Controls on Autotrophic Respiration, Heterotrophic Respiration, and Decomposition in Northern Forested Rivers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Foliar and Ecosystem Respiration in an Old-Growth Tropical Rain Forest
Plant, Cell and Environment (2008) 31, 473–483 doi: 10.1111/j.1365-3040.2008.01775.x Foliar and ecosystem respiration in an old-growth tropical rain forest MOLLY A. CAVALERI1,2, STEVEN F. OBERBAUER3,4 & MICHAEL G. RYAN5,6 1Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA, 2Botany Department, University of Hawaii, Manoa, 3190 Maile Way, Honolulu, HI 96826, USA, 3Department of Biological Sciences, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA, 4Fairchild Tropical Botanic Garden, 11935 Old Cutler Road, Miami, FL 33156, USA, 5United States Department of Agriculture Forest Service, Rocky Mountain Research Station, 240 West Prospect RD, Fort Collins, CO 80526, USA and 6Graduate Degree Program in Ecology, Department of Forest, Rangeland, and Watershed Stewardship, Colorado State University, Fort Collins, CO 80523, USA ABSTRACT Chambers et al. 2004). Results vary widely about whether tropical forests are presently acting as carbon sources or Foliar respiration is a major component of ecosystem res- sinks, or how this may be affected by global warming. piration, yet extrapolations are often uncertain in tropical Several eddy flux studies have concluded that tropical rain forests because of indirect estimates of leaf area index forests are primarily acting as carbon sinks (Fan et al. 1990; (LAI). A portable tower was used to directly measure LAI Grace et al. 1995; Malhi et al. 1998; Loescher et al. 2003, and night-time foliar respiration from 52 vertical transects but see Saleska et al. 2003). Many atmosphere–biosphere throughout an old-growth tropical rain forest in Costa Rica. modelling studies, on the other hand, predict that tropical In this study, we (1) explored the effects of structural, func- forests will be an increased carbon source with global tional and environmental variables on foliar respiration; (2) warming (Kindermann, Würth & Kohlmaier 1996; Braswell extrapolated foliar respiration to the ecosystem; and (3) et al. -
Blackwater River State Park Was Established 7720 Deaton Bridge Road in 1967 and Opened in 1968 with 360 Acres
BLACKWATER RIVER HISTORY AND NATURE STATE PARK Blackwater River State Park was established 7720 Deaton Bridge Road in 1967 and opened in 1968 with 360 acres. In 1981 an additional 230 acres were acquired from Holt, FL 32564 the Division of Forestry. 850-983-5363 Blackwater River State Park has one recorded archaeological site–an unnamed stone scatter, which may be as old as 10,000 years or as PARK GUIDELINES recent as a few hundred years old. Since rivers • Hours are 8 a.m. until sunset, 365 days a year. have been major transportation corridors in • An entrance fee is required. Additional user fees Florida for more than 10,000 years, it is probable may apply. BLACKWATER that human activity existed here long ago. • All plants, animals and park property are protected. Collection, destruction or disturbance RIVER The park and adjoining Blackwater River is prohibited. State Forest are known for their historic trams, • Pets are permitted in designated areas only. Pets STATE PARK sawmills and timber industry, especially near Milton. must be kept on a handheld leash no longer It is interesting to note the geographical distribution than six feet and well-behaved at all times. of mills along the streams and watersheds. • Fishing, boating and ground fires are allowed in designated areas only. A Florida fishing licences When mills were at peak operation, everyone is require.. Fireworks and hunting are prohibited made trips to mills. The earliest roads led to in all Florida state parks. mills and as the community grew, commercial • Fireworks and hunting are prohibited. ventures such as the blacksmith shop, livery and • Alcoholic beverage consumption is allowed in general store would spring up nearby. -
Effects of Eutrophication on Stream Ecosystems
