroep Aquacultuur en Visserij Wageningen Universiteit Promotiecommissie: Prof. Dr. Ir. A.J. van der Zijpp Wageningen Universiteit Dr. M. Ana Milstein Fish and Aquaculture Research Station, Israel Prof. Dr. R. Ruben Radboud Universiteit Nijmegen Prof. Dr. Nguyen Anh Tuan Can Tho University, Vietnam Dit onderzoek is uitgevoerd binnen de onderzoeksschool Wageningen Institute of Animal Sciences (WIAS) The role of a fish pond in optimizing nutrient flows in integrated agriculture-aquaculture farming systems Dang Kieu Nhan Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. M.J.Kropff, in het openbaar te verdedigen op woensdag 3 oktober 2007 des namiddags te vier uur in de Aula Nhan, D.K., 2007. The role of a fish pond in optimizing nutrient flows in integrated agriculture-aquaculture farming systems. PhD Thesis, Wageningen University, The Netherlands ISBN: 978-90-8504-739-1 Contents Chapter 1 General introduction 1 Chapter 2 Integrated freshwater aquaculture, crop and livestock production in 9 the Mekong Delta, Vietnam: determinants and the role of the pond Chapter 3 Food inputs, water quality and nutrient accumulation in integrated 37 pond systems: a multivariate approach Chapter 4 Water and nutrient budgets of ponds in integrated agriculture- 67 aquaculture systems in the Mekong Delta, Vietnam Chapter 5 Economic and nutrient discharge tradeoffs of excreta-fed 93 aquaculture in the Mekong Delta, Vietnam Chapter 6 General discussion 121 References 133 Summary (English) 145 Summary (Dutch) 149 Summary (Vietnamese) 153 Acknowledgements 157 Training and Supervision Plan 159 Curriculum vitae 160 List of publications 161 Chapter 1 General introduction Chapter 1 1. -
Pond and Lake Ecosystems a Pond Or Lake Ecosystem Includes Biotic
Pond and Lake Ecosystems A pond or lake ecosystem includes biotic (living) plants, animals and micro-organisms, as well as abiotic (nonliving) physical and chemical interactions. Pond and lake ecosystems are a prime example of lentic ecosystems. Lentic refers to stationary or relatively still water, from the Latin lentus, which means sluggish. A typical lake has distinct zones of biological communities linked to the physical structure of the lake. (Figure below) The littoral zone is the near shore area where sunlight penetrates all the way to the sediment and allows aquatic plants (macrophytes) to grow. Light levels of about 1% or less of surface values usually define this depth. The 1% light level also defines the euphotic zone of the lake, which is the layer from the surface down to the depth where light levels become too low for photosynthesizers. In most lakes, the sunlit euphotic zone occurs within the epilimnion. However, in unusually transparent lakes, photosynthesis may occur well below the thermocline into the perennially cold hypolimnion. For example, in western Lake Superior near Duluth, MN, summertime algal photosynthesis and growth can persist to depths of at least 25 meters, while the mixed layer, or epilimnion, only extends down to about 10 meters. Ultra-oligotrophic Lake Tahoe, CA/NV, is so transparent that algal growth historically extended to over 100 meters, though its mixed layer only extends to about 10 meters in summer. Unfortunately, inadequate management of the Lake Tahoe basin since about 1960 has led to a significant loss of transparency due to increased algal growth and increased sediment inputs from stream and shoreline erosion. -
Environmental Awareness and Conceptual Understanding Through a Pilot Sustainable Development Module
AC 2011-1917: FIRST-YEAR ENGINEERING STUDENTS’ ENVIRONMEN- TAL AWARENESS AND CONCEPTUAL UNDERSTANDING THROUGH A PILOT SUSTAINABLE DEVELOPMENT MODULE Nicole R. Weber, Purdue University She is a Postdoctoral Researcher in the School of Engineering Education at Purdue University. She received her B.S. degree in Ecology, Evolution and Behavior from the University of Minnesota, St. Paul. At the University of Massachusetts Boston, she received her Ph.D. in Environmental Biology with an emphasis in Science Education. Her current research is working in ”sustainable engineering” education, creating awareness of engineering as a ”caring” discipline. A discipline where engineers incorporate the ecological footprint into their design, keeping in mind related social and ecological impacts. Melissa Dyehouse, Purdue University Melissa Dyehouse is a Postdoctoral Research Associate at the Institute for P-12 Engineering Research and Learning (INSPIRE). She received her M.S.Ed. and Ph.D. in Educational Psychology from Purdue University with