Erich Hückel (1896-1980): from Physics to Quantum Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Erich Hückel (1896-1980): from Physics to Quantum Chemistry ERICH HÜCKEL (1896–1980) BOSTON STUDIES IN THE PHILOSOPHY OF SCIENCE Editors ROBERT S. COHEN, Boston University JÜRGEN RENN, Max Planck Institute for the History of Science KOSTAS GAVROGLU, University of Athens Editorial Advisory Board THOMAS F. GLICK, Boston University ADOLF GRÜNBAUM, University of Pittsburgh SYLVAN S. SCHWEBER, Brandeis University JOHN J. STACHEL, Boston University MARX W. WARTOFSKY†, (Editor 1960–1997) VOLUME 283 For further volumes: http://www.springer.com/series/5710 ERICH HÜCKEL (1896 –1980) From Physics to Quantum Chemistry ANDREAS KARACHALIOS Translated by Ann M. Hentschel 123 Andreas Karachalios Ernst-Reuter-Str. 14 55130 Mainz Germany [email protected] ISBN 978-90-481-3559-2 e-ISBN 978-90-481-3560-8 DOI 10.1007/978-90-481-3560-8 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2009939498 © Springer Science+Business Media B.V. 2010 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) To the memory of my friend, Thanos Liarommatis Acknowledgments It is a pleasure for me to thank those persons who lent me their support. David Rowe and Moritz Epple offered guidance and commentary during the growing stages of this work. I thank them heartily for their inspiring ideas and active assistance. I am also especially grateful to W.H. Eugen Schwarz, Hans Sillescu, and Joachim Stocklöv for their valuable and helpful comments. Finally, I’d like to thank the following persons for their efforts: Regina Grimm- Karachalios, Ann M. Hentschel, Peter Hülsmann and Volker Remmert. vii Contents 1 Erich Hückel’s Education and Scientific Awakening: The Path to Quantum Chemistry ...................... 1 1.1TheHückelFamily......................... 1 1.2 The First Years in Göttingen: Childhood, Elementary and Preparatory Schooling . .................. 4 1.3 Beginnings at the University of Göttingen and the War Years . 6 1.4 Continued Studies at Göttingen . .................. 8 1.5 Hückel’s Doctorate in Experimental Physics ............ 9 1.6 Excursion: First Collaboration with His Brother Walter . .... 14 1.7IntermediateStops......................... 15 1.7.1 David Hilbert’s Auxiliary Assistant ............. 15 1.7.2AssistanttoMaxBorn................... 18 1.8 Assistantship Under Peter Debye in Zurich and Habilitation Thesis on the Theory of Strong Electrolytes . .... 23 1.9 From the Theory of Strong Electrolytes to the Quantum Theory of Double Bonding . .................. 29 1.9.1 New Ambitions and Separation from Peter Debye . .... 29 1.9.2 Fellowship from the International Education Board in London with Frederick Donnan: New Research Orientation 33 1.9.3 Visit at Niels Bohr’s Institute in Copenhagen: The Beginnings of the Quantum Theory of Double Bonding 40 1.9.4 Fellowship from the Notgemeinschaft at the Leipzig Institute of Theoretical Physics . ........ 45 2 Erich Hückel’s Research Agenda During the 1930s: Underpinning Organic Chemistry with Quantum Theory ...... 49 2.1 The Quantum Theory of Double Bonding ............. 49 2.1.1Prehistory.......................... 49 2.1.2 The Beginnings of Hückel’s Quantum-Theoretical Interpretation of Double Bonding . ............. 54 2.1.3 Excursion: Hückel’s Physicochemical Experiments on the Stability of Cis and Trans Isomers . ........ 57 2.1.4 The Quantum-Mechanical Interpretation of Double Bonding 61 ix x Contents 2.1.5 The Response to Hückel’s Quantum Theory of Double Bonding ....................... 69 2.1.6 Lecturer of “Chemical Physics” in Stuttgart: 1930–1937 . 74 2.2 Quantum Theory of Aromaticity: Symmetry and Electronic Shell Completion . .................. 77 2.2.1 Prehistory and Hückel’s Point of Departure ........ 78 2.2.2 Quantum-Mechanical Interpretation of the Electronic Configuration of Benzene and Related Aromatic Compounds . .................. 81 2.2.3 Hückel’s Model of Benzene and Friedrich Hund’s LocalizationConditions................... 94 2.2.4 The Quantum-Theoretical Basis of the Chemical Behavior of Substituted Benzene Derivatives ........ 