Model-Based Analysis of the Impact of Diffuse

Total Page:16

File Type:pdf, Size:1020Kb

Model-Based Analysis of the Impact of Diffuse Agricultural and Forest Meteorology 249 (2018) 377–389 Contents lists available at ScienceDirect Agricultural and Forest Meteorology journal homepage: www.elsevier.com/locate/agrformet Model-based analysis of the impact of diffuse radiation on CO2 exchange in a T temperate deciduous forest Min S. Leea, David Y. Hollingerb, Trevor F. Keenanc, Andrew P. Ouimetted, Scott V. Ollingerd, ⁎ Andrew D. Richardsona,e,f, a Harvard University, Department of Organismic and Evolutionary Biology, 26 Oxford Street, Cambridge, MA 02138, USA b USDA Forest Service, Northern Research Station, 271 Mast Rd, Durham, NH 03824, USA c Climate and Ecosystem Sciences Division, Lawrence Berkeley National Lab., 1 Cyclotron Rd., Berkeley, CA 94720, USA d University of New Hampshire, Earth Systems Research Center, 8 College Rd, Durham, NH 03824, USA e Northern Arizona University, School of Informatics, Computing and Cyber Systems, PO Box 5693, Flagstaff, AZ 86011, USA f Northern Arizona University, Center for Ecosystem Science and Society, PO Box 5620, Flagstaff, AZ 86011, USA ARTICLE INFO ABSTRACT Keywords: Clouds and aerosols increase the fraction of global solar irradiance that is diffuse light. This phenomenon is Diffuse radiation known to increase the photosynthetic light use efficiency (LUE) of closed-canopy vegetation by redistributing Light use efficiency photosynthetic photon flux density (400–700 nm) from saturated, sunlit leaves at the top of the canopy, to Eddy covariance shaded leaves deeper in the canopy. We combined a process-based carbon cycle model with 10 years of eddy Net ecosystem exchange covariance carbon flux measurements and other ancillary data sets to assess 1) how this LUE enhancement Deciduous forest influences interannual variation in carbon uptake, and 2) how errors in modeling diffuse fraction affect pre- Canopy photosynthesis dictions of carbon uptake. Modeled annual gross primary productivity (GPP) increased by ≈0.94% when ob- served levels of diffuse fraction were increased by 0.01 (holding total irradiance constant). The sensitivity of GPP to increases in diffuse fraction was highest when the diffuse fraction was low to begin with, and lowest when the diffuse fraction was already high. Diffuse fraction also explained significantly more of the interannual variability of modeled net ecosystem exchange (NEE), than did total irradiance. Two tested radiation partitioning models yielded over- and underestimates of diffuse fraction at our site, which propagated to over- and underestimates of annual NEE, respectively. Our findings highlight the importance of incorporating LUE enhancement under diffuse light into models of global primary production, and improving models of diffuse fraction. 1. Introduction sunlit leaves are often light saturated while shaded leaves receive little light and thus lie on the linear part of the light response curve (Roderick A key uncertainty of forest ecosystem carbon uptake in a changing et al., 2001). Under diffuse light conditions, sunlit leaves receive less climate is its differential responses to diffuse and direct beam solar direct beam PPFD but shaded leaves receive more diffuse PPFD, which radiation (Bonan, 2008; Heimann and Reichstein, 2008; Settele et al., comes from all directions of the sky and penetrates the canopy to a 2014). Cloud cover and aerosols (Cheng et al., 2016; Niyogi et al., fuller extent. Because leaves in deep shade benefit more from an in- 2004) account for most of the variability in the ratio of diffuse to global crease in PPFD than leaves in full sun suffer from an equivalent de- irradiance (hereafter referred to as diffuse fraction), and projections of crease, a more even vertical distribution of PPFD should enhance the how these will change in the future are highly uncertain (Boucher et al., photosynthetic