Hilbert, David [1862-1943]

Total Page:16

File Type:pdf, Size:1020Kb

Hilbert, David [1862-1943] Niedersächsische Staats- und Universitätsbibliothek Göttingen Nachlass David Hilbert Mathematiker 1862 – 1943 Umfang: 26 Kst., 5 Mpn, 1 Fotoalbum Provenienz: Acc. Mss. 1967.23 (= Hauptteil; in den Beschreibungen nicht erwähnt) Acc. Mss. 1975.23 Acc. Mss. 1984.21 Acc. Mss. 1988.6 Ac. Mss. 1989.10 Acc. Mss. 1993.35 Acc. Mss. 1994.30 Acc. Mss. 2000.6 Acc. Mss. 2000.24 Acc. Mss. 2004.15/1-2 Erschließung: 1968 Ordnung der Korrespondenz durch Dietrich Kornexl 1969 Ordnung der Gutachten, Manuskripte und Materialien sowie der privaten Dokumente durch Inge-Maren Peters Ab 2004 Verzeichnung in der Datenbank HANS der SUB Göttingen Weitere Nachschriften Hilbertscher Vorlesungen sind vorhanden in der BIBLIOTHEK DES MATHEMATISCHEN INSTITUTS DER GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN Inhaltsverzeichnis Seite Briefe Allgemeine Korrespondenz Signatur: Cod. Ms. D. Hilbert 1 – 452 4 Glückwünsche Signatur: Cod. Ms. D. Hilbert 452 a-d 72 Sonstige Briefe Signatur: Cod. Ms. D. Hilbert 453 – 456 97 Briefentwürfe von David Hilbert Signatur: Cod. Ms. D. Hilbert 457 99 Berufungsangelegenheiten und sonstige Gutachten Signatur: Cod. Ms. D. Hilbert 458 – 493 103 Hilbert als Direktor des Mathematischen Seminars der Universität Göttingen Signatur: Cod. Ms. D. Hilbert 494 110 Materialien und Manuskripte Vorlesungsnachschriften und –ausarbeitungen des Studenten Hilbert Dozenten bekannt Signatur: Cod. Ms. D. Hilbert 495 – 504 112 Dozenten und Vorlesungen nicht ermittelt Signatur: Cod. Ms. D. Hilbert 505 – 519 113 Hilbertsche Vorlesungen Signatur: Cod. Ms. D. Hilbert 520 – 570a 115 [Anmerkung: Cod. Ms. D. Hilbert 520 = Verzeichnis der Vorlesungen 1886-1932] Hilbertsche Seminare Signatur: Cod. Ms. D. Hilbert 570 / 1 – 570 / 10 122 Vorträge und Reden über Mathematiker Signatur: Cod. Ms. D. Hilbert 571 – 581 124 Vorträge und Reden über mathematische Probleme Signatur: Cod. Ms. D. Hilbert 582 – 599 126 2 Rechnungen und Notizen zu verschiedenen mathematischen Problemen Allgemeines und zur Philosophie Signatur: Cod. Ms. D. Hilbert 600 – 607 129 [Anmerkung: Cod. Ms. D. Hilbert 600 = wissenschaftliches Tagebuch] Besondere Themen Signatur: Cod. Ms. D. Hilbert 608 – 676 130 Varia Signatur: Cod. Ms. D. Hilbert 677 – 681 b 139 Manuskripte anderer Seminararbeiten Signatur: Cod. Ms. D. Hilbert 682 – 722 140 Seminararbeiten) ; Verfasser nicht ermittelt Signatur: Cod. Ms. D. Hilbert 723-740 145 Biographisches Zur Laufbahn Signatur: Cod. Ms. D. Hilbert 741 147 Ehrenurkunden und Medaillen 149 Signatur: Cod. Ms. D. Hilbert 742 – 743 C Allgemeines Signatur: Cod. Ms. D. Hilbert 744 – 753 153 Varia