98 2.2.5 First Reactions to Hückel’s Papers on Aromatic Compounds 104 3 The Controversy Between Erich Hückel and Linus Pauling over the Benzene Problem ............. 115 3.1 Introduction: Calculating Perturbations with Spin Invariants and the Valence-Line Diagram in Chemistry . .... 117 3.2 The First Critical Exchanges . .................. 127 3.3 “Special Portion of Energy” Versus “Resonance Energy” . .... 133 4 Linus Pauling’s Breakthrough to the Theory of Aromatic Compounds and Hückel’s Reaction .................. 141 4.1 Introduction . ............................ 141 4.2 Avowal of the Molecular Orbital Method . ............. 143 4.3 A New Concept for Describing Aromaticity ............ 145 5 Hückel’s Efforts to Disseminate His Theory and Its Reception ... 151 6 Hückel’s Professional Career in National Socialist Germany .... 161 6.1 Membership in the National Socialist Welfare and German WorkersParty............................ 162 6.2 Extraordinary Professorship in Theoretical Physics at Marburg . 164 7 The Postwar Years ............................ 171 8 Summary and Concluding Remarks .................. 175 Appendix ................................... 179 Bibliography ................................. 181 Index ..................................... 195 Introduction Emerging disciplines in the border zone between physics and chemistry have attracted the attention of historians of science particularly in the last 20 years.1 Quantum chemistry,2 as an offshoot of theoretical chemistry, has recently acquired some importance in the history of chemistry.3 It is the product of close 1Cf. Hiebert, E.: Discipline Identification in Chemistry and Physics, in: Science in Context, 9(2) (1996), 93–119; Nye, M. J.: Physics and Chemistry: Commensurate or Incommensurate Sciences? in: The Invention of Physical Science, Intersections of Mathematics, Theology and Natural Philosophy since the Seventeenth Century – Essays in Honor of Erwin N. Hiebert. Kluwer Academic Publishers, Dordrecht 1992; From Chemical Philosophy to Theoretical Chemistry: Dynamics of Matter and Dynamics of Disciplines, 1800–1950. University of California Press, Berkeley 1994; Servos, J. W.: Physical Chemistry from Ostwald to Pauling, the Making of a Science in America. Princeton University Press, New Jersey 1990; Chemical Sciences in the 20th Century: Bridging Boundaries, edited by Carsten Reinhard. Wiley-VCH, Weinheim 2001 (incl. a comprehensive bibliography). 2In an earlier article I point out that the term “quantum chemistry” [Quantenchemie] first appeared in 1929. To my knowledge it was coined by the physicist Arthur Haas. Talks he had deliv- ered before the Viennese Chemico-Physical Society in the spring of 1929 are assembled in his book: Die Grundlagen der Quantenchemie: Eine Einleitung in vier Vorträge. It was published by the Akademische Verlagsgesellschaft in Leipzig. See Karachalios, A: Die Entstehung und Entwicklung der Quantenchemie in Deutschland, in: Mitteilungen der Gesellschaft Deutscher Chemiker Fachgruppe Geschichte der Chemie, 13 (1997), 163–179, footnote 2. 3Cf. Gavroglu, K. and Simões, A.: The Americans, the Germans and the Beginnings of Quantum Chemistry: The Confluence of Diverging Traditions, in: Historical Studies in the Physical and Biological Sciences, 25 (1994), 47–110; One Face or Many? The Role of Textbooks in Building the New Discipline of Quantum Chemistry,in:Communicating Chemistry. Textbooks and Their Audiences, 1789–1939, edited by Lundgren, A. and Bensaude-Vincent, Bernadette. Science History Publications, USA 2000, 415–449; Simões, A.: Converging Trajectories, Diverging Traditions: Chemical Bond, Valence, Quantum Mechanics and Chemistry, 1927–1937,Ph.D. Thesis, University of Maryland, College Park, 1993; Simões, A. and Gavroglu, K.: Different Legacies and Common Aims: Robert Mulliken, Linus Pauling and the Origins of Quantum Chemistry,in:Conceptual Perspectives in Quantum Chemistry, edited by Calais, J. L. and Kryachko, E. S. Kluwer Academic Publishers, Dordrecht 1997; Quantum Chemistry in Great Britain: Developing a Mathematical Framework for Quantum Chemistry, in: Studies in the History and Philosophy of Modern Physics, 31B (2000), 511–548; Issues in the History of Theoretical and Quantum