light use efficiency (LUE) of the canopy as a whole 2013; Wild, 2009). There is also uncertainty associated with the path- (Farquhar and Roderick, 2003). Direct measurements of forest CO2 ways through which diffuse fraction influences the carbon budget. uptake have shown that canopy LUE is indeed enhanced under cloudy Diffuse fraction affects the photosynthetic photon flux density (PPFD) conditions, though estimates of enhancement vary (Alton, 2008; Alton distribution within the forest canopy, which has potentially important et al., 2007; Baldocchi, 1997; Gu et al., 2002; Hollinger et al., 1994; implications for canopy photosynthesis. Under clear sky conditions, Jenkins et al., 2007; Urban et al., 2007; Zhang et al., 2010). A number Abbreviations: fd,diffuse fraction; PPFD, photosynthetic photon flux density; NEE, net ecosystem exchange; GPP, gross primary productivity; RE, ecosystem respiration; LUE, light use efficiency ⁎ Corresponding author at: Northern Arizona University, School of Informatics, Computing and Cyber Systems, Building 90 (1295 S. Knoles Dr.), Flagstaff, AZ 86011, USA. E-mail address: [email protected] (A.D. Richardson). https://doi.org/10.1016/j.agrformet.2017.11.016 Received 29 May 2017; Received in revised form 9 November 2017; Accepted 12 November 2017 Available online 20 November 2017 0168-1923/ © 2017 Elsevier B.V. All rights reserved. M.S. Lee et al. Agricultural and Forest Meteorology 249 (2018) 377–389 of studies have also found that aerosol loading events, such as the provides insights into the relative importance of diffuse fraction for eruption of Mount Pinatubo (Farquhar and Roderick, 2003; Gu et al., accurately modeling carbon budgets at longer time scales. 2003; Mercado et al., 2009), have enhanced the terrestrial carbon sink. Finally, we tested the accuracy of two standard partitioning models However, aside from these studies of dramatic increases in diffuse used to predict diffuse fraction, and analyzed the impact of their errors fraction, there has been relatively little research on the extent to which on predictions of NEE and other carbon cycle components. While stu- interannual variation in diffuse fraction − typically stemming from dies have measured the goodness of fit between observations and pre- fluctuations in cloudiness − mediates the interannual variation in dictions of NEE that were informed by modeled diffuse fraction (Gu carbon budget. Min and Wang (2008) find that the transmittance index, et al., 2002; Rocha et al., 2004; Schurgers et al., 2015), and Gu et al. compared to temperature and precipitation, is more highly correlated (2002) compare independently parameterized models utilizing ob- (R2 > 0.65) with mean midsummer net ecosystem production at a served and modeled diffuse fraction, this is the first study to our northern hardwood forest, which suggests LUE changes with cloudiness knowledge that has compared performances of model runs differing may accumulate over the growing season in annually distinct ways and only in the accuracy of their diffuse and direct PPFD drivers. Our have meaningful influence on forest productivity in a given year. findings help gauge the importance of improving diffuse fraction Diffuse fraction also covaries with other environmental factors that models to better replicate forest carbon dynamics. impact the carbon budget. The presence of clouds and aerosols often To achieve these three objectives, we first optimized and validated a reduces the solar radiation reaching Earth’s surface, and is associated process-based model using 10 years of half-hourly eddy covariance with lower air and leaf temperature and vapor pressure deficit (Gu fluxes, observations of direct and diffuse PPFD, and other ancillary et al., 2002; Oliphant et al., 2011; Wohlfahrt et al., 2008; Zhang et al., measurements at the Bartlett Experimental Forest, a deciduous site in 2011). Less incident PPFD reduces photosynthesis, while