Ecosystem Services Generated by Fish Populations

Total Page:16

File Type:pdf, Size:1020Kb

Ecosystem Services Generated by Fish Populations AR-211 Ecological Economics 29 (1999) 253 –268 ANALYSIS Ecosystem services generated by fish populations Cecilia M. Holmlund *, Monica Hammer Natural Resources Management, Department of Systems Ecology, Stockholm University, S-106 91, Stockholm, Sweden Abstract In this paper, we review the role of fish populations in generating ecosystem services based on documented ecological functions and human demands of fish. The ongoing overexploitation of global fish resources concerns our societies, not only in terms of decreasing fish populations important for consumption and recreational activities. Rather, a number of ecosystem services generated by fish populations are also at risk, with consequences for biodiversity, ecosystem functioning, and ultimately human welfare. Examples are provided from marine and freshwater ecosystems, in various parts of the world, and include all life-stages of fish. Ecosystem services are here defined as fundamental services for maintaining ecosystem functioning and resilience, or demand-derived services based on human values. To secure the generation of ecosystem services from fish populations, management approaches need to address the fact that fish are embedded in ecosystems and that substitutions for declining populations and habitat losses, such as fish stocking and nature reserves, rarely replace losses of all services. © 1999 Elsevier Science B.V. All rights reserved. Keywords: Ecosystem services; Fish populations; Fisheries management; Biodiversity 1. Introduction 15 000 are marine and nearly 10 000 are freshwa­ ter (Nelson, 1994). Global capture fisheries har­ Fish constitute one of the major protein sources vested 101 million tonnes of fish including 27 for humans around the world. There are to date million tonnes of bycatch in 1995, and 11 million some 25 000 different known fish species of which tonnes were produced in aquaculture the same year (FAO, 1997). Despite the abundance and * Corresponding author. Tel.: +46-8-164252; fax: +46-8­ variation of fish, most western fisheries focus on a 158417. few target species. Approximately 75% of the E-mail address: [email protected] (C.M. Holm­ world’s marine fish landings consist of 200 ( � lund) 0921-8009/99/$ - see front matter © 1999 Elsevier Science B.V. All rights reserved. PII: S0921-8009(99)00015-4 254 C.M. Holmlund, M. Hammer / Ecological Economics 29 (1999) 253–268 1%) known existing marine fish species (FAO, al., 1995). We also discuss some of the conse­ 1997). Further, recreational fishing in lakes and quences of human impacts on fish populations, along coasts is a major tourism activity (FAO, such as overfishing in relation to ecosystem re­ 1996; Postel and Carpenter, 1997). Estimates of silience. We define resilience here as the amount the value of fish populations for human societies of change or disruption that is required to trans­ have predominantly focused on these goods. The form a system from being maintained by one set fact that such values are derived from ecosystems of mutually reinforcing processes to a different set with complex interactions, and that both econom­ of processes (Holling, 1973). Identifying ecosys­ ically and non-economically valuable fish popula­ tem services that various fish populations are part tions play active roles in the maintenance of these of, or generate for human societies, is one step ecosystems and in the provision of a range of toward holistic, ecosystem-based, resource man­ ecosystem services, is seldom taken into account. agement with increased understanding of effects Ecosystem services have been defined as ‘‘condi­ on the dynamic, often unpredictable ecosystems tions and processes through which natural ecosys­ by fisheries. tems, and the species that make them up, sustain and fulfill human life’’ (Daily, 1997, p. 3). This includes the life-support functions (Odum, 1989) 2. Ecosystem services of ecosystems and nature’s capacity to provide aesthetic and cultural quality to human life In this paper, we distinguish between two major (Daily, 1997). categories of ecosystem services: fundamental and In 1995, almost 70% of the world’s major demand-derived ecosystem services (Table 1). By marine fish resources were fully- to overharvested, ‘fundamental ecosystem services’ we mean those or depleted (World Resources Institute, 1996). that are essential for ecosystem function and re­ Capture fisheries not only reduce the