Management, Ecosystems and Ecosystem-Based Management of Fisheries in the Gulf of Mexico
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
BIG RIVER ECOSYSTEM: Program 2
BIG RIVER ECOSYSTEM: A Question of Net Worth PURPOSE To explore biodiversity at the ecosystem level. KERA CONNECTIONS to Life Science Program 2 Core Content: Structure and Function in Living Systems Academic Expectations: 2.2 Patterns, 2.3 Systems, 2.4 Models & Scale ANSWERS TO Process Skills: Observation, Modeling aFIELD NOTES OBJECTIVES 1. In a hot and hostile environment, Students should be able to: the evaporated water cannot be 1.identify five “big river” organisms incorporated into living cells (as 2.construct a diagram showing interactions between living and we know them). nonliving parts of an ecosystem 2. An extremely cold environment, 3. discuss factors that affect the level of biodiversity in their river basin. or frozen desert, does not allow cells to utilize water. VOCABULARY 3. Answers will vary but should Teachers may wish to discuss the following terms: display logical flow of water and aquatic, commercial, ecosystem, water cycle and watershed. allow for recirculation in a loop. 4. Arteries and veins. aFIELD NOTEBOOK 5. A pumping heart. Ideas for Teachers 6. Diagram A shows many different A. Develop a concept map for the water cycle. Include these items in types of ecosystems in close the concept map: clouds, groundwater, apple tree, stream, precipita- proximity. tion, condensation, evaporation, harvest mouse, snowflakes, sun and 7. Add a watering hole, plant a humans. What other cycles are needed to maintain an ecosystem? miniature forest, create a B. Biospheres, containing algae, brine shrimp and water, are often meadow of wildflowers. Most shown in advertisements. Analyze how the biosphere is self-main- importantly, break up a monocul- taining. -
Effects of Eutrophication on Stream Ecosystems
EFFECTS OF EUTROPHICATION ON STREAM ECOSYSTEMS Lei Zheng, PhD and Michael J. Paul, PhD Tetra Tech, Inc. Abstract This paper describes the effects of nutrient enrichment on the structure and function of stream ecosystems. It starts with the currently well documented direct effects of nutrient enrichment on algal biomass and the resulting impacts on stream chemistry. The paper continues with an explanation of the less well documented indirect ecological effects of nutrient enrichment on stream structure and function, including effects of excess growth on physical habitat, and alterations to aquatic life community structure from the microbial assemblage to fish and mammals. The paper also dicusses effects on the ecosystem level including changes to productivity, respiration, decomposition, carbon and other geochemical cycles. The paper ends by discussing the significance of these direct and indirect effects of nutrient enrichment on designated uses - especially recreational, aquatic life, and drinking water. 2 1. Introduction 1.1 Stream processes Streams are all flowing natural waters, regardless of size. To understand the processes that influence the pattern and character of streams and reduce natural variation of different streams, several stream classification systems (including ecoregional, fluvial geomorphological, and stream order classification) have been adopted by state and national programs. Ecoregional classification is based on geology, soils, geomorphology, dominant land uses, and natural vegetation (Omernik 1987). Fluvial geomorphological classification explains stream and slope processes through the application of physical principles. Rosgen (1994) classified stream channels in the United States into seven major stream types based on morphological characteristics, including entrenchment, gradient, width/depth ratio, and sinuosity in various land forms. -
Ecosystem Services Generated by Fish Populations
AR-211 Ecological Economics 29 (1999) 253 –268 ANALYSIS Ecosystem services generated by fish populations Cecilia M. Holmlund *, Monica Hammer Natural Resources Management, Department of Systems Ecology, Stockholm University, S-106 91, Stockholm, Sweden Abstract In this paper, we review the role of fish populations in generating ecosystem services based on documented ecological functions and human demands of fish. The ongoing overexploitation of global fish resources concerns our societies, not only in terms of decreasing fish populations important for consumption and recreational activities. Rather, a number of ecosystem services generated by fish populations are also at risk, with consequences for biodiversity, ecosystem functioning, and ultimately human welfare. Examples are provided from marine and freshwater ecosystems, in various parts of the world, and include all life-stages of fish. Ecosystem services are here defined as fundamental services for maintaining ecosystem functioning and resilience, or demand-derived services based on human values. To secure the generation of ecosystem services from fish populations, management approaches need to address the fact that fish are embedded in ecosystems and that substitutions for declining populations and habitat losses, such as fish stocking and nature reserves, rarely replace losses of all services. © 1999 Elsevier Science B.V. All rights reserved. Keywords: Ecosystem services; Fish populations; Fisheries management; Biodiversity 1. Introduction 15 000 are marine and nearly 10 000 are freshwa ter (Nelson, 1994). Global capture fisheries har Fish constitute one of the major protein sources vested 101 million tonnes of fish including 27 for humans around the world. There are to date million tonnes of bycatch in 1995, and 11 million some 25 000 different known fish species of which tonnes were produced in aquaculture the same year (FAO, 1997). -