the thermal the northeastern United States. After optimizing model parameters effects can enhance photosynthesis when ambient temperature is above using the first half of our observational record, and validating the the optimum (Baldocchi and Harley, 1995; Steiner and Chameides, model against the second half, we then prescribed various scenarios of 2005) and reduce ecosystem respiration (Alton, 2008; Gu et al., 1999; diffuse fraction to measure how model outputs and performance re- Urban et al., 2007). Lower vapor pressure deficit (VPD) associated with spond. reduced irradiance can increase stomatal conductance, enhancing leaf photosynthesis (Gu et al., 1999). Recent studies suggest the decrease in 2. Materials and methods total irradiance has a greater effect on the net ecosystem exchange (NEE) than associated changes in temperature and humidity (Alton 2.1. Site et al., 2007; Knohl and Baldocchi, 2008; Oliphant et al., 2011), though quantifying these separately remains difficult (Kanniah et al., 2012). The Bartlett Experimental Forest (BEF) (https://www.nrs.fs.fed.us/ In this paper, we investigated the impacts of diffuse radiation on ef/locations/nh/bartlett/) is a primarily deciduous forest located in the forest gross primary productivity (GPP) by combining long-term data northeastern United States (44.05° N, 71.29° W). Mean annual tem- sets (half-hourly measurements over 10 years) of eddy covariance perature is approximately 6.6°C (summer: 20°C, winter: −8°C), and fluxes and direct and diffuse PPFD with a process-oriented model. Many mean annual precipitation is approximately 1300 mm, distributed studies have estimated diffuse fraction using radiation partitioning evenly throughout the year. The soils are Spodosols, developed on models (Alton, 2008; Alton et al., 2007; Choudhury, 2001; Gu et al., glacial till derived from granite and gneiss. Soils
Recommended publications
  • Foliar and Ecosystem Respiration in an Old-Growth Tropical Rain Forest
    Plant, Cell and Environment (2008) 31, 473–483 doi: 10.1111/j.1365-3040.2008.01775.x Foliar and ecosystem respiration in an old-growth tropical rain forest MOLLY A. CAVALERI1,2, STEVEN F. OBERBAUER3,4 & MICHAEL G. RYAN5,6 1Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA, 2Botany Department, University of Hawaii, Manoa, 3190 Maile Way, Honolulu, HI 96826, USA, 3Department of Biological Sciences, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA, 4Fairchild Tropical Botanic Garden, 11935 Old Cutler Road, Miami, FL 33156, USA, 5United States Department of Agriculture Forest Service, Rocky Mountain Research Station, 240 West Prospect RD, Fort Collins, CO 80526, USA and 6Graduate Degree Program in Ecology, Department of Forest, Rangeland, and Watershed Stewardship, Colorado State University, Fort Collins, CO 80523, USA ABSTRACT Chambers et al. 2004). Results vary widely about whether tropical forests are presently acting as carbon sources or Foliar respiration is a major component of ecosystem res- sinks, or how this may be affected by global warming. piration, yet extrapolations are often uncertain in tropical Several eddy flux studies have concluded that tropical rain forests because of indirect estimates of leaf area index forests are primarily acting as carbon sinks (Fan et al. 1990; (LAI). A portable tower was used to directly measure LAI Grace et al. 1995; Malhi et al. 1998; Loescher et al. 2003, and night-time foliar respiration from 52 vertical transects but see Saleska et al. 2003). Many atmosphere–biosphere throughout an old-growth tropical rain forest in Costa Rica. modelling studies, on the other hand, predict that tropical In this study, we (1) explored the effects of structural, func- forests will be an increased carbon source with global tional and environmental variables on foliar respiration; (2) warming (Kindermann, Würth & Kohlmaier 1996; Braswell extrapolated foliar respiration to the ecosystem; and (3) et al.
