BIG RIVER ECOSYSTEM: Program 2

Total Page:16

File Type:pdf, Size:1020Kb

BIG RIVER ECOSYSTEM: Program 2 BIG RIVER ECOSYSTEM: A Question of Net Worth PURPOSE To explore biodiversity at the ecosystem level. KERA CONNECTIONS to Life Science Program 2 Core Content: Structure and Function in Living Systems Academic Expectations: 2.2 Patterns, 2.3 Systems, 2.4 Models & Scale ANSWERS TO Process Skills: Observation, Modeling aFIELD NOTES OBJECTIVES 1. In a hot and hostile environment, Students should be able to: the evaporated water cannot be 1.identify five “big river” organisms incorporated into living cells (as 2.construct a diagram showing interactions between living and we know them). nonliving parts of an ecosystem 2. An extremely cold environment, 3. discuss factors that affect the level of biodiversity in their river basin. or frozen desert, does not allow cells to utilize water. VOCABULARY 3. Answers will vary but should Teachers may wish to discuss the following terms: display logical flow of water and aquatic, commercial, ecosystem, water cycle and watershed. allow for recirculation in a loop. 4. Arteries and veins. aFIELD NOTEBOOK 5. A pumping heart. Ideas for Teachers 6. Diagram A shows many different A. Develop a concept map for the water cycle. Include these items in types of ecosystems in close the concept map: clouds, groundwater, apple tree, stream, precipita- proximity. tion, condensation, evaporation, harvest mouse, snowflakes, sun and 7. Add a watering hole, plant a humans. What other cycles are needed to maintain an ecosystem? miniature forest, create a B. Biospheres, containing algae, brine shrimp and water, are often meadow of wildflowers. Most shown in advertisements. Analyze how the biosphere is self-main- importantly, break up a monocul- taining. Have students create a complete ecosystem in a jar. Are ture of grass. producers, consumers and scavengers present? How do the bio- 8. Lake, pond, stream, wetland, ocean, sphere and terrarium compare to the earth? puddle, estuary, glacier, iceberg. C. Adopt a pen-pal classroom in another Kentucky big river basin. 9 - 13. Answers will vary. The river Geographical, biological and cultural differences between water- continuum usually looks like this: sheds can be explored through student letters, E-mail or the cavestream!spring!headwater Internet. In which watershed do all Kentuckians live? creek!stream!river!big river. D. Encourage students to develop a “watershed address.” For example, 14. $148.50 Jane Fish, 6 South Benson Creek, Kentucky River, Atlantic Ocean 15. Clean water, shelter, prey, 00960. Jane lives 6 miles from the headwaters of South Benson predators, symbionts and nutrients Creek. This small stream drains into Benson Creek, then the Ken- (as well as the processes that tucky River, the Ohio River, the Mississippi River and approxi- maintain these) are needed in the mately 960 miles later into the Gulf of Mexico. fish’s ecosystem. If the fish disap- E. Discuss the difference between political boundaries and ecological pear, so does the commercial boundaries. Which big rivers form the political boundaries for angler’s income. Kentucky? How do the big river ecosystems extend beyond 2-A The Spider God Kentucky’s boundaries? Name cities (outside the state) that affect As told around the Blackfoot’s Kentucky’s big river ecosystems. campfire, the Spider God watches F. THE BUCK BASS STOPS HERE - Why are prices listed per pound over the earth from his star web. rather than per fish? If the average buffalofish weighs 5 lbs., how He often climbs down the Milky many fish did Peter catch? What expenses cut into the commercial Way to visit the land. angler’s profit? Investigate gross and net profits as advanced economic concepts. G. Construct a simple food chain with organisms described in “The Spider Sniffing River’s Riches.” One possible solution is: plankton ! burrowing ! ! Make the unbelievers convert, mayfly smallmouth buffalo black-crowned night heron. Use when you follow your nose to find The Big River Ecosystem poster for classification exercises, con- spiders in the dark. Place a flash- structing a food web and discussing life cycles. How do people light on the end of your nose. benefit from the river’s food web? Jokingly explain that the heat from Tasks for Students the flashlight intensifies the 1. Develop a checklist of fish found in your big river basin. Why would spider’s scent. Look down the light the checklist be slightly different for each big river basin? beam toward the ground. Reflec- 2. Write a story about a fish that swims from the headwaters of a big tion off the spider’s compound river to its mouth. What obstacles does the fish encounter? eyes will create a sparkle. By 3. Nominate a segment of a nearby river as a “Wild and Scenic River.” zeroing-in on the glow, you should Determine criteria for the designation and explain why