Key Restoration Methods of a Polluted River Ecosystem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Priority Actions to Improve Provenance Decision-Making
Forum Priority Actions to Improve Provenance Decision-Making MARTIN F. BREED, PETER A. HARRISON, ARMIN BISCHOFF, PAULA DURRUTY, NICK J. C. GELLIE, EMILY K. GONZALES, KAYRI HAVENS, MARION KARMANN, FRANCIS F. KILKENNY, SIEGFRIED L. KRAUSS, ANDREW J. LOWE, PEDRO MARQUES, PAUL G. NEVILL, PATI L. VITT, AND ANNA BUCHAROVA Selecting the geographic origin—the provenance—of seed is a key decision in restoration. The last decade has seen a vigorous debate on whether to use local or nonlocal seed. The use of local seed has been the preferred approach because it is expected to maintain local adaptation and avoid deleterious population effects (e.g., maladaptation and outbreeding depression). However, the impacts of habitat fragmentation and climate change on plant populations have driven the debate on whether the local-is-best standard needs changing. This debate has largely been theoretical in nature, which hampers provenance decision-making. Here, we detail cross-sector priority actions to improve provenance decision-making, including embedding provenance trials into restoration projects; developing dynamic, evidence-based provenance policies; and establishing stronger research–practitioner collaborations to facilitate the adoption of research outcomes. We discuss how to tackle these priority actions in order to help satisfy the restoration sector’s requirement for appropriately provenanced seed. Keywords: assisted migration, ecological restoration, local adaptation, restoration genetics he restoration sector’s demand for seed is Williams et al. 2014, Havens et al. 2015, Prober et al. 2015, Tenormous and is rapidly increasing with the growth Breed et al. 2016b, Christmas et al. 2016b). in the global restoration effort (Verdone and Seidl 2017). -
BIG RIVER ECOSYSTEM: Program 2
BIG RIVER ECOSYSTEM: A Question of Net Worth PURPOSE To explore biodiversity at the ecosystem level. KERA CONNECTIONS to Life Science Program 2 Core Content: Structure and Function in Living Systems Academic Expectations: 2.2 Patterns, 2.3 Systems, 2.4 Models & Scale ANSWERS TO Process Skills: Observation, Modeling aFIELD NOTES OBJECTIVES 1. In a hot and hostile environment, Students should be able to: the evaporated water cannot be 1.identify five “big river” organisms incorporated into living cells (as 2.construct a diagram showing interactions between living and we know them). nonliving parts of an ecosystem 2. An extremely cold environment, 3. discuss factors that affect the level of biodiversity in their river basin. or frozen desert, does not allow cells to utilize water. VOCABULARY 3. Answers will vary but should Teachers may wish to discuss the following terms: display logical flow of water and aquatic, commercial, ecosystem, water cycle and watershed. allow for recirculation in a loop. 4. Arteries and veins. aFIELD NOTEBOOK 5. A pumping heart. Ideas for Teachers 6. Diagram A shows many different A. Develop a concept map for the water cycle. Include these items in types of ecosystems in close the concept map: clouds, groundwater, apple tree, stream, precipita- proximity. tion, condensation, evaporation, harvest mouse, snowflakes, sun and 7. Add a watering hole, plant a humans. What other cycles are needed to maintain an ecosystem? miniature forest, create a B. Biospheres, containing algae, brine shrimp and water, are often meadow of wildflowers. Most shown in advertisements. Analyze how the biosphere is self-main- importantly, break up a monocul- taining. -
Effects of Eutrophication on Stream Ecosystems