EFFECTS OF EUTROPHICATION ON STREAM ECOSYSTEMS Lei Zheng, PhD and Michael J. Paul, PhD Tetra Tech, Inc. Abstract This paper describes the effects of nutrient enrichment on the structure and function of stream ecosystems. It starts with the currently well documented direct effects of nutrient enrichment on algal biomass and the resulting impacts on stream chemistry. The paper continues with an explanation of the less well documented indirect ecological effects of nutrient enrichment on stream structure and function, including effects of excess growth on physical habitat, and alterations to aquatic life community structure from the microbial assemblage to fish and mammals. The paper also dicusses effects on the ecosystem level including changes to productivity, respiration, decomposition, carbon and other geochemical cycles. The paper ends by discussing the significance of these direct and indirect effects of nutrient enrichment on designated uses - especially recreational, aquatic life, and drinking water. 2 1. Introduction 1.1 Stream processes Streams are all flowing natural waters, regardless of size. To understand the processes that influence the pattern and character of streams and reduce natural variation of different streams, several stream classification systems (including ecoregional, fluvial geomorphological, and stream order classification) have been adopted by state and national programs. Ecoregional classification is based on geology, soils, geomorphology, dominant land uses, and natural vegetation (Omernik 1987). Fluvial geomorphological classification explains stream and slope processes through the application of physical principles. Rosgen (1994) classified stream channels in the United States into seven major stream types based on morphological characteristics, including entrenchment, gradient, width/depth ratio, and sinuosity in various land forms. -
Drought and Ecosystem Carbon Cycling
Agricultural and Forest Meteorology 151 (2011) 765–773 Contents lists available at ScienceDirect Agricultural and Forest Meteorology journal homepage: www.elsevier.com/locate/agrformet Review Drought and ecosystem carbon cycling M.K. van der Molen a,b,∗, A.J. Dolman a, P. Ciais c, T. Eglin c, N. Gobron d, B.E. Law e, P. Meir f, W. Peters b, O.L. Phillips g, M. Reichstein h, T. Chen a, S.C. Dekker i, M. Doubková j, M.A. Friedl k, M. Jung h, B.J.J.M. van den Hurk l, R.A.M. de Jeu a, B. Kruijt m, T. Ohta n, K.T. Rebel i, S. Plummer o, S.I. Seneviratne p, S. Sitch g, A.J. Teuling p,r, G.R. van der Werf a, G. Wang a a Department of Hydrology and Geo-Environmental Sciences, Faculty of Earth and Life Sciences, VU-University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands b Meteorology and Air Quality Group, Wageningen University and Research Centre, P.O. box 47, 6700 AA Wageningen, The Netherlands c LSCE CEA-CNRS-UVSQ, Orme des Merisiers, F-91191 Gif-sur-Yvette, France d Institute for Environment and Sustainability, EC Joint Research Centre, TP 272, 2749 via E. Fermi, I-21027 Ispra, VA, Italy e College of Forestry, Oregon State University, Corvallis, OR 97331-5752 USA f School of Geosciences, University of Edinburgh, EH8 9XP Edinburgh, UK g School of Geography, University of Leeds, Leeds LS2 9JT, UK h Max Planck Institute for Biogeochemistry, PO Box 100164, D-07701 Jena, Germany i Department of Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, PO Box 80115, 3508 TC Utrecht, The Netherlands j Institute of Photogrammetry and Remote Sensing, Vienna University of Technology, Gusshausstraße 27-29, 1040 Vienna, Austria k Geography and Environment, Boston University, 675 Commonwealth Avenue, Boston, MA 02215, USA l Department of Global Climate, Royal Netherlands Meteorological Institute, P.O. -
Grassland to Shrubland State Transitions Enhance Carbon Sequestration in the Northern Chihuahuan Desert
Global Change Biology Global Change Biology (2015) 21, 1226–1235, doi: 10.1111/gcb.12743 Grassland to shrubland state transitions enhance carbon sequestration in the northern Chihuahuan Desert M. D. PETRIE1 ,S.L.COLLINS1 ,A.M.SWANN2 ,P.L.FORD3 andM.E. LITVAK1 1Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA, 2Department of Biology, Sevilleta LTER, University of New Mexico, Albuquerque, New Mexico, USA, 3USDA Forest Service, Rocky Mountain Research Station, Albuquerque, New Mexico, USA Abstract The replacement of native C4-dominated grassland by C3-dominated shrubland is considered an ecological state tran- sition where different ecological communities can exist under similar environmental conditions. These state transi- tions are occurring globally, and may be exacerbated by climate change. One consequence of the global increase in woody vegetation may be enhanced ecosystem carbon sequestration, although the responses of arid and semiarid ecosystems may be highly variable. During a drier than average period from 2007 to 2011 in the northern Chihuahuan À2 À1 Desert, we found established shrubland to sequester 49 g C m yr on average, while nearby native C4 grassland À À was a net source of 31 g C m 2 yr 1 over this same period. Differences in C exchange between these ecosystems were pronounced – grassland had similar productivity compared to shrubland but experienced higher C efflux via ecosys- tem respiration, while shrubland was a consistent C sink because of a longer growing season and lower ecosystem respiration. At daily timescales, rates of carbon exchange were more sensitive to soil moisture variation in grassland than shrubland, such that grassland had a net uptake of C when wet but lost C when dry. -