your river find yourself nose-to-nose with a is special. spider in its lair. Fisher spiders may 4. Monitor the water quality of your river through RAMP - the River be spotted along the big river’s Assessment Monitoring Project administered by the Division of shoreline. Water, 18 Reilly Road, Frankfort, KY 40601. (502) 564-3410 WILD THINGS FOR TEACHERS Making Connections Encourage your students to enter this year’s Louisville Courier- How is a spider web like an eco- Journal Poster and Essay Contest. The 1997 theme is “Water: Clear system? into the 21st Century.” Tabloids are available free from your county’s Natural Resources Conservation District. If sport hunting stopped, RECOMMENDED RESOURCES how would you control * Big River Ecosystem Poster and Teacher’s Guide, provided free from the deer population? the KDFWR. Use this poster to identify organisms commonly found in Kentucky’s big rivers. * Hermes, Kimberly. “Paddlefish Project - Modern Technology, Ancient Fish” Kentucky Afield - The Magazine. Sept./Oct. 1996, pp. 10-12. * Garland, J.B. “The Green River Region” Kentucky Afield - The Magazine. Mar./Apr. 1997, pp. 12-19. ADDITIONAL ACTIVITIES Send individual or class responses to: * Project WILD activities “Everybody Needs A Home” “Forest in a Kentucky Afield for Kids Jar” and “Birds of Prey” #1 Game Farm Road * Project WILD Aquatic activities “Where Does Water Run Off After Frankfort, KY 40601 School?” “The Edge of Home” “Watered Down History” and “Net E-mail: [email protected] Gain, Net Effect” * “Kentucky’s Unusual Fish” Kentucky Afield for Kids, May 1996. 2-B BIG RIVER ECOSYSTEM: A Question of Net Worth WATER, WATER EVERYWHERE Why is the Earth the most biodiverse planet in our solar system? The answer is water. The distance between the sun and the Earth allows water to change states from solid to liquid to gas. Liquid water travels around the globe carrying nutrients to microorganisms, fungi, aFIELD NOTES plants and animals. Raindrops, rivulets, streams, rivers and oceans help October 1, 1997 circulate the water through different habitats. 1. Why doesn’t life exist on Mercury? WHAT IS AN ECOSYSTEM? An ecosystem describes the interactions between living and nonliv- ing things in a defined area over time. An ecosystem may be as small as a fallen log or as large as the earth itself. More important than size, the 2. Why is life unlikely on Pluto? ecosystem tells a story about how energy and nutrients move from one organism to another. It also allows biologists to study how organisms behave, grow and adapt to the conditions around them. An ecosystem provides an organizational unit for studying wildlife. The number of 3. Draw a model of the water cycle. different self-sustaining ecosystems in an area, or ecosystem diversity, is a measure of biological diversity. 6. Which area has the most ecosystem diversity? AB If the Earth’s water is compared to blood flowing through our bodies, 4.What body parts do rivers represent? 7. How can you increase ecosystem diversity on school grounds? 5.What role does the water cycle play? SPRING + STREAM + RIVER = BIG RIVER The Big River is one example of an aquatic ecosystem. Many smaller 8.Name 3 examples of aquatic bodies of water have combined to create the big river. The big river mixes ecosystems. nutrients and pollution flushed down these feeder streams. The collection of water in the big river provides habitat for cottonwood trees, blue catfish, osprey and softshell turtles. The volume of water and its contents vary over distance and time. Since the river and its tributaries crisscross through several landscapes, the potential for biodiversity is high. 2-1 9. Name the creek nearest to your WEB OF WATER school. A big river is defined by a channel with permanently-flowing water. From bank to bank, the big river measures more than 200 feet wide and occupies an U-shaped floodplain. Millions of gallons of water, shed Trace the water in this creek as it from a large land area, move down the river. The drainage area, re- travels downstream to enter a big ferred to as a watershed or a river basin, contains the big river and its river. tributaries. Kentucky is divided into thirteen big river basins. 10.Into which smaller bodies of water does it travel? Licking Ohio Tygarts Kentucky’s Little River Basins Salt Sandy Ohio Tradewater Big Sandy 11. In which big river basin do you live? Ohio Kentucky Using a state highway map, Lower Mississippi Upper 12. Name a city upstream that Cumberland Green Cumberland affects the river’s water quality. Tennessee Watersheds connect the terrestrial environment with the aquatic environment. The landscape, type of rocks and human activity in an 13.Name a city downstream that area have an impact on the big river via its watershed. Rivers are depends on your actions for heavily affected by the conditions on land surrounding feeder streams. clean water.