Chemistry, 1927–1960,in:Chemical Sciences in the 20th Century: Bridging Boundaries, edited by Carsten Reinhardt. Wiley-VCH, Weinheim 2001, 51–74; Simões, xi xii Introduction interaction between chemistry, quantum physics and mathematics. Quantum chem- istry applies the approximative procedures used in quantum mechanics to chemical problems, with chemistry being its main foundation. Its interdisciplinary character derives from physical bases that are remolded to suit issues in chemistry.4 The meth- ods, theories and concepts used in quantum chemistry characteristically transgress the boundaries between chemistry and quantum physics. This cross-cultural rela- tionship is also reflected in the home fields of the scientists involved. It is primarily due to quantum physics that a reorientation of scientific inquiry to quantum- chemical issues emerged. Quantum physicists innovatively
Recommended publications
  • Arnold Sommerfeld in Einigen Zitaten Von Ihm Und Über Ihn1
    K.-P. Dostal, Arnold Sommerfeld in einigen Zitaten von ihm und über ihn Seite 1 Karl-Peter Dostal, Arnold Sommerfeld in einigen Zitaten von ihm und über ihn1 Kurze biographische Bemerkungen Arnold Sommerfeld [* 5. Dezember 1868 in Königsberg, † 26. April 1951 in München] zählt neben Max Planck, Albert Einstein und Niels Bohr zu den Begründern der modernen theoretischen Physik. Durch die Ausarbeitung der Bohrschen Atomtheorie, als Lehrbuchautor (Atombau und Spektrallinien, Vorlesungen über theoretische Physik) und durch seine „Schule“ (zu der etwa die Nobelpreisträger Peter Debye, Wolfgang Pauli, Werner Heisenberg und Hans Bethe gehören) sorgte Sommerfeld wie kein anderer für die Verbreitung der modernen Physik.2 Je nach Auswahl könnte Sommerfeld [aber] nicht nur als theoretischer Physiker, sondern auch als Mathematiker, Techniker oder Wissenschaftsjournalist porträtiert werden.3 Als Schüler der Mathematiker Ferdinand von Lindemann, Adolf Hurwitz, David Hilbert und Felix Klein hatte sich Sommerfeld zunächst vor allem der Mathematik zugewandt (seine erste Professur: 1897 - 1900 für Mathematik an der Bergakademie Clausthal). Als Professor an der TH Aachen von 1900 - 1906 gewann er zunehmendes Interesse an der Technik. 1906 erhielt er den seit Jahren verwaisten Lehrstuhl für theoretische Physik in München, an dem er mit wenigen Unterbrechungen noch bis 1940 (und dann wieder ab 19464) unterrichtete. Im Gegensatz zur etablierten Experimen- talphysik war die theoretische Physik anfangs des 20. Jh. noch eine junge Disziplin. Sie wurde nun zu
    [Show full text]
  • Chapter 6 Free Electron Fermi Gas
    理学院 物理系 沈嵘 Chapter 6 Free Electron Fermi Gas 6.1 Electron Gas Model and its Ground State 6.2 Thermal Properties of Electron Gas 6.3 Free Electrons in Electric Fields 6.4 Hall Effect 6.5 Thermal Conductivity of Metals 6.6 Failures of the free electron gas model 1 6.1 Electron Gas Model and its Ground State 6.1 Electron Gas Model and its Ground State I. Basic Assumptions of Electron Gas Model Metal: valence electrons → conduction electrons (moving freely) ü The simplest metals are the alkali metals—lithium, sodium, 2 potassium, cesium, and rubidium. 6.1 Electron Gas Model and its Ground State density of electrons: Zr n = N m A A where Z is # of conduction electrons per atom, A is relative atomic mass, rm is the density of mass in the metal. The spherical volume of each electron is, 1 3 1 V 4 3 æ 3 ö = = p rs rs = ç ÷ n N 3 è 4p nø Free electron gas model: Suppose, except the confining potential near surfaces of metals, conduction electrons are completely free. The conduction electrons thus behave just like gas atoms in an ideal gas --- free electron gas. 3 6.1 Electron Gas Model and its Ground State Basic Properties: ü Ignore interactions of electron-ion type (free electron approx.) ü And electron-eletron type (independent electron approx). Total energy are of kinetic type, ignore potential energy contribution. ü The classical theory had several conspicuous successes 4 6.1 Electron Gas Model and its Ground State Long Mean Free Path: ü From many types of experiments it is clear that a conduction electron in a metal can move freely in a straight path over many atomic distances.