EFFECTS OF EUTROPHICATION ON STREAM ECOSYSTEMS Lei Zheng, PhD and Michael J. Paul, PhD Tetra Tech, Inc. Abstract This paper describes the effects of nutrient enrichment on the structure and function of stream ecosystems. It starts with the currently well documented direct effects of nutrient enrichment on algal biomass and the resulting impacts on stream chemistry. The paper continues with an explanation of the less well documented indirect ecological effects of nutrient enrichment on stream structure and function, including effects of excess growth on physical habitat, and alterations to aquatic life community structure from the microbial assemblage to fish and mammals. The paper also dicusses effects on the ecosystem level including changes to productivity, respiration, decomposition, carbon and other geochemical cycles. The paper ends by discussing the significance of these direct and indirect effects of nutrient enrichment on designated uses - especially recreational, aquatic life, and drinking water. 2 1. Introduction 1.1 Stream processes Streams are all flowing natural waters, regardless of size. To understand the processes that influence the pattern and character of streams and reduce natural variation of different streams, several stream classification systems (including ecoregional, fluvial geomorphological, and stream order classification) have been adopted by state and national programs. Ecoregional classification is based on geology, soils, geomorphology, dominant land uses, and natural vegetation (Omernik 1987). Fluvial geomorphological classification explains stream and slope processes through the application of physical principles. Rosgen (1994) classified stream channels in the United States into seven major stream types based on morphological characteristics, including entrenchment, gradient, width/depth ratio, and sinuosity in various land forms. -
Ecosystem Services Generated by Fish Populations
AR-211 Ecological Economics 29 (1999) 253 –268 ANALYSIS Ecosystem services generated by fish populations Cecilia M. Holmlund *, Monica Hammer Natural Resources Management, Department of Systems Ecology, Stockholm University, S-106 91, Stockholm, Sweden Abstract In this paper, we review the role of fish populations in generating ecosystem services based on documented ecological functions and human demands of fish. The ongoing overexploitation of global fish resources concerns our societies, not only in terms of decreasing fish populations important for consumption and recreational activities. Rather, a number of ecosystem services generated by fish populations are also at risk, with consequences for biodiversity, ecosystem functioning, and ultimately human welfare. Examples are provided from marine and freshwater ecosystems, in various parts of the world, and include all life-stages of fish. Ecosystem services are here defined as fundamental services for maintaining ecosystem functioning and resilience, or demand-derived services based on human values. To secure the generation of ecosystem services from fish populations, management approaches need to address the fact that fish are embedded in ecosystems and that substitutions for declining populations and habitat losses, such as fish stocking and nature reserves, rarely replace losses of all services. © 1999 Elsevier Science B.V. All rights reserved. Keywords: Ecosystem services; Fish populations; Fisheries management; Biodiversity 1. Introduction 15 000 are marine and nearly 10 000 are freshwa ter (Nelson, 1994). Global capture fisheries har Fish constitute one of the major protein sources vested 101 million tonnes of fish including 27 for humans around the world. There are to date million tonnes of bycatch in 1995, and 11 million some 25 000 different known fish species of which tonnes were produced in aquaculture the same year (FAO, 1997). -
Evolutionary Restoration Ecology
ch06 2/9/06 12:45 PM Page 113 189686 / Island Press / Falk Chapter 6 Evolutionary Restoration Ecology Craig A. Stockwell, Michael T. Kinnison, and Andrew P. Hendry Restoration Ecology and Evolutionary Process Restoration activities have increased dramatically in recent years, creating evolutionary chal- lenges and opportunities. Though restoration has favored a strong focus on the role of habi- tat, concerns surrounding the evolutionary ecology of populations are increasing. In this con- text, previous researchers have considered the importance of preserving extant diversity and maintaining future evolutionary potential (Montalvo et al. 1997; Lesica and Allendorf 1999), but they have usually ignored the prospect of ongoing evolution in real time. However, such contemporary evolution (changes occurring over one to a few hundred generations) appears to be relatively common in