Recommended publications
  • Lesson 4: Sediment Deposition and River Structures
    LESSON 4: SEDIMENT DEPOSITION AND RIVER STRUCTURES ESSENTIAL QUESTION: What combination of factors both natural and manmade is necessary for healthy river restoration and how does this enhance the sustainability of natural and human communities? GUIDING QUESTION: As rivers age and slow they deposit sediment and form sediment structures, how are sediments and sediment structures important to the river ecosystem? OVERVIEW: The focus of this lesson is the deposition and erosional effects of slow-moving water in low gradient areas. These “mature rivers” with decreasing gradient result in the settling and deposition of sediments and the formation sediment structures. The river’s fast-flowing zone, the thalweg, causes erosion of the river banks forming cliffs called cut-banks. On slower inside turns, sediment is deposited as point-bars. Where the gradient is particularly level, the river will branch into many separate channels that weave in and out, leaving gravel bar islands. Where two meanders meet, the river will straighten, leaving oxbow lakes in the former meander bends. TIME: One class period MATERIALS: . Lesson 4- Sediment Deposition and River Structures.pptx . Lesson 4a- Sediment Deposition and River Structures.pdf . StreamTable.pptx . StreamTable.pdf . Mass Wasting and Flash Floods.pptx . Mass Wasting and Flash Floods.pdf . Stream Table . Sand . Reflection Journal Pages (printable handout) . Vocabulary Notes (printable handout) PROCEDURE: 1. Review Essential Question and introduce Guiding Question. 2. Hand out first Reflection Journal page and have students take a minute to consider and respond to the questions then discuss responses and questions generated. 3. Handout and go over the Vocabulary Notes. Students will define the vocabulary words as they watch the PowerPoint Lesson.
    [Show full text]
  • Effects of Eutrophication on Stream Ecosystems
    EFFECTS OF EUTROPHICATION ON STREAM ECOSYSTEMS Lei Zheng, PhD and Michael J. Paul, PhD Tetra Tech, Inc. Abstract This paper describes the effects of nutrient enrichment on the structure and function of stream ecosystems. It starts with the currently well documented direct effects of nutrient enrichment on algal biomass and the resulting impacts on stream chemistry. The paper continues with an explanation of the less well documented indirect ecological effects of nutrient enrichment on stream structure and function, including effects of excess growth on physical habitat, and alterations to aquatic life community structure from the microbial assemblage to fish and mammals. The paper also dicusses effects on the ecosystem level including changes to productivity, respiration, decomposition, carbon and other geochemical cycles. The paper ends by discussing the significance of these direct and indirect effects of nutrient enrichment on designated uses - especially recreational, aquatic life, and drinking water. 2 1. Introduction 1.1 Stream processes Streams are all flowing natural waters, regardless of size. To understand the processes that influence the pattern and character of streams and reduce natural variation of different streams, several stream classification systems (including ecoregional, fluvial geomorphological, and stream order classification) have been adopted by state and national programs. Ecoregional classification is based on geology, soils, geomorphology, dominant land uses, and natural vegetation (Omernik 1987). Fluvial geomorphological classification explains stream and slope processes through the application of physical principles. Rosgen (1994) classified stream channels in the United States into seven major stream types based on morphological characteristics, including entrenchment, gradient, width/depth ratio, and sinuosity in various land forms.