    [Show full text]
  • Drought and Ecosystem Carbon Cycling
    Agricultural and Forest Meteorology 151 (2011) 765–773 Contents lists available at ScienceDirect Agricultural and Forest Meteorology journal homepage: www.elsevier.com/locate/agrformet Review Drought and ecosystem carbon cycling M.K. van der Molen a,b,∗, A.J. Dolman a, P. Ciais c, T. Eglin c, N. Gobron d, B.E. Law e, P. Meir f, W. Peters b, O.L. Phillips g, M. Reichstein h, T. Chen a, S.C. Dekker i, M. Doubková j, M.A. Friedl k, M. Jung h, B.J.J.M. van den Hurk l, R.A.M. de Jeu a, B. Kruijt m, T. Ohta n, K.T. Rebel i, S. Plummer o, S.I. Seneviratne p, S. Sitch g, A.J. Teuling p,r, G.R. van der Werf a, G. Wang a a Department of Hydrology and Geo-Environmental Sciences, Faculty of Earth and Life Sciences, VU-University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands b Meteorology and Air Quality Group, Wageningen University and Research Centre, P.O. box 47, 6700 AA Wageningen, The Netherlands c LSCE CEA-CNRS-UVSQ, Orme des Merisiers, F-91191 Gif-sur-Yvette, France d Institute for Environment and Sustainability, EC Joint Research Centre, TP 272, 2749 via E. Fermi, I-21027 Ispra, VA, Italy e College of Forestry, Oregon State University, Corvallis, OR 97331-5752 USA f School of Geosciences, University of Edinburgh, EH8 9XP Edinburgh, UK g School of Geography, University of Leeds, Leeds LS2 9JT, UK h Max Planck Institute for Biogeochemistry, PO Box 100164, D-07701 Jena, Germany i Department of Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, PO Box 80115, 3508 TC Utrecht, The Netherlands j Institute of Photogrammetry and Remote Sensing, Vienna University of Technology, Gusshausstraße 27-29, 1040 Vienna, Austria k Geography and Environment, Boston University, 675 Commonwealth Avenue, Boston, MA 02215, USA l Department of Global Climate, Royal Netherlands Meteorological Institute, P.O.
    [Show full text]
  • Grassland to Shrubland State Transitions Enhance Carbon Sequestration in the Northern Chihuahuan Desert
    Global Change Biology Global Change Biology (2015) 21, 1226–1235, doi: 10.1111/gcb.12743 Grassland to shrubland state transitions enhance carbon sequestration in the northern Chihuahuan Desert M. D. PETRIE1 ,S.L.COLLINS1 ,A.M.SWANN2 ,P.L.FORD3 andM.E. LITVAK1 1Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA, 2Department of Biology, Sevilleta LTER, University of New Mexico, Albuquerque, New Mexico, USA, 3USDA Forest Service, Rocky Mountain Research Station, Albuquerque, New Mexico, USA Abstract The replacement of native C4-dominated grassland by C3-dominated shrubland is considered an ecological state tran- sition where different ecological communities can exist under similar environmental conditions. These state transi- tions are occurring globally, and may be exacerbated by climate change. One consequence of the global increase in woody vegetation may be enhanced ecosystem carbon sequestration, although the responses of arid and semiarid ecosystems may be highly variable. During a drier than average period from 2007 to 2011 in the northern Chihuahuan À2 À1 Desert, we found established shrubland to sequester 49 g C m yr on average, while nearby native C4 grassland À À was a net source of 31 g C m 2 yr 1 over this same period. Differences in C exchange between these ecosystems were pronounced – grassland had similar productivity compared to shrubland but experienced higher C efflux via ecosys- tem respiration, while shrubland was a consistent C sink because of a longer growing season and lower ecosystem respiration. At daily timescales, rates of carbon exchange were more sensitive to soil moisture variation in grassland than shrubland, such that grassland had a net uptake of C when wet but lost C when dry.