nature (Stockwell and Weeks 1999; Bone and Farres 2001; Kin- nison and Hendry 2001; Reznick and Ghalambor 2001; Ashley et al. 2003; Stockwell et al. 2003). Moreover, it is often associated with situations that may prevail in restoration projects, namely the presence of introduced populations and other anthropogenic disturbances (Stockwell and Weeks 1999; Bone and Farres 2001; Reznick and Ghalambor 2001) (Table 6.1). Any restoration program may thus entail consideration of evolution in the past, present, and future. Restoration efforts often involve dramatic and rapid shifts in habitat that may even lead to different ecological states (such as altered fire regimes) (Suding et al. 2003). Genetic variants that evolved within historically different evolutionary contexts (the past) may thus be pitted against novel and mismatched current conditions (the present). The degree of this mismatch should then determine the pattern and strength of selection acting on trait variation in such populations (Box 6.1; Figure 6.1). -
Linking Biological Toxicity and the Spectral Characteristics Of
Chen et al. Environ Sci Eur (2019) 31:84 https://doi.org/10.1186/s12302-019-0269-y RESEARCH Open Access Linking biological toxicity and the spectral characteristics of contamination in seriously polluted urban rivers Zhongli Chen1, Zihan Zhu1, Jiyu Song1, Ruiyan Liao1, Yufan Wang1, Xi Luo1, Dongya Nie1, Yumeng Lei1, Ying Shao1* and Wei Yang2,3 Abstract Background: Urban river pollution risks to environments and human health are emerging as a serious concern worldwide. With the aim to achieve the health of urban river ecosystem, numerous monitoring programs have been implemented to investigate the spectral characteristics of contamination. While due to the complexity of aquatic pollutants, the linkages between harmful efects and the spectral characteristics of contamination are still a major challenge for capturing main threats to urban aquatic environments. To establish these linkages, surface water (SW), sediment pore water (SDPW), and riparian soil pore water (SPW) were collected from fve sites of the seriously pol- luted Qingshui Stream, China. The water-dissolved organic carbon (DOC), total nitrogen (TN), total phosphate (TP), fuorescence excitation–emission matrix, and specifc ultraviolet absorbance were applied to analyze the spectral characteristics of urban river contamination. The Photobacterium phosphorem 502 was used to test the acute toxicity of the samples. Finally, the correlations between acute toxicity and concentrations of DOC, TN, TP, and the spectral characteristics were explored. Results: The concentrations of DOC, TN, and TP in various samples amounted from 11.41 2.31 to 3844.67 87.80 mg/L, from 1.96 0.06 to 906.23 26.01 mg/L and from 0.06 0.01 to 101.00± 8.29 mg/L, respec- tively. -
Spatial Heterogeneity and Controls of Ecosystem Metabolism in a Great Plains River Network
Spatial heterogeneity and controls of ecosystem metabolism in a Great Plains river network Walter K. Dodds, Sophie A. Higgs, Margaret J. Spangler, James Guinnip, Jeffrey D. Scott, Skyler C. Hedden, Bryan D. Frenette, et al. Hydrobiologia The International Journal of Aquatic Sciences ISSN 0018-8158 Volume 813 Number 1 Hydrobiologia (2018) 813:85-102 DOI 10.1007/s10750-018-3516-0 1 23 Your article is protected by copyright and all rights are held exclusively by Springer International Publishing AG, part of Springer Nature. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Hydrobiologia (2018) 813:85–102 https://doi.org/10.1007/s10750-018-3516-0 PRIMARY RESEARCH PAPER Spatial heterogeneity and controls of ecosystem metabolism in a Great Plains river network Walter K. Dodds . Sophie A. Higgs . Margaret J. Spangler . James Guinnip . Jeffrey D. Scott . Skyler C. Hedden . Bryan D. Frenette . Ryland Taylor . Anne E. Schechner . David J. Hoeinghaus . Michelle A. Evans-White Received: 17 June 2017 / Revised: 14 December 2017 / Accepted: 11 January 2018 / Published online: 20 January 2018 Ó Springer International Publishing AG, part of Springer Nature 2018 Abstract Gross primary production and ecosystem limitation, and was positively related to nutrients. -
Are Socioeconomic Benefits of Restoration Adequately Quantified?