Signatur: Cod. Ms. D. Hilbert 754 – 771 156 Familienpapiere Briefwechsel Käthe Hilbert Signatur: Cod. Ms. D. Hilbert 772 – 777 161 Varia Signatur: Cod. Ms. D. Hilbert 778 – 792 164 ---------------------- Nachlassverzeichnis, gültig bis 2008 Signatur: Cod. Ms. D. Hilbert 793 3 Briefe Allgemeine Korrespondenz Cod. Ms. D. Hilbert 1 Ackermann, Wilhelm An David Hilbert Cambridge; Burgsteinfurt, 20.04.1925; 23.08.1933; o.D. – 1 Br., 1 Pk., 1 Br.-Fragm. Br.-Fragm.: o.O., o.D., Bl. 9 v. x Bl. Inventarnummer: Acc. Mss. 1975.23 [gilt nur für Nr. 2] Cod. Ms. D. Hilbert 2 Ahrens, Wilhelm An David Hilbert Rostock, 10.10.1918. – 1 Pk. Cod. Ms. D. Hilbert 3 Alasia, Christoforo An David Hilbert Christano, Sardinien; Tempio, Sardinien, 03.021901; 10.09.1902. – 1 Br., 1Pk. Cod. Ms. D. Hilbert 3 A Aleksandrov, Pavel S. An David Hilbert Sanary (Var), 02.10.1930. – 1 Br. Cod. Ms. D. Hilbert 4 Althoff, Friedrich Briefwechsel mit David Hilbert Berlin; [Göttingen]; Schierke; Heidelberg, 1892-1895; 1904-1906. – 14 Br. u. 2 Visitenkt. + 1 Beil. Nr. 5, Bl. 17, Nr. 12 : hs. Br.-Entw. D. Hilberts (ca. 1894 bzw. 1904) Nr. 16: Dankesbr. F. Althoffs vom 1.1.1906 (masch. Abschr.) Beil: Todesanzeige für F. Althoff (mit Notizen D. Hilberts) Br. lagen zunächst überw. als Kopien vor (Acc. Mss. 1994.30); diese konnten im März 2002 gegen die Originale ausgetauscht werden Cod. Ms. D. Hilbert 5 Anhenn, L. An David Hilbert München; Prättingen, Graubünden; Bremen, 1898-1901; o.J. – 4 Br. Cod. Ms. D. Hilbert 6 Anisimov, Vasily A. An David Hilbert Warschau, 1897-1904. – 6 Br. 4 Cod. Ms. D. Hilbert 6 A Appel, Carl An David Hilbert Breslau, 20.10.1891. – 1 Br. Inventarnummer: Acc. Mss. 1975.23 Cod. Ms. D. Hilbert 7 Appell, Paul An David Hilbert o.O., o.D. – 1 Visitenkt. Cod. Ms. D. Hilbert 7 A Archenhold, Friedrich Simon An David Hilbert Berlin-Treptow, o.D. – 1 Br. (Durchschl.) Br. wurde an den Magistrat d. Stadt Göttingen, z. Hd. Oberbürgermeisters Calsow, adressiert Cod. Ms. D. Hilbert 8 Arzelá, Cesare An David Hilbert Bologna, 07.06.1906. – 1 Pk. Datum lt. Poststempel Cod. Ms. D. Hilbert 9 Auwers, Arthur von An David Hilbert Berlin, 18.01.1895; 08.07.1901; 09.07.1901. – 3 Br. Cod. Ms. D. Hilbert 10 Bachmann, Paul An David Hilbert Weimar, 18.10.1896. – 1 Br. Cod. Ms. D. Hilbert 11 Bär, Richard An David Hilbert Zürich; Granada; Kairo, 1917-1934. – 6 Br., 3 Pk. Cod. Ms. D. Hilbert 12 Balser, Ludwig An David Hilbert Darmstadt, 03.10.1900; 08.11.1900. – 2 Br. 5 Cod. Ms. D. Hilbert 13 Bateman, Harry An David Hilbert Göttingen; Manchester, 15.02.1906; 07.06.1909. – 2 Br. Cod. Ms. D. Hilbert 14 Bauer, Gustav An David Hilbert München, 07.10.1889; 30.10.1891. – 2 Pk. Cod. Ms. D. Hilbert 15 Baule, Bernhard An David Hilbert [Feldpost]; Königsberg; Graz, 1914-1924. – 5 Br., 2 Feldpostkt. Inventarnummer: Acc. Mss. 1975.23 [gilt nur für Nr. 3 a] Cod. Ms. D. Hilbert 15 A Becker, Carl Heinrich Briefwechsel mit David Hilbert Berlin; Göttingen, 10.10.1918; 23.11.1919. – 2 Br. + 1 Notizzettel (betr. P. Debye) 1 Br. von C. H. Becker (1918), 1 Br.