    [Show full text]
  • Respiration from a Tropical Forest Ecosystem: Partitioning of Sources and Low Carbon Use Efficiency
    Ecological Applications, 14(4) Supplement, 2004, pp. S72±S88 q 2004 by the Ecological Society of America RESPIRATION FROM A TROPICAL FOREST ECOSYSTEM: PARTITIONING OF SOURCES AND LOW CARBON USE EFFICIENCY JEFFREY Q. CHAMBERS,1,2,4 EDGARD S. TRIBUZY,2 LIGIA C. TOLEDO,2 BIANCA F. C RISPIM,2 NIRO HIGUCHI,2 JOAQUIM DOS SANTOS,2 ALESSANDRO C. ARAUÂ JO,2 BART KRUIJT,3 ANTONIO D. NOBRE,2 AND SUSAN E. TRUMBORE1 1University of California, Earth System Sciences, Irvine, California 92697 USA 2Instituto Nacional de Pesquisas da AmazoÃnia, C.P. 478, Manaus, Amazonas, Brazil, 69011-970 3Alterra, University of Wageningen, Alterra, 6700 AA Wageningen, The Netherlands Abstract. Understanding how tropical forest carbon balance will respond to global change requires knowledge of individual heterotrophic and autotrophic respiratory sources, together with factors that control respiratory variability. We measured leaf, live wood, and soil respiration, along with additional environmental factors over a 1-yr period in a Central Amazon terra ®rme forest. Scaling these ¯uxes to the ecosystem, and combining our data with results from other studies, we estimated an average total ecosystem respiration (Reco) of 7.8 mmol´m22´s21. Average estimates (per unit ground area) for leaf, wood, soil, total heterotrophic, and total autotrophic respiration were 2.6, 1.1, 3.2, 5.6, and 2.2 mmol´m22´s21, respectively. Comparing autotrophic respiration with net primary production (NPP) esti- mates indicated that only ;30% of carbon assimilated in photosynthesis was used to con- struct new tissues, with the remaining 70% being respired back to the atmosphere as autotrophic respiration.
    [Show full text]
  • Interpreting, Measuring, and Modeling Soil Respiration
    Biogeochemistry (2005) 73: 3–27 Ó Springer 2005 DOI 10.1007/s10533-004-5167-7 -1 Interpreting, measuring, and modeling soil respiration MICHAEL G. RYAN1,2,* and BEVERLY E. LAW3 1US Department of Agriculture-Forest Service, Rocky Mountain Research Station, 240 West Pros- pect Street, Fort Collins, CO 80526, USA; 2Affiliate Faculty, Department of Forest, Rangeland and Watershed Stewardship and Graduate Degree Program in Ecology, Colorado State University Fort Collins, CO 80523, USA; 3Department of Forest Science, Oregon State University, 328 Richardson Hall, Corvallis, OR 97331, USA; *Author for correspondence (e-mail: [email protected]) Key words: Belowground carbon allocation, Carbon cycling, Carbon dioxide, CO2, Infrared gas analyzers, Methods, Soil carbon, Terrestrial ecosystems Abstract. This paper reviews the role of soil respiration in determining ecosystem carbon balance, and the conceptual basis for measuring and modeling soil respiration. We developed it to provide background and context for this special issue on soil respiration and to synthesize the presentations and discussions at the workshop. Soil respiration is the largest component of ecosystem respiration. Because autotrophic and heterotrophic activity belowground is controlled by substrate availability, soil respiration is strongly linked to plant metabolism, photosynthesis and litterfall. This link dominates both base rates and short-term fluctuations in soil respiration and suggests many roles for soil respiration as an indicator of ecosystem metabolism. However, the strong links between above and belowground processes complicate using soil respiration to understand changes in ecosystem carbon storage. Root and associated mycorrhizal respiration produce roughly half of soil respiration, with much of the remainder derived from decomposition of recently produced root and leaf litter.