REVIEW ARTICLE Are Socioeconomic Benefits of Restoration Adequately Quantified? A Meta-analysis of Recent Papers (2000–2008) in Restoration Ecology and 12 Other Scientific Journals James Aronson,1,2 James N. Blignaut,3 Suzanne J. Milton,4 David Le Maitre,5 Karen J. Esler,6 Amandine Limouzin,1 Christelle Fontaine,1 Martin P. de Wit,7,8 Worship Mugido,9 Philip Prinsloo,8 Leandri van der Elst,8 and Ned Lederer8 Abstract journals. We readily acknowledge that aquatic ecosystems Many ecosystems have been transformed, or degraded are under-represented, and that the largely inaccessible by human use, and restoration offers an opportunity to gray literature was ignored. Within these constraints, we recover services and benefits, not to mention intrinsic val- found clear evidence that restoration practitioners are fail- ues. We assessed whether restoration scientists and prac- ing to signal links between ecological restoration, society, titioners use their projects to demonstrate the benefits and policy, and are underselling the evidence of benefits restoration can provide in their peer-reviewed publications. of restoration as a worthwhile investment for society. We We evaluated a sample of the academic literature to deter- discuss this assertion and illustrate it with samples of our mine whether links are made explicit between ecological findings—with regards to (1) the geographical and institu- restoration, society, and public policy related to natural tional affiliations of authors; (2) the choice of ecosystems capital. We analyzed 1,582 peer-reviewed papers dealing studied, methods employed, monitoring schemes applied, with ecological restoration published between 1 January and the spatial scale of studies; and (3) weak links to pay- 2000 and 30 September 2008 in 13 leading scientific jour- ments for ecosystem service setups, agriculture, and rami- nals. -
Exploring and Understanding the Restoration Economy
Working Paper No. 2014-01 Exploring and Understanding the Restoration Economy Todd K. BenDor T. William Lester Avery Livengood University of North Carolina at Chapel Hill Adam Davis Ecosystem Investment Partners‐Advisory Logan Yonavjak Yale University Center for Urban and Regional Studies The University of North Carolina at Chapel Hill Campus Box 3410, Hickerson House Chapel Hill, NC 27599-3410 Telephone: 919-962-3074 FAX 919-962-2518 curs.unc.edu Exploring and Understanding the Restoration Economy Todd K. BenDor T. William Lester Avery Livengood University of North Carolina at Chapel Hill Adam Davis Ecosystem Investment Partners-Advisory Logan Yonavjak Yale University Introduction For decades, industry groups and the American media have propagated the notion that environmental protection is Bad for Business (Bezdek et al. 2008, Goodstein 1994). Recent polls demonstrate that this idea is widely accepted as fact (Chinni 2011); proponents of projects that require environmental permits to impact species haBitat, water resources and other natural features often appeal to the puBlic using the assumption that more jobs will Be created By allowing for environmentally-destructive development practices. Underscoring this trend, the U.S. ChamBer of Commerce recently released a report, Progress Denied, blaming “corrosive” declines in joB growth on the environmental permitting process (Pociask and Fuhr 2011). What has Been almost entirely missing from this public deBate is a detailed accounting of the economic output and joBs in the U.S. that are actually created through environmental conservation, restoration, and mitigation actions – the activities that are part of what we will call the “Restoration Economy.”1 This economy is comprised by the restoration sector, a variety of industries, including earth movers, plant nurseries, legal and planning practices, landscape architects, construction companies, and other firms that contribute to the ecological restoration process. -
Management, Ecosystems and Ecosystem-Based Management of Fisheries in the Gulf of Mexico