Model-Based Analysis of the Impact of Diffuse
Agricultural and Forest Meteorology 249 (2018) 377–389 Contents lists available at ScienceDirect Agricultural and Forest Meteorology journal homepage: www.elsevier.com/locate/agrformet Model-based analysis of the impact of diffuse radiation on CO2 exchange in a T temperate deciduous forest Min S. Leea, David Y. Hollingerb, Trevor F. Keenanc, Andrew P. Ouimetted, Scott V. Ollingerd, ⁎ Andrew D. Richardsona,e,f, a Harvard University, Department of Organismic and Evolutionary Biology, 26 Oxford Street, Cambridge, MA 02138, USA b USDA Forest Service, Northern Research Station, 271 Mast Rd, Durham, NH 03824, USA c Climate and Ecosystem Sciences Division, Lawrence Berkeley National Lab., 1 Cyclotron Rd., Berkeley, CA 94720, USA d University of New Hampshire, Earth Systems Research Center, 8 College Rd, Durham, NH 03824, USA e Northern Arizona University, School of Informatics, Computing and Cyber Systems, PO Box 5693, Flagstaff, AZ 86011, USA f Northern Arizona University, Center for Ecosystem Science and Society, PO Box 5620, Flagstaff, AZ 86011, USA ARTICLE INFO ABSTRACT Keywords: Clouds and aerosols increase the fraction of global solar irradiance that is diffuse light. This phenomenon is Diffuse radiation known to increase the photosynthetic light use efficiency (LUE) of closed-canopy vegetation by redistributing Light use efficiency photosynthetic photon flux density (400–700 nm) from saturated, sunlit leaves at the top of the canopy, to Eddy covariance shaded leaves deeper in the canopy. We combined a process-based carbon cycle model with 10 years of eddy Net ecosystem exchange covariance carbon flux measurements and other ancillary data sets to assess 1) how this LUE enhancement Deciduous forest influences interannual variation in carbon uptake, and 2) how errors in modeling diffuse fraction affect pre- Canopy photosynthesis dictions of carbon uptake. -
Respiration from a Tropical Forest Ecosystem: Partitioning of Sources and Low Carbon Use Efficiency
Ecological Applications, 14(4) Supplement, 2004, pp. S72±S88 q 2004 by the Ecological Society of America RESPIRATION FROM A TROPICAL FOREST ECOSYSTEM: PARTITIONING OF SOURCES AND LOW CARBON USE EFFICIENCY JEFFREY Q. CHAMBERS,1,2,4 EDGARD S. TRIBUZY,2 LIGIA C. TOLEDO,2 BIANCA F. C RISPIM,2 NIRO HIGUCHI,2 JOAQUIM DOS SANTOS,2 ALESSANDRO C. ARAUÂ JO,2 BART KRUIJT,3 ANTONIO D. NOBRE,2 AND SUSAN E. TRUMBORE1 1University of California, Earth System Sciences, Irvine, California 92697 USA 2Instituto Nacional de Pesquisas da AmazoÃnia, C.P. 478, Manaus, Amazonas, Brazil, 69011-970 3Alterra, University of Wageningen, Alterra, 6700 AA Wageningen, The Netherlands Abstract. Understanding how tropical forest carbon balance will respond to global change requires knowledge of individual heterotrophic and autotrophic respiratory sources, together with factors that control respiratory variability. We measured leaf, live wood, and soil respiration, along with additional environmental factors over a 1-yr period in a Central Amazon terra ®rme forest. Scaling these ¯uxes to the ecosystem, and combining our data with results from other studies, we estimated an average total ecosystem respiration (Reco) of 7.8 mmol´m22´s21. Average estimates (per unit ground area) for leaf, wood, soil, total heterotrophic, and total autotrophic respiration were 2.6, 1.1, 3.2, 5.6, and 2.2 mmol´m22´s21, respectively. Comparing autotrophic respiration with net primary production (NPP) esti- mates indicated that only ;30% of carbon assimilated in photosynthesis was used to con- struct new tissues, with the remaining 70% being respired back to the atmosphere as autotrophic respiration. -
FORMATION PROCESSES of SHIP SITES in the BLACKWATER RIVER, SANTA ROSA COUNTY, FLORIDA by William Joseph Wilson, II B.S., Kennes