    [Show full text]
  • Ecosystem Services Generated by Fish Populations
    AR-211 Ecological Economics 29 (1999) 253 –268 ANALYSIS Ecosystem services generated by fish populations Cecilia M. Holmlund *, Monica Hammer Natural Resources Management, Department of Systems Ecology, Stockholm University, S-106 91, Stockholm, Sweden Abstract In this paper, we review the role of fish populations in generating ecosystem services based on documented ecological functions and human demands of fish. The ongoing overexploitation of global fish resources concerns our societies, not only in terms of decreasing fish populations important for consumption and recreational activities. Rather, a number of ecosystem services generated by fish populations are also at risk, with consequences for biodiversity, ecosystem functioning, and ultimately human welfare. Examples are provided from marine and freshwater ecosystems, in various parts of the world, and include all life-stages of fish. Ecosystem services are here defined as fundamental services for maintaining ecosystem functioning and resilience, or demand-derived services based on human values. To secure the generation of ecosystem services from fish populations, management approaches need to address the fact that fish are embedded in ecosystems and that substitutions for declining populations and habitat losses, such as fish stocking and nature reserves, rarely replace losses of all services. © 1999 Elsevier Science B.V. All rights reserved. Keywords: Ecosystem services; Fish populations; Fisheries management; Biodiversity 1. Introduction 15 000 are marine and nearly 10 000 are freshwa­ ter (Nelson, 1994). Global capture fisheries har­ Fish constitute one of the major protein sources vested 101 million tonnes of fish including 27 for humans around the world. There are to date million tonnes of bycatch in 1995, and 11 million some 25 000 different known fish species of which tonnes were produced in aquaculture the same year (FAO, 1997).
    [Show full text]
  • Paseo De Las Iglesias Santa Cruz River Ecosystem Restoration Feasibility Study
    Paseo de las Iglesias Santa Cruz River Ecosystem Restoration Feasibility Study Jennifer Becker, CFM & Thomas Helfrich, Project Manager of Pima County Flood Control District, Water Resources Division In partnership with the US Army Corps of Engineers (USACE) Good morning ladies and gentlemen. My name is Jennifer Becker. I’m a Program Coordinator with the Pima County Flood Control District, Water Resources Division and I will be presenting the results of the Paseo de las Iglesias Feasibility Study. This study is a joint effort by the Pima County Flood Control District and the US Army Corps of Engineers to determine if the Federal Government can share the costs of restoring the ecosystem along the the Santa Cruz River in south-central Tucson. Æ Next slide 1 SOME STAKEHOLDERS AND PARTICIPANTS Pima County State and federal agencies ¾ Department of Transportation Pima Association of Governments ¾ Cultural Resources San Xavier Nation, Tohono ¾ Natural Resources, Parks and O’odham Nation Recreation ¾ Real Property Local environmental organizations City of Tucson Local and national consulting ¾ Rio Nuevo companies ¾ Tucson Origins Cultural Park University of Arizona ¾ Economic Development Pima Community College ¾ Parks and Recreation ¾ Transportation Engineering Local neighborhood groups ¾ Comprehensive Planning Citizens In additions to the FCD & USACE, other participating stakeholders include various departments in Pima County and City of Tucson government, Arizona Department of Game and Fish, US Fish and Wildlife, local colleges & universities, local Indian Nations, environmental organizations, consulting companies, and individual citizens and citizen groups. Æ Next slide 2 Today’s Presentation • Study Area • Problem Summary • Public Involvement • Project Objectives • Study Considerations • Project Alternatives • Recommended Plan • Proposed Schedule • Documents and Contacts Today I would like to summarize the plan formulation process and present the findings of the study, including a description of the recommended plan to help to restore a functioning ecosystem.