    [Show full text]
  • 5 X-Ray Crystallography
    Introductory biophysics A. Y. 2016-17 5. X-ray crystallography and its applications to the structural problems of biology Edoardo Milotti Dipartimento di Fisica, Università di Trieste The interatomic distance in a metallic crystal can be roughly estimated as follows. Take, e.g., iron • density: 7.874 g/cm3 • atomic weight: 56 3 • molar volume: VM = 7.1 cm /mole then the interatomic distance is roughly VM d ≈ 3 ≈ 2.2nm N A Edoardo Milotti - Introductory biophysics - A.Y. 2016-17 The atomic lattice can be used a sort of diffraction grating for short-wavelength radiation, about 100 times shorter than visible light which is in the range 400-750 nm. Since hc 2·10−25 J m 1.24 eV µm E = ≈ ≈ γ λ λ λ 1 nm radiation corresponds to about 1 keV photon energy. Edoardo Milotti - Introductory biophysics - A.Y. 2016-17 !"#$%&'$(")* S#%/J&T&U2*#<.%&CKET3&VG$GG./"#%G3&W.%-$/; +(."J&AN&>,%()&CTDB3&S.%)(/3&X.1*&W.%-$/; Y#<.)&V%(Z.&(/&V=;1(21&(/&CTCL&[G#%&=(1&"(12#5.%;&#G&*=.& "(GG%$2*(#/&#G&\8%$;1&<;&2%;1*$)1] 9/(*($));&=.&1*:"(."&H(*=&^_/F*./3&$/"&*=./&H(*=&'$`&V)$/2I&(/& S.%)(/3&H=.%.&=.&=$<()(*$*."&(/&CTBD&H(*=&$&*=.1(1&[a<.% "(.& 9/*.%G.%./Z.%12=.(/:/F./ $/&,)$/,$%$)).)./ V)$**./[?& 7=./&=.&H#%I."&$*&*=.&9/1*(*:*.&#G&7=.#%.*(2$)&V=;1(213&=.$"."& <;&>%/#)"&Q#--.%G.)"3&:/*()&=.&H$1&$,,#(/*."&G:))&,%#G.11#%&$*& *=.&4/(5.%1(*;&#G&0%$/IG:%*&(/&CTCL3&H=./&=.&$)1#&%.2.(5."&=(1& Y#<.)&V%(Z.?& !"#$%"#&'()#**(&8 9/*%#":2*#%;&<(#,=;1(21&8 >?@?&ABCD8CE Arnold Sommerfeld (1868-1951) ... Four of Sommerfeld's doctoral students, Werner Heisenberg, Wolfgang Pauli, Peter Debye, and Hans Bethe went on to win Nobel Prizes, while others, most notably, Walter Heitler, Rudolf Peierls, Karl Bechert, Hermann Brück, Paul Peter Ewald, Eugene Feenberg, Herbert Fröhlich, Erwin Fues, Ernst Guillemin, Helmut Hönl, Ludwig Hopf, Adolf KratZer, Otto Laporte, Wilhelm LenZ, Karl Meissner, Rudolf Seeliger, Ernst C.