    [Show full text]
  • Global Satellite-Driven Estimates of Heterotrophic Respiration
    Biogeosciences, 16, 2269–2284, 2019 https://doi.org/10.5194/bg-16-2269-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Global satellite-driven estimates of heterotrophic respiration Alexandra G. Konings1, A. Anthony Bloom2, Junjie Liu2, Nicholas C. Parazoo2, David S. Schimel2, and Kevin W. Bowman2 1Department of Earth System Science, Stanford University, Stanford, CA 94305, USA 2NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA Correspondence: Alexandra G. Konings ([email protected]) Received: 31 October 2018 – Discussion started: 15 November 2018 Revised: 4 April 2019 – Accepted: 10 May 2019 – Published: 4 June 2019 Abstract. While heterotrophic respiration (Rh) makes up to bottom-up estimates of annual heterotrophic respiration, about a quarter of gross global terrestrial carbon fluxes, using new uncertainty estimates that partially account for it remains among the least-observed carbon fluxes, partic- sampling and model errors. Top-down heterotrophic respira- ularly outside the midlatitudes. In situ measurements col- tion estimates are higher than those from bottom-up upscal- lected in the Soil Respiration Database (SRDB) number only ing everywhere except at high latitudes and are 30 % greater a few hundred worldwide. Similarly, only a single data- overall (43.6 Pg C yr−1 vs. 33.4 Pg C yr−1). The uncertainty driven wall-to-wall estimate of annual average heterotrophic ranges of both methods are comparable, except poleward of respiration exists, based on bottom-up upscaling of SRDB 45◦ N, where bottom-up uncertainties are greater. The ra- measurements using an assumed functional form to account tio of top-down heterotrophic to total ecosystem respiration for climate variability.
    [Show full text]
  • Effects on Ecosystems
    10 Effects on Ecosystems J.M. MELILLO, T.V. CALLAGHAN, F.I. WOODWARD, E. SALATI, S.K. SINHA Contributors: /. Aber; V. Alexander; J. Anderson; A. Auclair; F. Bazzaz; A. Breymeyer; A. Clarke; C. Field; J.P. Grime; R. Gijford; J. Goudrian; R. Harris; I. Heaney; P. Holligan; P. Jarvis; L. Joyce; P. Levelle; S. Linder; A. Linkins; S. Long; A. Lugo, J. McCarthy, J. Morison; H. Nour; W. Oechel; M. Phillip; M. Ryan; D. Schimel; W. Schlesinger; G. Shaver; B. Strain; R. Waring; M. Williamson. CONTENTS Executive Summary 287 10.2.2.2.3 Decomposition 10.2.2.2.4 Models of ecosystem response to 10.0 Introduction 289 climate change 10.2.2.3 Large-scale migration of biota 10.1 Focus 289 10.2.2.3.1 Vegetation-climate relationships 10.2.2.3.2 Palaeo-ecological evidence 10.2 Effects of Increased Atmospheric CO2 and 10.2.2.4 Summary Climate Change on Terrestrial Ecosystems 289 10.2.1 Plant and Ecosystem Responses to 10.3 The Effects of Terrestrial Ecosystem Changes Elevated C02 289 on the Climate System 10.2.1.1 Plant responses 289 10.3.1 Carbon Cycling in Terrestrial Ecosystems 10.2.1.1.1 Carbon budget 289 10 3.1 1 Deforestation in the Tropics 10.2.1.1.2 Interactions between carbon dioxide and 10.3.1 2 Forest regrowth in the mid-latitudes of temperature 290 the Northern Hemisphere 10.2.1.1.3 Carbon dioxide and environmental 10 3.1.3 Eutrophication and toxification in the stress 290 mid-latitudes of the Northern Hemisphere 10.2.1.1.4 Phenology and senescence 291 10.3.2 Reforestation as a Means of Managing 10.2.1.2 Community and ecosystem responses to Atmospheric
    [Show full text]
  • Net Ecosystem Exchange of CO2 in Deciduous Pine Forest of Lower Western Himalaya, India