    [Show full text]
  • The Grand Bank's Southeast Shoal Concentrates the Highest Overall
    Template for Submission of Scientific Information to Describe Areas Meeting Scientific Criteria for Ecologically or Biologically Significant Marine Areas Title/Name of the area: Southeast Shoal, Grand Bank Presented by (Daniela Diz, WWF-Canada, Sr. Marine Policy Officer, [email protected]; tel: +1.902.482.1105, ext. 35) Abstract (in less than 150 words) The Grand Bank’s Southeast Shoal concentrates the highest overall benthic biomass of the Grand Banks. It also presents: a unique offshore capelin spawning and yellowtail nursery grounds, unique shallow, sandy habitat, cetacean and seabird aggregation and feeding grounds, American plaice nursery habitat, a spawning ground for the depleted Atlantic cod, reproduction area for striped wolffish, and unique populations of blue mussels and wedge clams. This area has been previously identified as an EBSA by DFO in Canada, and as a Vulnerable Marine Ecosystem (VME) indicator element by NAFO. Introduction (To include: feature type(s) presented, geographic description, depth range, oceanography, general information data reported, availability of models) The Southeast Shoal (area east of 51o W and south of 45oN) extends to the edge of the Grand Bank off Newfoundland. It straddles between areas of national jurisdiction and the high seas. Its unique features provide essential habitat for a number of species, playing an important role in the productivity of the Grand Banks ecosystems, which has sustained exceptionally abundant and commercially valuable marine life for centuries. It comprises a relict beach ecosystem containing unusual offshore populations of blue mussel and wedge clam, and offshore capelin spawning ground. The area is also important for threatened and/or declining species, given the currently severely altered state of the Northwest Atlantic ecosystem and the importance of the area as a nursery habitat for cod, home to an offshore spawning population of capelin (an important forage species for groundfish), a discrete population of humpback whales, and migrating leatherback and loggerhead turtles.
    [Show full text]
  • Stream Visual Assessment Manual
    U.S. Fish & Wildlife Service Stream Visual Assessment Manual Cane River, credit USFWS/Gary Peeples U.S. Fish & Wildlife Service Conasauga River, credit USFWS Table of Contents Introduction ..............................................................................................................................1 What is a Stream? .............................................................................................................1 What Makes a Stream “Healthy”? .................................................................................1 Pollution Types and How Pollutants are Harmful ........................................................1 What is a “Reach”? ...........................................................................................................1 Using This Protocol..................................................................................................................2 Reach Identification ..........................................................................................................2 Context for Use of this Guide .................................................................................................2 Assessment ........................................................................................................................3 Scoring Details ..................................................................................................................4 Channel Conditions ...........................................................................................................4
    [Show full text]
  • The Pecos River Ecosystem Project Progress Report
    2004 The Pecos River Ecosystem Project Progress Report Charles R. Hart, Ph.D. Assoc. Professor and Extension Range Specialist Texas Cooperative Extension The Texas A&M University System Background of Situation Saltcedar (Tamarix spp.) is an introduced phreatophyte in western North America. The plant was estimated to occupy well over 600,000 ha of riparian acres in 1965 (Robinson 1965). Saltcedar is a vigorous invader of riparian, rangeland, and moist pastures. Saltcedar was introduced into the United States as an ornamental in the early 1800's. In the early 1900's, government agencies and private landowners began planting saltcedar for stream bank erosion control along such rivers as the Pecos River in New Mexico. The plant has spread down the Pecos River into Texas and is now known to occur along the river south of Interstate 10. More recently the plant has become a noxious plant not only along rivers and their tributaries, but also along irrigation ditch banks, low-lying areas that receive extra runoff accumulation, and areas with high water tables. In addition, many CRP acres in central Texas are being invaded with saltcedar. Saltcedar is a prolific seeder over a long period of time (April through October). Early seedling recruitment is very slow but once established, seedlings grow faster than native plants (Tomanek and Ziegler 1960). Once mature the plant becomes well established with deep roots that occupy the capillary zone above the water table with some roots in the zone of saturation (Schopmeyer 1974). The plant can quickly dominate an area, out-competing native plants for sunlight, moisture, and nutrients.