The Mississippi River Delta Basin and Why We Are Failing to Save Its Wetlands
University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses 8-8-2007 The Mississippi River Delta Basin and Why We are Failing to Save its Wetlands Lon Boudreaux Jr. University of New Orleans Follow this and additional works at: https://scholarworks.uno.edu/td Recommended Citation Boudreaux, Lon Jr., "The Mississippi River Delta Basin and Why We are Failing to Save its Wetlands" (2007). University of New Orleans Theses and Dissertations. 564. https://scholarworks.uno.edu/td/564 This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. The Mississippi River Delta Basin and Why We Are Failing to Save Its Wetlands A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Master of Science in Urban Studies By Lon J. Boudreaux Jr. B.S. Our Lady of Holy Cross College, 1992 M.S. University of New Orleans, 2007 August, 2007 Table of Contents Abstract............................................................................................................................. -
Life Cycle of Oil and Gas Fields in the Mississippi River Delta: a Review
water Review Life Cycle of Oil and Gas Fields in the Mississippi River Delta: A Review John W. Day 1,*, H. C. Clark 2, Chandong Chang 3 , Rachael Hunter 4,* and Charles R. Norman 5 1 Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA 2 Department of Earth, Environmental and Planetary Science, Rice University, Houston, TX 77005, USA; [email protected] 3 Department of Geological Sciences, Chungnam National University, Daejeon 34134, Korea; [email protected] 4 Comite Resources, Inc., P.O. Box 66596, Baton Rouge, LA 70896, USA 5 Charles Norman & Associates, P.O. Box 5715, Lake Charles LA 70606, USA; [email protected] * Correspondence: [email protected] (J.W.D.); [email protected] (R.H.) Received: 20 April 2020; Accepted: 20 May 2020; Published: 23 May 2020 Abstract: Oil and gas (O&G) activity has been pervasive in the Mississippi River Delta (MRD). Here we review the life cycle of O&G fields in the MRD focusing on the production history and resulting environmental impacts and show how cumulative impacts affect coastal ecosystems. Individual fields can last 40–60 years and most wells are in the final stages of production. Production increased rapidly reaching a peak around 1970 and then declined. Produced water lagged O&G and was generally higher during declining O&G production, making up about 70% of total liquids. Much of the wetland loss in the delta is associated with O&G activities. These have contributed in three major ways to wetland loss including alteration of surface hydrology, induced subsidence due to fluids removal and fault activation, and toxic stress due to spilled oil and produced water. -
Linking Biological Toxicity and the Spectral Characteristics Of
Chen et al. Environ Sci Eur (2019) 31:84 https://doi.org/10.1186/s12302-019-0269-y RESEARCH Open Access Linking biological toxicity and the spectral characteristics of contamination in seriously polluted urban rivers Zhongli Chen1, Zihan Zhu1, Jiyu Song1, Ruiyan Liao1, Yufan Wang1, Xi Luo1, Dongya Nie1, Yumeng Lei1, Ying Shao1* and Wei Yang2,3 Abstract Background: Urban river pollution risks to environments and human health are emerging as a serious concern worldwide. With the aim to achieve the health of urban river ecosystem, numerous monitoring programs have been implemented to investigate the spectral characteristics of contamination. While due to the complexity of aquatic pollutants, the linkages between harmful efects and the spectral characteristics of contamination are still a major challenge for capturing main threats to urban aquatic environments. To establish these linkages, surface water (SW), sediment pore water (SDPW), and riparian soil pore water (SPW) were collected from fve sites of the seriously pol- luted Qingshui Stream, China. The water-dissolved organic carbon (DOC), total nitrogen (TN), total phosphate (TP), fuorescence excitation–emission matrix, and specifc ultraviolet absorbance were applied to analyze the spectral characteristics of urban river contamination. The Photobacterium phosphorem 502 was used to test the acute toxicity of the samples. Finally, the correlations between acute toxicity and concentrations of DOC, TN, TP, and the spectral characteristics were explored. Results: The concentrations of DOC, TN, and TP in various samples amounted from 11.41 2.31 to 3844.67 87.80 mg/L, from 1.96 0.06 to 906.23 26.01 mg/L and from 0.06 0.01 to 101.00± 8.29 mg/L, respec- tively. -