FORMATION PROCESSES OF SHIP SITES IN THE BLACKWATER RIVER, SANTA ROSA COUNTY, FLORIDA by William Joseph Wilson, II B.S., Kennesaw State University, 2010 A thesis submitted to the Department of Anthropology College of Arts, Social Sciences, and Humanities The University of West Florida In partial fulfillment of the requirements for the degree of Master of Arts 2015 © 2015 William Joseph Wilson, II The thesis of William Joseph Wilson, II is approved: ____________________________________________ _________________ Della Scott-Ireton, Ph.D., Committee Member Date ____________________________________________ _________________ Robert Philen, Ph.D., Committee Member Date ____________________________________________ _________________ Gregory D. Cook, Ph.D., Committee Chair Date Accepted for the Department/Division: ____________________________________________ _________________ John R. Bratten, Ph.D., Chair Date Accepted for the University: ____________________________________________ _________________ Richard S. Podemski, Ph.D., Dean, Graduate School Date ACKNOWLEDGMENTS Many people contributed to the success of this project. I would like to thank Dr. Greg Cook, Dr. Robert Philen, and Dr. Della Scott-Ireton for assistance and guidance through the thesis process. The University of West Florida Archaeology Institute provided financial support and materials to complete much of the field work. I would also like to thank Dr. Matthew Schwartz and Dr. Jane Caffrey for providing assistance and equipment from their departments. Steve McLin, Fritz Sharar, and Del De Los Santos ensured that all boat and diving operations went smoothly and safely. Many others within the Department of Anthropology provided guidance, including Dr. Ramie Gougeon, Dr. John Bratten, Dr. John Worth, Janet Lloyd, Jennifer Melcher, Norine Carroll, John Phillips, Cindy Rogers, and Juliette Moore. The field work could not have been completed without the assistance of all the field school supervisors and students during the 2013 field season, particularly Andrew Derlikowski. -
Impact of Wildfire on Stream Nutrient Chemistry and Ecosystem Metabolism in Boreal Forest Catchments of Interior Alaska
Impact of Wildfire on Stream Nutrient Chemistry and Ecosystem Metabolism in Boreal Forest Catchments of Interior Alaska Abstract With climatic warming, wildfire occurrence is increasing m the boreal forest of interior Alaska. Loss of catchment vegetation during fire can impact streams directly through altered solute and debris inputs and changed light and temperature regimes. Over longer time scales, fire can accelerate permafrost degradation, altering catchment hydrology and stream nutrient dynamics. In 2004, the 217,000 ha Boundary Fire burned 65% of an established study site in the Caribou-Poker Creeks Research Watershed. We used this opportunity to investigate the impact of wildfire on stream chemistry and metabolism in boreal forest catchments. Wildfire impacts on chemistry were evaluated by examining solute chemistry in four catchments from 2002 to 2007. Ecosystem metabolism was measured over the summer of 2005 in one burned and two unburned catchments. Wildfire led to stream nitrate concentration increasing up to threefold, whereas dissolved organic carbon (DOC) and dissolved organic nitrogen concentrations decreased post-fire. Average stream gross primary production in the burned catchment was double that of the unburned sites (2.4 and -2 1.2 g O2 m day, respectively). Respiration rate was also elevated in the burned -2 -1 stream (6.6 g O2 m day ) compared with the control streams (l.2 and -2 -1 4.5 g O2 m day ). Climatic warming has the potential to impact boreal forest streams through permafrost thaw and increased fire frequency, leading to altered solute inputs and production and respiration rates. Introduction stream disch arge and hydrologic flowpaths through watersheds, In the boreal forest, wildfire is a widespread disturbance and thereby altering both the magnitude and timing of flows and fundamental in shaping forest structure, function, and succession- solute delivery to streams (Earl and Blinn, 2003; Petrone et al., al processes (Chapin et al., 2006). -
October 2020 Newsletter