Management, Ecosystems and Ecosystem-based Management of Fisheries in the Gulf of Mexico James H. Cowan, Jr., LSU Jake Rice, DFO, Canada Carl Walters, UBC, Fisheries Center Tim Essington and Ray Hilborn, UW John Day, LSU Kevin Boswell, LSU Source: LSU Earth Scan Laboratory Topics for Discussion (2 parts) Part 1. What I don’t know about fish/habitat relationships in the Mississippi River ecosystem Part 2. What I don’t know about ecosystem based fisheries management (ESBFM) But first, what is ESBFM? Short answer---we have no idea “Neither the science of ecosystem assessments nor the policy of integrated ecosystem-scale management is yet mature. Although modest progress has been made (examples include the Convention on Biological Diversity [CBD] 2009; NOAA 2009), consensus has not yet emerged on key components of the scientific basis for ecosystem-scale assessment and management (e.g., the appropriate spatial scale at which management should operate and/or is likely to be effective), nor on the form and extent of integration of fisheries management with other regulatory agencies” Now to the western Gulf of Mexico, for example-- Cowan et al. 2012 US Landings by Port LA alone accounts for 75% of landings in the US Gulf!! LA The “Fertile GoM Crescent” What generates this productivity? km 2 coastal wetlands (and estuarine dependency of juveniles) FL LA MX (from Deegan et al. 1986) 40% of the coastal wetlands in the US 14,834 km2 >80% of US coastal wetland loss >70% of species estuarine dependent A conundrum?--let’s look at the commercial landings -
Pesticide Use Harming Key Species Ripples Through the Ecosystem Regulatory Deficiencies Cause Trophic Cascades That Threaten Species Survival Boulder Creek
Pesticide Use Harming Key Species Ripples through the Ecosystem Regulatory deficiencies cause trophic cascades that threaten species survival Boulder Creek, Boulder, Colorado © Beyond Pesticides DREW TOHER stabilizing the water table, and both worked in tandem to provide cool, deep, shaded water for native fish. espite a growing body of scientific literature, complex, ecosystem-wide effects of synthetic When a predator higher up on the food chain is eliminated, pesticides are not considered by the U.S. Envi- that predator’s prey is released from predation, often causing ronmental Protection Agency (EPA). Beyond a trophic cascade that throws the ecosystem out of balance. direct toxicity, pesticides can significantly reduce, It is not always the top-level predator that creates a trophic Dchange the behavior of, or destroy populations of plants cascade. The loss or reduction of populations at any trophic and animals. These effects can ripple up and down food level—including amphibians, insects, or plants—can result chains, causing what is known as a trophic cascade. in changes that are difficult to perceive, but nonetheless A trophic cascade is one easily-understood example equally damaging to the stability and long-term health of of ecosystem-mediated pesticide effects. an ecosystem. Salient research on the disruptive, cascading effects that pesticides have at the ecosystem level must lead In determining legal pesticide use patterns that protect regulators to a broader consideration of the indirect impacts ecosystems (the complex web of organisms in nature) EPA caused by the introduction of these chemicals into complex requires a set of tests intended to measure both acute and living systems. -
Ecosystem Flow Recommendations for the Upper Ohio River Basin in Western Pennsylvania
Ecosystem Flow Recommendations for the Upper Ohio River Basin in Western Pennsylvania Report to the Pennsylvania Department of Environmental Protection French Creek © The Nature Conservancy Submitted by The Nature Conservancy March 2013 Ecosystem Flow Recommendations for the Upper Ohio River Basin in Western Pennsylvania March 2013 Report prepared by The Nature Conservancy Michele DePhilip Tara Moberg The Nature Conservancy 2101 N. Front St Building #1, Suite 200 Harrisburg, PA 17110 Phone: (717) 232‐6001 E‐mail: Michele DePhilip, [email protected] Suggested citation: DePhilip, M. and T. Moberg. 2013. Ecosystem flow recommendations for the Upper Ohio River basin in western Pennsylvania. The Nature Conservancy. Harrisburg, PA. i Acknowledgments We thank Sue Weaver and Hoss Liaghat of the Pennsylvania Department of Environmental Protection who served as project managers. We thank all who generously contributed their time, invaluable expertise and resources through each of our technical workshops, in‐person meetings, phone calls and other means of consultation. We especially thank Mark Hartle, Bob Ventorini, Rick Lorson, Doug Fischer and Nevin Welte (Pennsylvania Fish and Boat Commission); Beth Meyer, Mary Walsh, Charles Bier, Ephraim Zimmerman and Eric Chapman (Western Pennsylvania Conservancy and Pennsylvania Natural Heritage Program); Rick Spear, Tony Shaw, Rita Coleman, Julie Baldizar Dana Drake, Dan Counahan and Brian Dillemuth (Pennsylvania Department of Environmental Protection); Sam Dinkins and John Spaeth (Ohio River Valley Water Sanitation Commission); Lou Reynolds, Frank Borsuk and Kelly Krock (U.S. Environmental Protection Agency, Region 3); Rose Reilly, Ashley Petraglia, Mark Wozniak and Werner Loehlein (U.S. Army Corps of Engineers, Pittsburgh District); Lora Zimmerman and Bob Anderson (U.S.