Mass Wasting Processes and Products of the Mississippi Delta Front
Mass Wasting Processes and Products of the Mississippi Delta Front: Data Synthesis and Observation Sam Bentley1,2, Kehui Xu2,3, Ioannis Georgiou6, Jillian Maloney4, Michael Miner5, Greg Keller1,2, Jeff Obelcz2,3 1 LSU Dept of Geology and Geophysics 2 LSU Coastal Studies Institute 3 LSU Dept of Oceanography and Coastal Sciences 4 San Diego State University 5 US Bureau of Ocean Energy Management 6University of New Orleans River Deltas Worldwide Influenced by: • River water and sediment • Wave reworking • Tidal flows Examples of rivers with strongest Fluvial signature: • Mississippi, Po, Fraser • Yellow/Huang He • Others Figure: after Galloway, 1975 Delta Front: Active Marine Deposition from River Plumes Delta Front after Walsh and Nittrouer, 2009 Why is the delta-front region so important? • Proximal location of abundant mud deposition from river plumes • Sedimentary gateway between rivers and oceans • Navigation, petroleum resources • Geohazards – especially mass wasting, submarine landslides Project Study Area and Objectives The Mississippi River Delta Front: • Petroleum: Active production and transfer region for O&G • Impacted by submarine landslides at a range of temporal and spatial scales, producing substantial risk from these geohazards • Last major regional survey and studies ca. 1977-1982 Objectives for the present project: • Data gathering, synthesis, gap analysis • Geophysical data: focus on high-quality digital data sets • Pilot field studies using recent technologies for mapping, sampling, analysis • Develop proposal for major new regional survey and field/modeling analyses and synthesis Research Motivation and Questions: We know that the Mississippi River Delta Front is a region of active sedimentation and submarine landslides We know that major hurricanes cause landslides. -
Spatial Heterogeneity and Controls of Ecosystem Metabolism in a Great Plains River Network
Spatial heterogeneity and controls of ecosystem metabolism in a Great Plains river network Walter K. Dodds, Sophie A. Higgs, Margaret J. Spangler, James Guinnip, Jeffrey D. Scott, Skyler C. Hedden, Bryan D. Frenette, et al. Hydrobiologia The International Journal of Aquatic Sciences ISSN 0018-8158 Volume 813 Number 1 Hydrobiologia (2018) 813:85-102 DOI 10.1007/s10750-018-3516-0 1 23 Your article is protected by copyright and all rights are held exclusively by Springer International Publishing AG, part of Springer Nature. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Hydrobiologia (2018) 813:85–102 https://doi.org/10.1007/s10750-018-3516-0 PRIMARY RESEARCH PAPER Spatial heterogeneity and controls of ecosystem metabolism in a Great Plains river network Walter K. Dodds . Sophie A. Higgs . Margaret J. Spangler . James Guinnip . Jeffrey D. Scott . Skyler C. Hedden . Bryan D. Frenette . Ryland Taylor . Anne E. Schechner . David J. Hoeinghaus . Michelle A. Evans-White Received: 17 June 2017 / Revised: 14 December 2017 / Accepted: 11 January 2018 / Published online: 20 January 2018 Ó Springer International Publishing AG, part of Springer Nature 2018 Abstract Gross primary production and ecosystem limitation, and was positively related to nutrients. -
Key Restoration Methods of a Polluted River Ecosystem
Key Restoration Methods of a Polluted River Chalachew Yenew* Ecosystem: A Systematic Review Environmental Health Science, Social and Population Health (SPH) Unit, College of Medicine and Health Sciences, Debre Tabor University, Ethiopia Abstract Background: River is one of a freshwater ecosystem that plays an important role in people's living, aquatic and terrestrial living organisms, and agricultural production. Compared to other ecosystems, rivers support a disproportionately large number of *Corresponding author: plant and animal species. However, excessive human activities have busted the original Chalachew Yenew ecological balance by polluting the river ecosystem. As a result, partial or total affected the structure and functions of the river ecosystem. This review aimed to investigate the major ecological restoration methods of the polluted river ecosystem. [email protected] Methods: We have adopted the procedures from the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The required data were Environmental Health Science, Social and collected via a literature search of MEDLINE/PubMed, Google Scholar, Science Direct, Population Health (SPH) Unit, College of EMBASE, HINARI, and Cochrane Library from the 9th of September, 2019 to the 5th Medicine and Health Sciences, Debre Tabor of March, 2020 using combined terms. Articles were included in our review; only if University, Ethiopia it assessed empirically and comparison and contrast between two or more different restoration methods. This review; it is mainly included published research articles, national reports, and annual reports and excluded opinion essays. Citation: Yenew C (2021) Key Restoration Results: Commonly used methods for restoration of polluted rivers around the Methods of a Polluted River Ecosystem: A globe could be categorized depending on the physical, chemical, and biological Systematic Review. -