    [Show full text]
  • Linking Biological Toxicity and the Spectral Characteristics Of
    Chen et al. Environ Sci Eur (2019) 31:84 https://doi.org/10.1186/s12302-019-0269-y RESEARCH Open Access Linking biological toxicity and the spectral characteristics of contamination in seriously polluted urban rivers Zhongli Chen1, Zihan Zhu1, Jiyu Song1, Ruiyan Liao1, Yufan Wang1, Xi Luo1, Dongya Nie1, Yumeng Lei1, Ying Shao1* and Wei Yang2,3 Abstract Background: Urban river pollution risks to environments and human health are emerging as a serious concern worldwide. With the aim to achieve the health of urban river ecosystem, numerous monitoring programs have been implemented to investigate the spectral characteristics of contamination. While due to the complexity of aquatic pollutants, the linkages between harmful efects and the spectral characteristics of contamination are still a major challenge for capturing main threats to urban aquatic environments. To establish these linkages, surface water (SW), sediment pore water (SDPW), and riparian soil pore water (SPW) were collected from fve sites of the seriously pol- luted Qingshui Stream, China. The water-dissolved organic carbon (DOC), total nitrogen (TN), total phosphate (TP), fuorescence excitation–emission matrix, and specifc ultraviolet absorbance were applied to analyze the spectral characteristics of urban river contamination. The Photobacterium phosphorem 502 was used to test the acute toxicity of the samples. Finally, the correlations between acute toxicity and concentrations of DOC, TN, TP, and the spectral characteristics were explored. Results: The concentrations of DOC, TN, and TP in various samples amounted from 11.41 2.31 to 3844.67 87.80 mg/L, from 1.96 0.06 to 906.23 26.01 mg/L and from 0.06 0.01 to 101.00± 8.29 mg/L, respec- tively.
    [Show full text]
  • Abandoned Channels (Avulsions)
    Musselshell BMPs 1 Abandoned Channels (Avulsions) Applicability The following Best Management Practices (“BMPs”) summarize several recommended approaches to managing abandoned channels within the Musselshell River stream corridor. The information is based upon the on- site evaluation of floodplain features and discussions with producers, and is intended for producers and residents who are living or farming in areas where abandoned channel segments exist. Description Perhaps the most dramatic 2011 flood Figure 1. 2011 avulsion, Musselshell River. impact on the Musselshell River was the number of avulsions that occurred over the period of a few weeks. An “avulsion” is the rapid formation of a new river channel across the floodplain that captures the flow of the main channel thread. River avulsions typically occur when rivers find a relatively steep, short flow path across their floodplain. When floodwaters re- enter the river over a steep bank, they form headcuts that migrate upvalley, creating a new channel, causing intense erosion, and sending a sediment slug downswtream. If the new channel completely develops, it can capture the main thread, resulting in a successful avulsion. If floodwaters recede before the new channel is completely formed, or if the floodplain is resistant to erosion, the avulsion may fail. From near Harlowton to Fort Peck Reservoir, 59 avulsions occurred on the Musselshell in the spring of 2011, abandoning a total of 39 miles of channel. The abandoned channel segments range in length from 280 feet to almost three miles. One of the reasons there were so many avulsions on the Figure 2. Upstream-migrating headcuts showing Musselshell River in 2011 is because the floodwaters stayed creation of avulsion path, 2011.