    [Show full text]
  • Translation of Three Short Papers by Grete Hermann
    Journal for General Philosophy of Science (2020) 51:615–619 https://doi.org/10.1007/s10838-020-09530-6 ARTICLE Translation of Three Short Papers by Grete Hermann Guido Bacciagaluppi1 Published online: 27 November 2020 © The Author(s) 2020 After a number of years of relative neglect, it is now becoming apparent that Grete Her- mann (1901–1984) was one of the most accomplished neo-Kantian philosophers of the last century—in part thanks to the recent publication of two volumes on and of her work, one in English (Crull and Bacciagaluppi 2017) and one in German (Herrmann 2019), both reviewed in this issue. The latter in particular contains Hermann’s entire output on modern physics and philosophy of science. Below I translate the three shortest papers by Hermann in that volume, which I intro- duce here. They provide quick but fascinating glimpses into some of Hermann’s ideas on philosophy of science, quantum mechanics and transcendental idealism. They are: from 1935 a book review of Popper’s Logik der Forschung (the original German edition of The Logic of Scientifc Discovery), from 1936 a comment on Schlick’s posthumously published talk ‘Quantentheorie und Erkennbarkeit der Natur’ (‘Quantum Theory and Knowability of Nature’) and from 1937 a short summary of Hermann’s ideas on the relation between Kant’s philosophy and modern physics (specifcally electrodynamics, the special and gen- eral theories of relativity and quantum mechanics) presented at the Congrès Descartes in Paris.1 1 Popper Review Popper had published Logik der Forschung in late 1934 (with the impressum of the fol- lowing year, Popper 1935).
    [Show full text]
  • The Isotope Effect: Prediction, Discussion, and Discovery
    1 The isotope effect: Prediction, discussion, and discovery Helge Kragh Centre for Science Studies, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus, Denmark. ABSTRACT The precise position of a spectral line emitted by an atomic system depends on the mass of the atomic nucleus and is therefore different for isotopes belonging to the same element. The possible presence of an isotope effect followed from Bohr’s atomic theory of 1913, but it took several years before it was confirmed experimentally. Its early history involves the childhood not only of the quantum atom, but also of the concept of isotopy. Bohr’s prediction of the isotope effect was apparently at odds with early attempts to distinguish between isotopes by means of their optical spectra. However, in 1920 the effect was discovered in HCl molecules, which gave rise to a fruitful development in molecular spectroscopy. The first detection of an atomic isotope effect was no less important, as it was by this means that the heavy hydrogen isotope deuterium was discovered in 1932. The early development of isotope spectroscopy illustrates the complex relationship between theory and experiment, and is also instructive with regard to the concepts of prediction and discovery. Keywords: isotopes; spectroscopy; Bohr model; atomic theory; deuterium. 1. Introduction The wavelength of a spectral line arising from an excited atom or molecule depends slightly on the isotopic composition, hence on the mass, of the atomic system. The phenomenon is often called the “isotope effect,” although E-mail: [email protected]. 2 the name is also used in other meanings.
    [Show full text]
  • Rethinking 'Classical Physics'
    This is a repository copy of Rethinking 'Classical Physics'. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/95198/ Version: Accepted Version Book Section: Gooday, G and Mitchell, D (2013) Rethinking 'Classical Physics'. In: Buchwald, JZ and Fox, R, (eds.) Oxford Handbook of the History of Physics. Oxford University Press , Oxford, UK; New York, NY, USA , pp. 721-764. ISBN 9780199696253 © Oxford University Press 2013. This is an author produced version of a chapter published in The Oxford Handbook of the History of Physics. Reproduced by permission of Oxford University Press. Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Rethinking ‘Classical Physics’ Graeme Gooday (Leeds) & Daniel Mitchell (Hong Kong) Chapter for Robert Fox & Jed Buchwald, editors Oxford Handbook of the History of Physics (Oxford University Press, in preparation) What is ‘classical physics’? Physicists have typically treated it as a useful and unproblematic category to characterize their discipline from Newton until the advent of ‘modern physics’ in the early twentieth century.