October 2020 FRIENDS OF BLACKWATER ©Kent Mason Working to protect West Virginia’s HigH allegHenies, BlackWater riVer & BlackWater canyon. PO Box 247 - Thomas, WV 26292 - phone: 304-345-7663 - www.saveblackwater.org - [email protected] Meet Friends of Blackwaters’ New Heritage Vista Member Alicia Erjavec! Hello, Friends of Blackwater supporters. My name is Alicia Erjavec. I grew up in Clarksburg and graduated from Robert C. Byrd High School in 2015. This past De- cember I graduated from Fairmont State University with a Bachelor of Arts in English Literature and a minor in Folklore Studies. At Fairmont State I worked on the Appalachian Teaching Project (“ATP”), which is an applied research training program for college students in Appalachia to design economic development initiatives for their com- munities. The goal was to design and lead research proj- ects in Appalachian communities in order to address the challenges that are currently going on in their respective region. I worked with supervisors Lynette Swiger of Fair- mont State and Connie Boggs of Monongah Elementary, with two other students, Christina Satterfield and Garret Alicia, our New Vista! Wilson, learning about the coal towns of Marion County and the tri-state area, and about the rail trail that goes The opportunity to work as an Americorps VISTA for through Fairmont. At the end of the course, we traveled Friends of Blackwater came through my old advisor at to Washington D.C. for a press confernce, presenting Fairmont State, and seeing that it was similar to what I our work to other student delegations, the leaders of the did for the ATP, I couldn’t pass up the chance. -
Interpreting, Measuring, and Modeling Soil Respiration
Biogeochemistry (2005) 73: 3–27 Ó Springer 2005 DOI 10.1007/s10533-004-5167-7 -1 Interpreting, measuring, and modeling soil respiration MICHAEL G. RYAN1,2,* and BEVERLY E. LAW3 1US Department of Agriculture-Forest Service, Rocky Mountain Research Station, 240 West Pros- pect Street, Fort Collins, CO 80526, USA; 2Affiliate Faculty, Department of Forest, Rangeland and Watershed Stewardship and Graduate Degree Program in Ecology, Colorado State University Fort Collins, CO 80523, USA; 3Department of Forest Science, Oregon State University, 328 Richardson Hall, Corvallis, OR 97331, USA; *Author for correspondence (e-mail: [email protected]) Key words: Belowground carbon allocation, Carbon cycling, Carbon dioxide, CO2, Infrared gas analyzers, Methods, Soil carbon, Terrestrial ecosystems Abstract. This paper reviews the role of soil respiration in determining ecosystem carbon balance, and the conceptual basis for measuring and modeling soil respiration. We developed it to provide background and context for this special issue on soil respiration and to synthesize the presentations and discussions at the workshop. Soil respiration is the largest component of ecosystem respiration. Because autotrophic and heterotrophic activity belowground is controlled by substrate availability, soil respiration is strongly linked to plant metabolism, photosynthesis and litterfall. This link dominates both base rates and short-term fluctuations in soil respiration and suggests many roles for soil respiration as an indicator of ecosystem metabolism. However, the strong links between above and belowground processes complicate using soil respiration to understand changes in ecosystem carbon storage. Root and associated mycorrhizal respiration produce roughly half of soil respiration, with much of the remainder derived from decomposition of recently produced root and leaf litter. -
The Francis M. Weston Audubon Society Blackwater River State Forest Bird Survey Peggy Baker
Spring 2013 April-June Vol. XL No. 4 The Francis M. Weston Audubon Society Blackwater River State Forest Bird Survey Peggy Baker Blackwater River State Forest has been designated The food plots planted for game wildlife also attracted by the National Audubon as an Important Bird great numbers of wintering Chipping and Vesper Area with a global priority (the highest). This Sparrows, as well as Palm, Pine and Yellow-rumped designation means this area in Northwest Florida is vital to Warblers. birds and other biodiversity. It provides essential habitat for Dead snags left standing throughout the forest have the survival of one or more species. In 2009, FMWAS attracted large numbers of woodpeckers. Along with undertook the task of surveying the birds in BRS Forest by the Red-cockaded Woodpeckers, the forest is home to conducting weekly surveys. good numbers of nesting Pileated, Red-bellied, Red- During our three-year bird survey of the 240,000 acres headed, and Downy Woodpeckers, as well as, Northern of the BRS Forest, the FMWAS team identified 181 bird Flicker. There are a good number of Yellow-bellied species. Of these, 33 species were spring and fall migrants, Sapsuckers and a few Hairy Woodpeckers during the 35 were summer visitors only, 60 were winter only, and winter season. 53 species were seen year round. And most importantly, Eastern Bluebirds have returned to nest in the natural 86 of these species nest and raise young in BRS Forest. cavities of the dead snags. Brown-headed Nuthatches are Under the Migratory Bird Program, the U. S.