abundance silience, such as nutrient cycling. These are ulti­ of targeted stocks with cascading responses in the mately a prerequisite for human existence, food web and with consequences in other ecologi­ irrespective of whether humans are aware of it or cal and fishery dependent systems, but also impact not. Such services are often not linked to any an array of other species, including mammals, as specific economic market value. The ‘demand­ bycatch (Dayton et al., 1995; Steneck, 1998). In derived ecosystem services’, such as recreational addition, many nearshore ecosystems are substan­ values, are formed by human values and de­ tially altered through the destruction of benthic mands, and not necessarily fundamental for the habitats by detrimental fishing methods survival of human societies. Nevertheless, all de­ (Malakoff, 1997). Indirect effects of fishing can mand-derived ecosystem services ultimately de­ have more important impacts on aquatic ecosys­ pend on natural systems and the fundamental tem structure and function than the removal of ecosystem services provided by fish, and are not the fish (Hammer et al., 1993; Hughes, 1994; replaceable by technological innovations. Botsford et al., 1997; Estes et al., 1998). In this paper, we review some of the current knowledge about how fish populations provide 3. Fundamental ecosystem services generated by ecosystem services for human societies, and the fish populations relations between these services and functioning ecosystems in different regions of the world. 3.1. Regulating services Available literature relating to large-scale marine systems is limited owing to the obvious difficulty Consumption of organisms by fish is a salient of performing ecosystem experiments here. Small­ feature which can regulate trophic structure and scale freshwater ecosystems, on the other hand, thus influence the stability, resilience, and food are better understood in terms of influences of fish web dynamics of aquatic ecosystems; moreover, on ecosystem structure and function (Carpenter et these regulatory influences change as fish pass C.M. Holmlund, M. Hammer / Ecological Economics 29 (1999) 253–268 255 from one life stage to another (Carpenter et al., ing in an increase of zooplankton, which in turn 1992; Post et al., 1997). A fish larva, feeding on increases the predation on phytoplankton (Car­ zooplankton, is as distinct ecologically from its penter et al., 1985). Although most trophic cas­ adult form as it is from its planktonic prey. cade studies have been done in calm freshwater Piscivores (fish that eat fish), preying on environments such as lakes, some studies have zooplanktivores (fish that eat zooplankton), can been done in freshwater streams, the brackish exert a strong top-down control resulting in a Baltic Sea, and coral reefs (Hughes, 1994; Rud­ cascade of effects down the food chain (Fig. 1). stam et al., 1994; Deegan et al., 1997). The degree The general mechanism is explained as a decrease of regulatory influence on foodchain relationships by fish varies with physical and climatological in the predation pressure on zooplankton result- preconditions, including stream flow, temperature, upwelling fronts, storms, seasonal variability, and Table 1 also with nutrient content and water depth (Rud­ Major fundamental and demand-derived ecosystem services generated by marine and freshwater fish populations stam et al., 1994; MacKenzie et al., 1996; Deegan et al., 1997; Jeppesen et al., 1998a). Also, Carpen­ Fundamental ecosystem services ter and Kitchell (1993) suggest that regulatory effects on species composition can be strong with­ Regulating services Linking services out affecting the overall function of the ecosys­ Regulation of food web Linkage within aquatic tem. We illustrate these general concepts with dynamics ecosystems several examples that follow. Recycling of nutrients Linkage between aquatic and terrestrial ecosystems 3.1.1. Regulating food web dynamics and nutrient Regulation of ecosystem Transport of nutrients, balances resilience carbon and minerals Redistribution of bottom Transport of energy Removal of fish with key characteristics and substrates functions from the ecosystem may result in loss of Regulation of carbon fluxes Acting as ecological memory resilience and in the ecosystem changing from one from water to atmosphere equilibrium state to another (Holling, 1986; Maintenance of sediment Chapin et al., 1997; Grime, 1997; Tilman et al., processes Maintenance of genetic, 1997) (cf. multiple stable states, e.g. Sutherland, species, ecosystem 1974; Sheffer, 1990; Levin, 1992; Walker, 1993). biodiversity Coral reef ecosystems in shallow coastal waters are exposed to hurricanes, typhoons, or cyclones Demand-derived ecosystem services which are irregularly occurring events. Thus, the regeneration of a healthy reef system is dependent Cultural services Information services on rapid colonization of larval recruits. Hughes Production of food Assessment of ecosystem (1994) showed how this recovery mechanism has stress been hindered in Jamaican coral reefs by human Aquaculture production Assessment of ecosystem activities. Since the 1950/1960s the Jamaican coral