    resources Article Net Ecosystem Exchange of CO2 in Deciduous Pine Forest of Lower Western Himalaya, India Nilendu Singh 1, Bikash Ranjan Parida 2,* , Joyeeta Singh Charakborty 3 and N.R. Patel 4 1 Centre for Glaciology, Wadia Institute of Himalayan Geology, Dehradun 248001, India; [email protected] 2 Department of Geoinformatics, School of Natural Resource Management, Central University of Jharkhand, Ranchi 835205, India 3 Forest Research Institute, Dehradun 248001, India; [email protected] 4 Indian Institute of Remote Sensing, Dehradun 248001, India; [email protected] * Correspondence: [email protected] or [email protected] Received: 19 April 2019; Accepted: 17 May 2019; Published: 20 May 2019 Abstract: Carbon cycle studies over the climate-sensitive Himalayan regions are relatively understudied and to address this gap, systematic measurements on carbon balance components were performed over a deciduous pine forest with an understory layer. We determined annual net carbon balance, seasonality in components of carbon balance, and their environmental controls. Results indicated a strong seasonality in the behavior of carbon exchange components. Net primary productivity (NPP) of pine forest exceeded soil respiration during the growing phase. Consequently, net ecosystem exchange exhibited a net carbon uptake. In the initial phase of the growing season, daily mean uptake was 3.93 ( 0.50) g C m 2 day 1, which maximizes ( 8.47 2.3) later during − ± − − − ± post-monsoon. However, a brief phase of carbon release was observed during peak monsoon (August) owing to an overcast condition. Nevertheless, annually the forest remained as a carbon sink. The understory is extensively distributed and it turned out to be a key component of carbon balance because of sustained NPP during the pine leafless period.
    [Show full text]
  • Controls on Autotrophic Respiration, Heterotrophic Respiration, and Decomposition in Northern Forested Rivers
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2021 CONTROLS ON AUTOTROPHIC RESPIRATION, HETEROTROPHIC RESPIRATION, AND DECOMPOSITION IN NORTHERN FORESTED RIVERS Renn Schipper Michigan Technological University, [email protected] Copyright 2021 Renn Schipper Recommended Citation Schipper, Renn, "CONTROLS ON AUTOTROPHIC RESPIRATION, HETEROTROPHIC RESPIRATION, AND DECOMPOSITION IN NORTHERN FORESTED RIVERS", Open Access Master's Thesis, Michigan Technological University, 2021. https://doi.org/10.37099/mtu.dc.etdr/1211 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Terrestrial and Aquatic Ecology Commons CONTROLS ON AUTOTROPHIC RESPIRATION, HETEROTROPHIC RESPIRATION, AND DECOMPOSITION IN NORTHERN FORESTED RIVERS By Renn Schipper A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Biological Sciences MICHIGAN TECHNOLOGICAL UNIVERSITY 2021 © 2021 Renn Schipper This thesis has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Biological Sciences. Department of Biological Sciences Thesis Advisor: Dr. Amy M. Marcarelli Committee Member: Dr. Casey J Huckins Committee Member: Dr. Rodney A. Chimner Department Chair: Dr. Chandrashekhar P. Joshi Table of Contents Acknowledgements ............................................................................................................ iv Abstract ................................................................................................................................v
    [Show full text]
  • Seasonality of Ecosystem Respiration and Gross Primary Production As Derived from FLUXNET Measurements
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Natural Resources Natural Resources, School of 10-21-2002 Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements Eva Falge Pflanzenökologie, Universität Bayreuth, 95440 Bayreuth, Germany Dennis D. Baldocchi University of California - Berkeley, [email protected] John Tenhunen Pflanzenökologie, Universität Bayreuth, 95440 Bayreuth, Germany Marc Aubinet Unité de Physique, Faculté des Sciences, Agronomiques de Gembloux, B-50 30 Gembloux, Belgium Peter Bakwin NOAA/OAR, Climate Monitoring and Diagnostics Laboratory, 325 Broadway, Boulder, CO 80303, USA See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/natrespapers Part of the Natural Resources and Conservation Commons Falge, Eva; Baldocchi, Dennis D.; Tenhunen, John; Aubinet, Marc; Bakwin, Peter; Berbigier, Paul; Bernhofer, Christian; Burba, George; Clement, Robert; Davis, Kenneth J.; Elbers, Jan A.; Goldstein, Allen H.; Grelle, Achim; Granier, Andre; Gundmundsson, Jon; Hollinger, David; Kowalski, Andrew S.; Katul, Gabriel; Law, Beverly E.; Malhi, Yadvinder; Meyers, Tilden; Monson, Russell K.; Munger, J. William; Oechel, Walt; Paw U, Kyaw Tha; Pilegaard, Kim; Rannik, Ullar; Rebmann, Corinna; Suyker, Andrew E.; Valentini, Riccardo; Wilson, Kell; and Wofsy, Steve, "Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements" (2002). Papers in Natural Resources. 