    [Show full text]
  • The Development of the Quantum-Mechanical Electron Theory of Metals: 1928---1933
    The development of the quantum-mechanical electron theory of metals: 1S28—1933 Lillian Hoddeson and Gordon Bayrn Department of Physics, University of Illinois at Urbana-Champaign, Urbana, illinois 6180f Michael Eckert Deutsches Museum, Postfach 260102, 0-8000 Munich 26, Federal Republic of Germany We trace the fundamental developments and events, in their intellectual as well as institutional settings, of the emergence of the quantum-mechanical electron theory of metals from 1928 to 1933. This paper contin- ues an earlier study of the first phase of the development —from 1926 to 1928—devoted to finding the gen- eral quantum-mechanical framework. Solid state, by providing a large and ready number of concrete prob- lems, functioned during the period treated here as a target of application for the recently developed quan- tum mechanics; a rush of interrelated successes by numerous theoretical physicists, including Bethe, Bloch, Heisenberg, Peierls, Landau, Slater, and Wilson, established in these years the network of concepts that structure the modern quantum theory of solids. We focus on three examples: band theory, magnetism, and superconductivity, the former two immediate successes of the quantum theory, the latter a persistent failure in this period. The history revolves in large part around the theoretical physics institutes of the Universi- ties of Munich, under Sommerfeld, Leipzig under Heisenberg, and the Eidgenossische Technische Hochschule (ETH) in Zurich under Pauli. The year 1933 marked both a climax and a transition; as the lay- ing of foundations reached a temporary conclusion, attention began to shift from general formulations to computation of the properties of particular solids. CONTENTS mechanics of electrons in a crystal lattice (Bloch, 1928); these were followed by the further development in Introduction 287 1928—1933 of the quantum-mechanical basis of the I.
    [Show full text]
  • A History of Quantum Chemistry
    1 Quantum Chemistry qua Physics: The Promises and Deadlocks of Using First Principles In the opening paragraph of his 1929 paper “ Quantum Mechanics of Many-Electron Systems, ” Paul Adrien Maurice Dirac announced that: The general theory of quantum mechanics is now almost complete, the imperfections that still remain being in connection with the exact fi tting in of the theory with relativity ideas. These give rise to diffi culties only when high-speed particles are involved, and are therefore of no importance in the consideration of atomic and molecular structure and ordinary chemical reac- tions, in which it is, indeed, usually suffi ciently accurate if one neglects relativity variation of mass with velocity and assumes only Coulomb forces between the various electrons and atomic nuclei. The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the diffi culty is only that the exact applica- tion of these laws leads to equations much too complicated to be soluble. It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation. (Dirac 1929, 714, emphasis ours) For most members of the community of physicists, it appeared that the solution of chemical problems amounted to no more than quantum-mechanical calculations. Physicists came under the spell of Dirac ’ s reductionist program, and quantum chem- istry came to be usually regarded as a success story of quantum mechanics.