Recommended publications
  • Education in Ecological Engineering—Aneedwhose Time Has Come
    Circular Economy and Sustainability https://doi.org/10.1007/s43615-021-00067-4 ORIGINAL PAPER Education in Ecological Engineering—aNeedWhose Time Has Come Glenn Dale1,2 & Gabriela Dotro3 & Puneet Srivastava 4 & David Austin5 & Stacy Hutchinson6 & Peter Head7 & Ashantha Goonetilleke8 & Alexandros Stefanakis9 & Ranka Junge10 & José A. Fernández L. 11 & Vanessa Weyer12 & Wayne Truter 12 & Devi Bühler10 & John Bennett 2 & Hongbo Liu13 & Zifu Li14 & Jianqiang Du 15,16 & Petra Schneider17 & Jochen Hack18 & Andreas Schönborn 10 Received: 4 March 2021 /Accepted: 8 March 2021/ # The Author(s) 2021 Abstract Overcoming Limitations of Ecology and Engineering in Addressing Society’sChallengesBy providing an integrated, systems-approach to problem-solving that incorporates ecolog- ical principles in engineering design, ecological engineering addresses, many of the limitations of Ecology and Engineering needed to work out how people and nature can beneficially coexist on planet Earth. Despite its origins in the 1950s, ecological engineer- ing remains a niche discipline, while at the same time, there has never been a greater need to combine the rigour of engineering and science with the systems-approach of ecology for pro-active management of Earth’s biodiversity and environmental life-support sys- tems. Broad consensus on the scope and defining elements of ecological engineering and development of a globally consistent ecological engineering curriculum are key pillars to mainstream recognition of the discipline and practice of ecological engineering. The Importance of Ecological Engineering in Society In this paper, the importance of ecological engineering education is discussed in relation to the perceived need of our society to address global challenges of sustainable development. The perceived needs of industry, practitioners, educators and students for skills in ecological engineering are also discussed.
    [Show full text]
  • Freshwater Ecosystems and Biodiversity
    Network of Conservation Educators & Practitioners Freshwater Ecosystems and Biodiversity Author(s): Nathaniel P. Hitt, Lisa K. Bonneau, Kunjuraman V. Jayachandran, and Michael P. Marchetti Source: Lessons in Conservation, Vol. 5, pp. 5-16 Published by: Network of Conservation Educators and Practitioners, Center for Biodiversity and Conservation, American Museum of Natural History Stable URL: ncep.amnh.org/linc/ This article is featured in Lessons in Conservation, the official journal of the Network of Conservation Educators and Practitioners (NCEP). NCEP is a collaborative project of the American Museum of Natural History’s Center for Biodiversity and Conservation (CBC) and a number of institutions and individuals around the world. Lessons in Conservation is designed to introduce NCEP teaching and learning resources (or “modules”) to a broad audience. NCEP modules are designed for undergraduate and professional level education. These modules—and many more on a variety of conservation topics—are available for free download at our website, ncep.amnh.org. To learn more about NCEP, visit our website: ncep.amnh.org. All reproduction or distribution must provide full citation of the original work and provide a copyright notice as follows: “Copyright 2015, by the authors of the material and the Center for Biodiversity and Conservation of the American Museum of Natural History. All rights reserved.” Illustrations obtained from the American Museum of Natural History’s library: images.library.amnh.org/digital/ SYNTHESIS 5 Freshwater Ecosystems and Biodiversity Nathaniel P. Hitt1, Lisa K. Bonneau2, Kunjuraman V. Jayachandran3, and Michael P. Marchetti4 1U.S. Geological Survey, Leetown Science Center, USA, 2Metropolitan Community College-Blue River, USA, 3Kerala Agricultural University, India, 4School of Science, St.