a focus on educational research methodology and assessment. Her research at INSPIRE focuses on the learning and teaching of engineering as a ”caring” discipline in the context of environmen- tal and ecological concerns. Constance A Harris, Purdue University She is a doctoral candidate in the College of Education at Purdue University. She received her B.S. degree in Political Science from the University of Illinois at Urbana-Champaign. In addition, she earned M.S. in Interdisciplinary Studies from DePaul University located in Chicago, Illinois, and a M.A. in Communication Studies from Purdue University Calumet located in Hammond, Indiana. Currently, she works as a research assistant in the School of Engineering Education at Purdue University. -
New and Emerging Technologies for Sustainable Fisheries: a Comprehensive Landscape Analysis
Photo by Pablo Sanchez Quiza New and Emerging Technologies for Sustainable Fisheries: A Comprehensive Landscape Analysis Environmental Defense Fund | Oceans Technology Solutions | April 2021 New and Emerging Technologies for Sustainable Fisheries: A Comprehensive Landscape Analysis Authors: Christopher Cusack, Omisha Manglani, Shems Jud, Katie Westfall and Rod Fujita Environmental Defense Fund Nicole Sarto and Poppy Brittingham Nicole Sarto Consulting Huff McGonigal Fathom Consulting To contact the authors please submit a message through: edf.org/oceans/smart-boats edf.org | 2 Contents List of Acronyms ...................................................................................................................................................... 5 1. Introduction .............................................................................................................................................................7 2. Transformative Technologies......................................................................................................................... 10 2.1 Sensors ........................................................................................................................................................... 10 2.2 Satellite remote sensing ...........................................................................................................................12 2.3 Data Collection Platforms ...................................................................................................................... -
Partnering with Extractive Industries for the Conservation of Biodiversity in Africa
Partnering with Extractive Industries for the Conservation of Biodiversity in Africa: A Guide for USAID Engagement November 2008 This publication was produced for review by the United States Agency for International Development. It was prepared by the Biodiversity Analysis and Technical Support (BATS) Team. PARTNERING WITH EXTRACTIVE INDUSTRIES FOR THE CONSERVATION OF BIODIVERSITY IN AFRICA: A GUIDE FOR USAID ENGAGEMENT November 2008 Biodiversity Assessment and Technical Support Program (BATS) EPIQ IQC: EPP-I-00-03-00014-00, Task Order 02 Dr. Joao Stacishin de Queiroz Brian App Renee Morin Wendy Rice Biodiversity Analysis and Technical Support for USAID/Africa (BATS) is funded by the U.S. Agency for International Development, Bureau for Africa, Office of Sustainable Development (AFR/SD). This program is implemented by Chemonics International Inc., World Conservation Union, World Wildlife Fund, and International Program Consortium in coordination with program partners: the U.S. Forest Service/International Programs and the Africa Biodiversity Collaborative Group. ON THE COVER (Left to Right): Bauxite shipment, Guinea (BATS / Brian App), Oil platform construction site, Namibia (Alexander Hafemann), Illegal Timber Processing, Madagascar (BATS /Steve Dennison), Artisanal Fishing Tools, Mali (BATS / Brian App) The authors’ views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States Government. CONTENTS Introduction 1 Section I Analysis of Risk and Potential -
Effects of Eutrophication on Stream Ecosystems