    [Show full text]
  • Collapsible Soils Chashma Right Bank Canal
    Missouri University of Science and Technology Scholars' Mine International Conference on Case Histories in (1984) - First International Conference on Case Geotechnical Engineering Histories in Geotechnical Engineering 08 May 1984, 10:15 am - 5:00 pm Collapsible Soils Chashma Right Bank Canal Izharul Haq WAPDA, Pakistan Follow this and additional works at: https://scholarsmine.mst.edu/icchge Part of the Geotechnical Engineering Commons Recommended Citation Haq, Izharul, "Collapsible Soils Chashma Right Bank Canal" (1984). International Conference on Case Histories in Geotechnical Engineering. 5. https://scholarsmine.mst.edu/icchge/1icchge/1icchge-theme3/5 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in International Conference on Case Histories in Geotechnical Engineering by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. Collapsible Soils Chashma Right Bank Canal lzharul Haq Director Design, WAPDA Pakistan SYNOPSIS: In 1979-81 a stretch of 10 miles of Chashma Right Bank Canal was excavated and double layer brick tile lining was done. The lining was cured by flooding it with water through open drains made on either berm of lining. A couple of months after the completion of the lining, horizontal cracks were observed on either bank. Field density, moisture measurements, Soil classification and double Oedometer tests were performed. In situ water pending tests were also cond­ ucted.
    [Show full text]
  • Spatial Heterogeneity and Controls of Ecosystem Metabolism in a Great Plains River Network
    Spatial heterogeneity and controls of ecosystem metabolism in a Great Plains river network Walter K. Dodds, Sophie A. Higgs, Margaret J. Spangler, James Guinnip, Jeffrey D. Scott, Skyler C. Hedden, Bryan D. Frenette, et al. Hydrobiologia The International Journal of Aquatic Sciences ISSN 0018-8158 Volume 813 Number 1 Hydrobiologia (2018) 813:85-102 DOI 10.1007/s10750-018-3516-0 1 23 Your article is protected by copyright and all rights are held exclusively by Springer International Publishing AG, part of Springer Nature. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Hydrobiologia (2018) 813:85–102 https://doi.org/10.1007/s10750-018-3516-0 PRIMARY RESEARCH PAPER Spatial heterogeneity and controls of ecosystem metabolism in a Great Plains river network Walter K. Dodds . Sophie A. Higgs . Margaret J. Spangler . James Guinnip . Jeffrey D. Scott . Skyler C. Hedden . Bryan D. Frenette . Ryland Taylor . Anne E. Schechner . David J. Hoeinghaus . Michelle A. Evans-White Received: 17 June 2017 / Revised: 14 December 2017 / Accepted: 11 January 2018 / Published online: 20 January 2018 Ó Springer International Publishing AG, part of Springer Nature 2018 Abstract Gross primary production and ecosystem limitation, and was positively related to nutrients.
    [Show full text]
  • Key Restoration Methods of a Polluted River Ecosystem
    Key Restoration Methods of a Polluted River Chalachew Yenew* Ecosystem: A Systematic Review Environmental Health Science, Social and Population Health (SPH) Unit, College of Medicine and Health Sciences, Debre Tabor University, Ethiopia Abstract Background: River is one of a freshwater ecosystem that plays an important role in people's living, aquatic and terrestrial living organisms, and agricultural production. Compared to other ecosystems, rivers support a disproportionately large number of *Corresponding author: plant and animal species. However, excessive human activities have busted the original Chalachew Yenew ecological balance by polluting the river ecosystem. As a result, partial or total affected the structure and functions of the river ecosystem. This review aimed to investigate the major ecological restoration methods of the polluted river ecosystem. [email protected] Methods: We have adopted the procedures from the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The required data were Environmental Health Science, Social and collected via a literature search of MEDLINE/PubMed, Google Scholar, Science Direct, Population Health (SPH) Unit, College of EMBASE, HINARI, and Cochrane Library from the 9th of September, 2019 to the 5th Medicine and Health Sciences, Debre Tabor of March, 2020 using combined terms. Articles were included in our review; only if University, Ethiopia it assessed empirically and comparison and contrast between two or more different restoration methods. This review; it is mainly included published research articles, national reports, and annual reports and excluded opinion essays. Citation: Yenew C (2021) Key Restoration Results: Commonly used methods for restoration of polluted rivers around the Methods of a Polluted River Ecosystem: A globe could be categorized depending on the physical, chemical, and biological Systematic Review.
    [Show full text]