    [Show full text]
  • BIG RIVER ECOSYSTEM: Program 2
    BIG RIVER ECOSYSTEM: A Question of Net Worth PURPOSE To explore biodiversity at the ecosystem level. KERA CONNECTIONS to Life Science Program 2 Core Content: Structure and Function in Living Systems Academic Expectations: 2.2 Patterns, 2.3 Systems, 2.4 Models & Scale ANSWERS TO Process Skills: Observation, Modeling aFIELD NOTES OBJECTIVES 1. In a hot and hostile environment, Students should be able to: the evaporated water cannot be 1.identify five “big river” organisms incorporated into living cells (as 2.construct a diagram showing interactions between living and we know them). nonliving parts of an ecosystem 2. An extremely cold environment, 3. discuss factors that affect the level of biodiversity in their river basin. or frozen desert, does not allow cells to utilize water. VOCABULARY 3. Answers will vary but should Teachers may wish to discuss the following terms: display logical flow of water and aquatic, commercial, ecosystem, water cycle and watershed. allow for recirculation in a loop. 4. Arteries and veins. aFIELD NOTEBOOK 5. A pumping heart. Ideas for Teachers 6. Diagram A shows many different A. Develop a concept map for the water cycle. Include these items in types of ecosystems in close the concept map: clouds, groundwater, apple tree, stream, precipita- proximity. tion, condensation, evaporation, harvest mouse, snowflakes, sun and 7. Add a watering hole, plant a humans. What other cycles are needed to maintain an ecosystem? miniature forest, create a B. Biospheres, containing algae, brine shrimp and water, are often meadow of wildflowers. Most shown in advertisements. Analyze how the biosphere is self-main- importantly, break up a monocul- taining.
    [Show full text]
  • A White Paper on the Status and Needs of Largemouth Bass Culture in the North Central Region
    A WHITE PAPER ON THE STATUS AND NEEDS OF LARGEMOUTH BASS CULTURE IN THE NORTH CENTRAL REGION Prepared by Roy C. Heidinger Fisheries and Illinois Aquaculture Center Southern Illinois University-Carbondale for the North Central Regional Aquaculture Center Current Draft as of March 29, 2000 TABLE OF CONTENTS INTRODUCTION AND JUSTIFICATION OF THE DOCUMENT ....................2 CURRENT STATUS OF THE INDUSTRY ........................................2 Markets ...................................................................2 Supply/Demand ..........................................................2 Legality ...................................................................3 BIOLOGY/AQUACULTURE TECHNOLOGY .....................................3 Biology ...................................................................4 Culture ....................................................................4 Brood Stock ............................................................4 Fry and Fingerling Production ................................................5 Diseases and Pests ........................................................6 Water Quality, Handling, and Transport ........................................7 CRITICAL LIMITING FACTORS AND RECOMMENDATIONS ....................7 Nutrition ..................................................................7 Production Densities ..........................................................8 Marketing .................................................................8 Diseases ..................................................................8
    [Show full text]
  • The Role of a Fish Pond in Optimizing Nutrient Flows in Integrated Agriculture-Aquaculture Farming Systems
    The role of a fish pond in optimizing nutrient flows in integrated agriculture-aquaculture farming systems Dang Kieu Nhan Promotor: Prof. Dr. J.A.J. Verreth Hoogleraar Aquacultuur en Visserij Wageningen Universiteit Co-promotor: Dr. M.C.J. Verdegem Universitair Docent, Leerstoelgroep Aquacultuur en Visserij Wageningen Universiteit Promotiecommissie: Prof. Dr. Ir. A.J. van der Zijpp Wageningen Universiteit Dr. M. Ana Milstein Fish and Aquaculture Research Station, Israel Prof. Dr. R. Ruben Radboud Universiteit Nijmegen Prof. Dr. Nguyen Anh Tuan Can Tho University, Vietnam Dit onderzoek is uitgevoerd binnen de onderzoeksschool Wageningen Institute of Animal Sciences (WIAS) The role of a fish pond in optimizing nutrient flows in integrated agriculture-aquaculture farming systems Dang Kieu Nhan Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. M.J.Kropff, in het openbaar te verdedigen op woensdag 3 oktober 2007 des namiddags te vier uur in de Aula Nhan, D.K., 2007. The role of a fish pond in optimizing nutrient