61. https://digitalcommons.unl.edu/natrespapers/61 This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Natural Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
    [Show full text]
  • Considering Forest and Grassland Carbon in Land Management
    United States Department of Agriculture Considering Forest and Grassland Carbon in Land Management Forest Service General Technical Report WO-95 June 2017 AUTHORS Janowiak, Maria; Connelly, William J.; Dante-Wood, Karen; Domke, Grant M.; Giardina, Christian; Kayler, Zachary; Marcinkowski, Kailey; Ontl, Todd; Rodriguez-Franco, Carlos; Swanston, Chris; Woodall, Chris W.; Buford, Marilyn. ACKNOWLEDGMENTS The authors thank the Forest Service Research and Development Deputy Area for support of this project. In addition, the authors thank Randy Johnson, John Crockett, Elizabeth Reinhardt, Laurie Kurth, Leslie Weldon, and Carlos Rodriguez-Franco for review comments and suggestions that improved this work. PHOTOGRAPHS Cover photos: Kailey Marcinkowski (Michigan Technological University), USDA Forest Service Pages 3, 15, 47: Kailey Marcinkowski Page 5: Maria Janowiak (USDA Forest Service) and USDA Forest Service Page 19: Maria Janowiak and Kailey Marcinkowski Page 45: Zachary Kayler (USDA Forest Service) and Kailey Marcinkowski Page 48: Maria Janowiak, Kailey Marcinkowski, and USDA Forest Service All uncredited photos by USDA Forest Service In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident.
    [Show full text]
  • The Terrestrial Carbon Sink
    EG43CH09_Keenan ARI 4 October 2018 13:33 Annual Review of Environment and Resources The Terrestrial Carbon Sink T.F. Keenan1,2 and C.A. Williams3 1Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 2Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, California 94720, USA; email: [email protected] 3Graduate School of Geography, Clark University, Worcester, Massachusetts 01610, USA; email: [email protected] Annu. Rev. Environ. Resour. 2018. 43:219–43 Keywords First published as a Review in Advance on biogeochemical, carbon, cycle, ecosystem, land surface, model, nutrients, September 26, 2018 plant, terrestrial biosphere, vegetation, water The Annual Review of Environment and Resources is online at environ.annualreviews.org Abstract https://doi.org/10.1146/annurev-environ- Life on Earth comes in many forms, but all life-forms share a common 102017-030204 element in carbon. It is the basic building block of biology, and by trap- Copyright c 2018 by Annual Reviews. Access provided by Harvard University on 12/20/18. For personal use only. ping radiation it also plays an important role in maintaining the Earth’s All rights reserved atmosphere at a temperature hospitable to life. Like all matter, carbon can Annu. Rev. Environ. Resour. 2018.43:219-243. Downloaded from www.annualreviews.org neither be created nor destroyed, but instead is continuously exchanged be- tween ecosystems and the environment through a complex combination of physics and biology. In recent decades, these exchanges have led to an in- creased accumulation of carbon on the land surface: the terrestrial carbon sink. Over the past 10 years (2007–2016) the sink has removed an estimated 3.61 Pg C year−1 from the atmosphere, which amounts to 33.7% of total anthropogenic emissions from industrial activity and land-use change.
    [Show full text]