Restoring the Mississippi River Delta in Louisiana Ecological Tradeoffs and Barriers to Action
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of New Orleans University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses Fall 12-18-2015 Restoring the Mississippi River Delta in Louisiana Ecological Tradeoffs and Barriers to Action Alison Maulhardt University of New Orleans, [email protected] Follow this and additional works at: https://scholarworks.uno.edu/td Part of the Environmental Studies Commons, Natural Resources Management and Policy Commons, Sustainability Commons, and the Urban Studies and Planning Commons Recommended Citation Maulhardt, Alison, "Restoring the Mississippi River Delta in Louisiana Ecological Tradeoffs and Barriers to Action" (2015). University of New Orleans Theses and Dissertations. 2098. https://scholarworks.uno.edu/td/2098 This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. Restoring the Mississippi River Delta in Louisiana Ecological Tradeoffs and Barriers to Action A Thesis Submitted to the Graduate Faculty Of the University of New Orleans in partial fulfillment of the requirement for the degree of Master of Urban and Regional Planning By Alison Maulhardt B.A. -
Hurricane Katrina External Review Panel Christine F
THE NEW ORLEANS HURRICANE PROTECTION SYSTEM: What Went Wrong and Why A Report by the American Society of Civil Engineers Hurricane Katrina External Review Panel Christine F. Andersen, P.E., M.ASCE Jurjen A. Battjes, Ph.D. David E. Daniel, Ph.D., P.E., M.ASCE (Chair) Billy Edge, Ph.D., P.E., F.ASCE William Espey, Jr., Ph.D., P.E., M.ASCE, D.WRE Robert B. Gilbert , Ph.D., P.E., M.ASCE Thomas L. Jackson, P.E., F.ASCE, D.WRE David Kennedy, P.E., F.ASCE Dennis S. Mileti, Ph.D. James K. Mitchell, Sc.D., P.E., Hon.M.ASCE Peter Nicholson, Ph.D., P.E., F.ASCE Clifford A. Pugh, P.E., M.ASCE George Tamaro, Jr., P.E., Hon.M.ASCE Robert Traver, Ph.D., P.E., M.ASCE, D.WRE ASCE Staff: Joan Buhrman Charles V. Dinges IV, Aff.M.ASCE John E. Durrant, P.E., M.ASCE Jane Howell Lawrence H. Roth, P.E., G.E., F.ASCE Library of Congress Cataloging-in-Publication Data The New Orleans hurricane protection system : what went wrong and why : a report / by the American Society of Civil Engineers Hurricane Katrina External Review Panel. p. cm. ISBN-13: 978-0-7844-0893-3 ISBN-10: 0-7844-0893-9 1. Hurricane Katrina, 2005. 2. Building, Stormproof. 3. Hurricane protection. I. American Society of Civil Engineers. Hurricane Katrina External Review Panel. TH1096.N49 2007 627’.40976335--dc22 2006031634 Published by American Society of Civil Engineers 1801 Alexander Bell Drive Reston, Virginia 20191 www.pubs.asce.org Any statements expressed in these materials are those of the individual authors and do not necessarily represent the views of ASCE, which takes no responsibility for any statement made herein. -
Louisiana's Land Loss Crisis Without
Louisiana’s Land Loss Crisis The Mississippi River Delta formed over thousands of years as North America’s mightiest river deposited sand, clay and organic material into the warm, shallow waters of the northern Gulf of Mexico. Over the last few hundred years, human alterations to the river system have caused the delta to collapse. Since the 1930s, Louisiana has lost about 1,900 square miles of land into open water. Recent catastrophes, such as Hurricanes Katrina and Rita, and the BP oil disaster, exacerbated our coastal crisis. As the delta disappears, so does the natural protection it provides. We have to act now to correct the damage. Predicted Land Loss Predicted Land Gain Without action, Louisiana could lose as much as 4,123 square miles of land in the next 50 years Variety of Solutions Robust, large-scale restoration projects, along with coastal protection and community resilience measures, are our best solutions for reducing land loss, protecting our communities and ensuring a sustainable future for generations to come. Restoration of a healthy, productive Mississippi River Delta requires a variety of restoration solutions. These include: • Reconnecting the river to its delta through land-building sediment diversions • Strategic use of dredged sediment to build and sustain wetlands and barrier islands • Improved management of the Mississippi River • Adopting community resilience measures, such as home elevation WHO WE ARE Restore the Mississippi River Delta is working to protect people, wildlife and jobs by reconnecting the river with its wetlands. As our region faces the crisis of threatening land loss, we offer science-based solutions through a comprehensive approach to restoration.