    [Show full text]
  • James, Steinhauser, Hoffmann, Friedrich One Hundred Years at The
    James, Steinhauser, Hoffmann, Friedrich One Hundred Years at the Intersection of Chemistry and Physics Published under the auspices of the Board of Directors of the Fritz Haber Institute of the Max Planck Society: Hans-Joachim Freund Gerard Meijer Matthias Scheffler Robert Schlögl Martin Wolf Jeremiah James · Thomas Steinhauser · Dieter Hoffmann · Bretislav Friedrich One Hundred Years at the Intersection of Chemistry and Physics The Fritz Haber Institute of the Max Planck Society 1911–2011 De Gruyter An electronic version of this book is freely available, thanks to the support of libra- ries working with Knowledge Unlatched. KU is a collaborative initiative designed to make high quality books Open Access. More information about the initiative can be found at www.knowledgeunlatched.org Aut ho rs: Dr. Jeremiah James Prof. Dr. Dieter Hoffmann Fritz Haber Institute of the Max Planck Institute for the Max Planck Society History of Science Faradayweg 4–6 Boltzmannstr. 22 14195 Berlin 14195 Berlin [email protected] [email protected] Dr. Thomas Steinhauser Prof. Dr. Bretislav Friedrich Fritz Haber Institute of the Fritz Haber Institute of the Max Planck Society Max Planck Society Faradayweg 4–6 Faradayweg 4–6 14195 Berlin 14195 Berlin [email protected] [email protected] Cover images: Front cover: Kaiser Wilhelm Institute for Physical Chemistry and Electrochemistry, 1913. From left to right, “factory” building, main building, director’s villa, known today as Haber Villa. Back cover: Campus of the Fritz Haber Institute of the Max Planck Society, 2011. The Institute’s his- toric buildings, contiguous with the “Röntgenbau” on their right, house the Departments of Physical Chemistry and Molecular Physics.
    [Show full text]
  • Robert (Thomas Dietrich) Luther (02.01.1868 [21.12.1867] Moskau - 17.04.1945 Dresden) Und Seine Photochemischen Arbeiten
    Please take notice of: (c)Beneke. Don't quote without permission. Robert (Thomas Dietrich) Luther (02.01.1868 [21.12.1867] Moskau - 17.04.1945 Dresden) und seine photochemischen Arbeiten Klaus Beneke Institut für Anorganische Chemie der Christian-Albrechts-Universität der Universität D-24098 Kiel [email protected] Auszug und ergänzter Artikel (Oktober 2005): Klaus Beneke Biographien und wissenschaftliche Lebensläufe von Kolloidwis- senschaftlern, deren Lebensdaten mit 1995 in Verbindung stehen. Beiträge zur Geschichte der Kolloidwissenschaften, VII Mitteilungen der Kolloid-Gesellschaft, 1998, Seite 96-98 Verlag Reinhard Knof, Nehmten ISBN 3-934413-01-3 2 Robert (Thomas Dietrich) Luther (02.01.1868 [21.12.1867] Moskau - 17.04.1945 Dresden) und seine photochemischen Arbeiten. Robert Luther wurde als Sohn des Collegien Assesors und Rechtsanwalts Alexander Luther (gestorben 1892) und dessen Frau Lina geb. Frese (gestorben 1881) in Moskau geboren. Bis zum achten Lebensjahre wurde Robert Luther zu Hause unterrichtet und besuchte danach das deutsche St.-Petri-Pauli Gymnasium in Moskau und die russischen Gymnasien in Twer und Moskau und legte am letzteren 1885 die Reifeprüfung ab. Er studierte von 1885 bis 1889 Chemie an der Universität Dorpat und erhielt 1888 für die Bearbeitung des Themas Prüfung der auf Reduction zu Ammoniak begründeten Robert Luther (1868 - 1945) Methoden zur Analyse der Nitrate die goldene Preismedaille. Im Jahre 1889 wurde Robert Luther nach bestandener Prüfung Kandidat der Chemie und hörte noch ein Semester Mathematik. Ende 1889 wurde er Assistent von Friedrich Konrad Beilstein1 am 1 Friedrich Konrad Beilstein (17.02.1838 St. Petersburg - 18.10.1906 St. Petersburg). Studierte ab 1853 Chemie in Heidelberg, München und Göttingen und promovierte 1858 bei Friedrich Wöhler (31.07.1800 Eschersheim (heute zu Frankfurt - 23.09.1882 Göttingen).