EFFECTS OF EUTROPHICATION ON STREAM ECOSYSTEMS Lei Zheng, PhD and Michael J. Paul, PhD Tetra Tech, Inc. Abstract This paper describes the effects of nutrient enrichment on the structure and function of stream ecosystems. It starts with the currently well documented direct effects of nutrient enrichment on algal biomass and the resulting impacts on stream chemistry. The paper continues with an explanation of the less well documented indirect ecological effects of nutrient enrichment on stream structure and function, including effects of excess growth on physical habitat, and alterations to aquatic life community structure from the microbial assemblage to fish and mammals. The paper also dicusses effects on the ecosystem level including changes to productivity, respiration, decomposition, carbon and other geochemical cycles. The paper ends by discussing the significance of these direct and indirect effects of nutrient enrichment on designated uses - especially recreational, aquatic life, and drinking water. 2 1. Introduction 1.1 Stream processes Streams are all flowing natural waters, regardless of size. To understand the processes that influence the pattern and character of streams and reduce natural variation of different streams, several stream classification systems (including ecoregional, fluvial geomorphological, and stream order classification) have been adopted by state and national programs. Ecoregional classification is based on geology, soils, geomorphology, dominant land uses, and natural vegetation (Omernik 1987). Fluvial geomorphological classification explains stream and slope processes through the application of physical principles. Rosgen (1994) classified stream channels in the United States into seven major stream types based on morphological characteristics, including entrenchment, gradient, width/depth ratio, and sinuosity in various land forms. -
Long Term Deforestation Assessment in Jharkhand State, India: a Grid Based Geospatial Approach
Biological Forum – An International Journal 9(1): 183-188(2017) ISSN No. (Print): 0975-1130 ISSN No. (Online): 2249-3239 Long Term Deforestation Assessment in Jharkhand state, India: A grid based Geospatial Approach Firoz Ahmad* and Laxmi Goparaju* *Vindhyan Ecology and Natural History Foundation, Mirzapur, Uttar Pradesh, India. (Corresponding author: Laxmi Goparaju) (Received 15 March 2017, Accepted 18 June, 2017) (Published by Research Trend, Website: www.researchtrend.net) ABSTRACT: Forest is a fundamental component of the environment. Deforestation is caused by various anthropogenic factors, forest fire and fragmentation of large contiguous forests. Deforestation represents a global issue mostly caused by human influence and the forest of Jharkhand, India is not an exception as they have also been witnessing large scale deforestation. The aim of the present study is to identify deforestation using historical data for the year 1935 (Survey of India topographical maps of 1924–1935) and for the year of 2015 with Landsat -8 datasets in Jharkhand, India. To achieve this objective, the analysis focuses on grid (5 km*5 km) based assessment to detect long term change. The grid based analysis reveals forest percent in Jharkhand for the year 1935 and 2015 were roughly 49% and 23% respectively. The result shows 2596 forest grid for the year 1935 out of which 1372 forest grids were found present in the year 2015. 1224 forest grid (equivalent to 26% forest area) was lost during the span of 80 years. The analysis of remote sensing data in GIS domain and its derived product must be incorporated in forest conservation; management and planning which will certainly fetch better result in decision making support system. -
Marine Fish Conservation Global Evidence for the Effects of Selected Interventions
Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca0 K. Smith & William J. Sutherland CONSERVATION EVIDENCE SERIES SYNOPSES Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca K. Smith and William J. Sutherland Conservation Evidence Series Synopses 1 Copyright © 2021 William J. Sutherland This work is licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0). This license allows you to share, copy, distribute and transmit the work; to adapt the work and to make commercial use of the work providing attribution is made to the authors (but not in any way that suggests that they endorse you or your use of the work). Attribution should include the following information: Taylor, N., Clarke, L.J., Alliji, K., Barrett, C., McIntyre, R., Smith, R.K., and Sutherland, W.J. (2021) Marine Fish Conservation: Global Evidence for the Effects of Selected Interventions. Synopses of Conservation Evidence Series. University of Cambridge, Cambridge, UK. Further details about CC BY licenses are available at https://creativecommons.org/licenses/by/4.0/ Cover image: Circling fish in the waters of the Halmahera Sea (Pacific Ocean) off the Raja Ampat Islands, Indonesia, by Leslie Burkhalter. Digital material and resources associated with this synopsis are available at https://www.conservationevidence.com/