flows in integrated agriculture-aquaculture farming systems. PhD Thesis, Wageningen University, The Netherlands ISBN: 978-90-8504-739-1 Contents Chapter 1 General introduction 1 Chapter 2 Integrated freshwater aquaculture, crop and livestock production in 9 the Mekong Delta, Vietnam: determinants and the role of the pond Chapter 3 Food inputs, water quality and nutrient accumulation in integrated 37 pond systems: a multivariate approach Chapter 4 Water and nutrient budgets of ponds in integrated agriculture- 67 aquaculture systems in the Mekong Delta, Vietnam Chapter 5 Economic and nutrient discharge tradeoffs of excreta-fed 93 aquaculture in the Mekong Delta, Vietnam Chapter 6 General discussion 121 References 133 Summary (English) 145 Summary (Dutch) 149 Summary (Vietnamese) 153 Acknowledgements 157 Training and Supervision Plan 159 Curriculum vitae 160 List of publications 161 Chapter 1 General introduction Chapter 1 1.
    [Show full text]
  • Pond and Lake Ecosystems a Pond Or Lake Ecosystem Includes Biotic
    Pond and Lake Ecosystems A pond or lake ecosystem includes biotic (living) plants, animals and micro-organisms, as well as abiotic (nonliving) physical and chemical interactions. Pond and lake ecosystems are a prime example of lentic ecosystems. Lentic refers to stationary or relatively still water, from the Latin lentus, which means sluggish. A typical lake has distinct zones of biological communities linked to the physical structure of the lake. (Figure below) The littoral zone is the near shore area where sunlight penetrates all the way to the sediment and allows aquatic plants (macrophytes) to grow. Light levels of about 1% or less of surface values usually define this depth. The 1% light level also defines the euphotic zone of the lake, which is the layer from the surface down to the depth where light levels become too low for photosynthesizers. In most lakes, the sunlit euphotic zone occurs within the epilimnion. However, in unusually transparent lakes, photosynthesis may occur well below the thermocline into the perennially cold hypolimnion. For example, in western Lake Superior near Duluth, MN, summertime algal photosynthesis and growth can persist to depths of at least 25 meters, while the mixed layer, or epilimnion, only extends down to about 10 meters. Ultra-oligotrophic Lake Tahoe, CA/NV, is so transparent that algal growth historically extended to over 100 meters, though its mixed layer only extends to about 10 meters in summer. Unfortunately, inadequate management of the Lake Tahoe basin since about 1960 has led to a significant loss of transparency due to increased algal growth and increased sediment inputs from stream and shoreline erosion.
    [Show full text]
  • Environmental Awareness and Conceptual Understanding Through a Pilot Sustainable Development Module
    AC 2011-1917: FIRST-YEAR ENGINEERING STUDENTS’ ENVIRONMEN- TAL AWARENESS AND CONCEPTUAL UNDERSTANDING THROUGH A PILOT SUSTAINABLE DEVELOPMENT MODULE Nicole R. Weber, Purdue University She is a Postdoctoral Researcher in the School of Engineering Education at Purdue University. She received her B.S. degree in Ecology, Evolution and Behavior from the University of Minnesota, St. Paul. At the University of Massachusetts Boston, she received her Ph.D. in Environmental Biology with an emphasis in Science Education. Her current research is working in ”sustainable engineering” education, creating awareness of engineering as a ”caring” discipline. A discipline where engineers incorporate the ecological footprint into their design, keeping in mind related social and ecological impacts. Melissa Dyehouse, Purdue University Melissa Dyehouse is a Postdoctoral Research Associate at the Institute for P-12 Engineering Research and Learning (INSPIRE). She received her M.S.Ed. and Ph.D. in Educational Psychology from Purdue University with a focus on educational research methodology and assessment. Her research at INSPIRE focuses on the learning and teaching of engineering as a ”caring” discipline in the context of environmen- tal and ecological concerns. Constance A Harris, Purdue University She is a doctoral candidate in the College of Education at Purdue University. She received her B.S. degree in Political Science from the University of Illinois at Urbana-Champaign. In addition, she earned M.S. in Interdisciplinary Studies from DePaul University located in Chicago, Illinois, and a M.A. in Communication Studies from Purdue University Calumet located in Hammond, Indiana. Currently, she works as a research assistant in the School of Engineering Education at Purdue University.