    [Show full text]
  • Hilbert, David [1862-1943]
    Niedersächsische Staats- und Universitätsbibliothek Göttingen Nachlass David Hilbert Mathematiker 1862 – 1943 Umfang: 26 Kst., 5 Mpn, 1 Fotoalbum Provenienz: Acc. Mss. 1967.23 (= Hauptteil; in den Beschreibungen nicht erwähnt) Acc. Mss. 1975.23 Acc. Mss. 1984.21 Acc. Mss. 1988.6 Ac. Mss. 1989.10 Acc. Mss. 1993.35 Acc. Mss. 1994.30 Acc. Mss. 2000.6 Acc. Mss. 2000.24 Acc. Mss. 2004.15/1-2 Erschließung: 1968 Ordnung der Korrespondenz durch Dietrich Kornexl 1969 Ordnung der Gutachten, Manuskripte und Materialien sowie der privaten Dokumente durch Inge-Maren Peters Ab 2004 Verzeichnung in der Datenbank HANS der SUB Göttingen Weitere Nachschriften Hilbertscher Vorlesungen sind vorhanden in der BIBLIOTHEK DES MATHEMATISCHEN INSTITUTS DER GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN Inhaltsverzeichnis Seite Briefe Allgemeine Korrespondenz Signatur: Cod. Ms. D. Hilbert 1 – 452 4 Glückwünsche Signatur: Cod. Ms. D. Hilbert 452 a-d 72 Sonstige Briefe Signatur: Cod. Ms. D. Hilbert 453 – 456 97 Briefentwürfe von David Hilbert Signatur: Cod. Ms. D. Hilbert 457 99 Berufungsangelegenheiten und sonstige Gutachten Signatur: Cod. Ms. D. Hilbert 458 – 493 103 Hilbert als Direktor des Mathematischen Seminars der Universität Göttingen Signatur: Cod. Ms. D. Hilbert 494 110 Materialien und Manuskripte Vorlesungsnachschriften und –ausarbeitungen des Studenten Hilbert Dozenten bekannt Signatur: Cod. Ms. D. Hilbert 495 – 504 112 Dozenten und Vorlesungen nicht ermittelt Signatur: Cod. Ms. D. Hilbert 505 – 519 113 Hilbertsche Vorlesungen Signatur: Cod. Ms. D. Hilbert 520 – 570a 115 [Anmerkung: Cod. Ms. D. Hilbert 520 = Verzeichnis der Vorlesungen 1886-1932] Hilbertsche Seminare Signatur: Cod. Ms. D. Hilbert 570 / 1 – 570 / 10 122 Vorträge und Reden über Mathematiker Signatur: Cod.
    [Show full text]
  • Declaralion of Fhe Professors of the Universities Andtechnical Colleges of the German Empire
    Declaralion of fhe professors of the Universities andTechnical Colleges of the German Empire. * <23erltn, ben 23. Öftober 1914. (grfftfcung ber i)0d)fd)uttel)rer Declaration of the professors of the Universities and Technical Colleges of the German Empire. ^Btr £e£rer an ®eutfd)tanbg Slniöerjttäten unb iöod)= We, the undersigned, teachers at the Universities fcfyulen bienen ber <2Biffenfd^aff unb treiben ein <2Qett and Technical Colleges of Qermany, are scien­ be§ •Jrtebeng. 'tHber e3 erfüllt ung mit ©ttrüftung, tific men whose profession is a peaceful one. But bafj bie <5eittbe ©eutfcbjanbg, (Snglanb an ber Spttje, we feel indignant that the enemies of Germany, angeblich ju unfern ©unften einen ©egenfatj machen especially England, pretend that this scientific spirit wollen ättnfdjen bem ©elfte ber beutfd)en <2Biffenfct)aff is opposed to what they call Prussian Militarism unb bem, toag fte benpreufjif^enSOftlitariSmuS nennen. and even mean to favour us by this distinction. 3n bem beutfcfyen ioeere ift fein anberer ©eift als in The same spirit that rules the German army per- bem beutfd>en 93oKe, benn beibe ftnb eins, unb t»ir vades the whole German nation, for both are one gehören aucb, bagu. Slnfer £>eer pflegt aud) bie and we form part of it. Scientific research is culti- •JBiffenfcfyaft unb banft t^>r nicfyt gutn »enigften feine vated in our army, and to it the army owes £eiftungen. ©er ©tenft im &eere tnacfyt unfere Sugenb a large part of its successes. Military service tüct>tig aud) für alte "SBerfe be3 "JriebenS, aud) für trains the growing generation for all peaceful bie *3Biffenfd)aft.
    [Show full text]