    [Show full text]
  • New and Emerging Technologies for Sustainable Fisheries: a Comprehensive Landscape Analysis
    Photo by Pablo Sanchez Quiza New and Emerging Technologies for Sustainable Fisheries: A Comprehensive Landscape Analysis Environmental Defense Fund | Oceans Technology Solutions | April 2021 New and Emerging Technologies for Sustainable Fisheries: A Comprehensive Landscape Analysis Authors: Christopher Cusack, Omisha Manglani, Shems Jud, Katie Westfall and Rod Fujita Environmental Defense Fund Nicole Sarto and Poppy Brittingham Nicole Sarto Consulting Huff McGonigal Fathom Consulting To contact the authors please submit a message through: edf.org/oceans/smart-boats edf.org | 2 Contents List of Acronyms ...................................................................................................................................................... 5 1. Introduction .............................................................................................................................................................7 2. Transformative Technologies......................................................................................................................... 10 2.1 Sensors ........................................................................................................................................................... 10 2.2 Satellite remote sensing ...........................................................................................................................12 2.3 Data Collection Platforms ......................................................................................................................
    [Show full text]
  • Partnering with Extractive Industries for the Conservation of Biodiversity in Africa
    Partnering with Extractive Industries for the Conservation of Biodiversity in Africa: A Guide for USAID Engagement November 2008 This publication was produced for review by the United States Agency for International Development. It was prepared by the Biodiversity Analysis and Technical Support (BATS) Team. PARTNERING WITH EXTRACTIVE INDUSTRIES FOR THE CONSERVATION OF BIODIVERSITY IN AFRICA: A GUIDE FOR USAID ENGAGEMENT November 2008 Biodiversity Assessment and Technical Support Program (BATS) EPIQ IQC: EPP-I-00-03-00014-00, Task Order 02 Dr. Joao Stacishin de Queiroz Brian App Renee Morin Wendy Rice Biodiversity Analysis and Technical Support for USAID/Africa (BATS) is funded by the U.S. Agency for International Development, Bureau for Africa, Office of Sustainable Development (AFR/SD). This program is implemented by Chemonics International Inc., World Conservation Union, World Wildlife Fund, and International Program Consortium in coordination with program partners: the U.S. Forest Service/International Programs and the Africa Biodiversity Collaborative Group. ON THE COVER (Left to Right): Bauxite shipment, Guinea (BATS / Brian App), Oil platform construction site, Namibia (Alexander Hafemann), Illegal Timber Processing, Madagascar (BATS /Steve Dennison), Artisanal Fishing Tools, Mali (BATS / Brian App) The authors’ views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States Government. CONTENTS Introduction 1 Section I Analysis of Risk and Potential
    [Show full text]
  • Effects of Eutrophication on Stream Ecosystems
    EFFECTS OF EUTROPHICATION ON STREAM ECOSYSTEMS Lei Zheng, PhD and Michael J. Paul, PhD Tetra Tech, Inc. Abstract This paper describes the effects of nutrient enrichment on the structure and function of stream ecosystems. It starts with the currently well documented direct effects of nutrient enrichment on algal biomass and the resulting impacts on stream chemistry. The paper continues with an explanation of the less well documented indirect ecological effects of nutrient enrichment on stream structure and function, including effects of excess growth on physical habitat, and alterations to aquatic life community structure from the microbial assemblage to fish and mammals. The paper also dicusses effects on the ecosystem level including changes to productivity, respiration, decomposition, carbon and other geochemical cycles. The paper ends by discussing the significance of these direct and indirect effects of nutrient enrichment on designated uses - especially recreational, aquatic life, and drinking water. 2 1. Introduction 1.1 Stream processes Streams are all flowing natural waters, regardless of size. To understand the processes that influence the pattern and character of streams and reduce natural variation of different streams, several stream classification systems (including ecoregional, fluvial geomorphological, and stream order classification) have been adopted by state and national programs. Ecoregional classification is based on geology, soils, geomorphology, dominant land uses, and natural vegetation (Omernik 1987). Fluvial geomorphological classification explains stream and slope processes through the application of physical principles. Rosgen (1994) classified stream channels in the United States into seven major stream types based on morphological characteristics, including entrenchment, gradient, width/depth ratio, and sinuosity in various land forms.
    [Show full text]
  • Long Term Deforestation Assessment in Jharkhand State, India: a Grid Based Geospatial Approach
    Biological Forum – An International Journal 9(1): 183-188(2017) ISSN No. (Print): 0975-1130 ISSN No. (Online): 2249-3239 Long Term Deforestation Assessment in Jharkhand state, India: A grid based Geospatial Approach Firoz Ahmad* and Laxmi Goparaju* *Vindhyan Ecology and Natural History Foundation, Mirzapur, Uttar Pradesh, India. (Corresponding author: Laxmi Goparaju) (Received 15 March 2017, Accepted 18 June, 2017) (Published by Research Trend, Website: www.researchtrend.net) ABSTRACT: Forest is a fundamental component of the environment. Deforestation is caused by various anthropogenic factors, forest fire and fragmentation of large contiguous forests. Deforestation represents a global issue mostly caused by human influence and the forest of Jharkhand, India is not an exception as they have also been witnessing large scale deforestation. The aim of the present study is to identify deforestation using historical data for the year 1935 (Survey of India topographical maps of 1924–1935) and for the year of 2015 with Landsat -8 datasets in Jharkhand, India. To achieve this objective, the analysis focuses on grid (5 km*5 km) based assessment to detect long term change. The grid based analysis reveals forest percent in Jharkhand for the year 1935 and 2015 were roughly 49% and 23% respectively. The result shows 2596 forest grid for the year 1935 out of which 1372 forest grids were found present in the year 2015. 1224 forest grid (equivalent to 26% forest area) was lost during the span of 80 years. The analysis of remote sensing data in GIS domain and its derived product must be incorporated in forest conservation; management and planning which will certainly fetch better result in decision making support system.
    [Show full text]
  • Marine Fish Conservation Global Evidence for the Effects of Selected Interventions
    Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca0 K. Smith & William J. Sutherland CONSERVATION EVIDENCE SERIES SYNOPSES Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca K. Smith and William J. Sutherland Conservation Evidence Series Synopses 1 Copyright © 2021 William J. Sutherland This work is licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0). This license allows you to share, copy, distribute and transmit the work; to adapt the work and to make commercial use of the work providing attribution is made to the authors (but not in any way that suggests that they endorse you or your use of the work). Attribution should include the following information: Taylor, N., Clarke, L.J., Alliji, K., Barrett, C., McIntyre, R., Smith, R.K., and Sutherland, W.J. (2021) Marine Fish Conservation: Global Evidence for the Effects of Selected Interventions. Synopses of Conservation Evidence Series. University of Cambridge, Cambridge, UK. Further details about CC BY licenses are available at https://creativecommons.org/licenses/by/4.0/ Cover image: Circling fish in the waters of the Halmahera Sea (Pacific Ocean) off the Raja Ampat Islands, Indonesia, by Leslie Burkhalter. Digital material and resources associated with this synopsis are available at https://www.conservationevidence.com/
    [Show full text]