-Entw. von D. Hilbert [geschrieben von Käthe Hilbert] (1919) Inventarnummer: Acc. Mss. 2000.6 Cod. Ms. D. Hilbert 16 Beer, Fritz An David Hilbert Berlin, 19.11.1899. – 1 Br. Cod. Ms. D. Hilbert 17 Behmann, Heinrich An David Hilbert Hannover, 21.06.1919. – 1 Br. Cod. Ms. D. Hilbert 18 Beltrami, Eugenio An David Hilbert Rome, 16.07.1899. – 1 Br. Cod. Ms. D. Hilbert 19 Berliner, Arnold An David Hilbert Berlin, 07.01.1913; 05.12.1921. – 1 Br., 1 Pk. Inventarnummer: Acc. Mss. 1975.23 [gilt nur für Nr. 2] 6 Cod. Ms. D. Hilbert 20 Berliner, Hennoch An David Hilbert Bern, 18.07.1917. – 1 Pk. Cod. Ms. D. Hilbert 21 Bernays, Paul An David Hilbert Charlottenburg; Zürich; Princeton, NJ, 1921-1936. – 7 Br. Inventarnummer: Acc. Mss. 1975.23 [gilt nur für Nr. 6 und 7] Cod. Ms. D. Hilbert 22 Bernstein, Felix An David Hilbert Halle; o.O., 05.12.1900; 06.01.1902; 08.05.1903; 28.10.1904; o.D. – 10 Br. + 1 Beil. Nr. 2 ist ein Manuskript über Klassenzahlen beigefügt (8 S.) Beil.: Mutter v. F. Bernstein an D. Hilbert. Halle, 14.2.1911 Cod. Ms. D. Hilbert 23 Bernstejn, Sergej N. An David Hilbert Heidelberg; Charkow; o.O., 1905-1910. – 5 Br., 1 Pk. Cod. Ms. D. Hilbert 24 Bessel-Hagen, Erich An David Hilbert Göttingen, 17.08.1926. – 1 Pk. Cod. Ms. D. Hilbert 25 Bianchi, Luigi An David Hilbert Pisa, 20.12.1902. – 1 Pk. Cod. Ms. D. Hilbert 26 Bieberbach, Ludwig An David Hilbert Göttingen; Königsberg; Basel u.a., 1909-1926; o.D. – 9 Br. Cod. Ms. D. Hilbert 27 Birkhoff, George David An David Hilbert Trébeurden, 09.07.1926. – 1 Br. 7 Cod. Ms. D. Hilbert 27 A Bjørnson, Bjørn An David Hilbert Kristiania, 20.08.1902. – 1 Br. Alte Signatur: Cod. Ms. D. Hilbert 456 : 4 Inventarnummer: Acc. Mss. 1975.23 Persönliche Einladung an David Hilbert, der als Vertreter der Göttinger Gesellschaft der Wissenschaften aus Anlass des Abel-Jubiläums nach Kristiania reisen wird Cod. Ms. D. Hilbert 28 Blaschke, Wilhelm An David Hilbert Eldena; Greifswald; Königsberg, 1912-1918. – 2 Br., 2 Pk. Cod. Ms. D. Hilbert 29 Bliss, Gilbert Ames An David Hilbert Chicago, 02.03.1904. – 1 Br. Cod. Ms. D. Hilbert 30 Blumenthal, Otto An David Hilbert Marburg; Aachen; Delft u.a., 1904-1939; o.D. – 43 Br., 17 Pk. + 2 Beil. Enthält auch: Stellungnahmen Otto Blumenthals zu Aufsätzen von Marcel Riesz (1910; Nr. 22/Anl.) und Roland Weitzenböck (1911; Nr. 32/Anl.), die in den Mathematischen Annalen veröffentlicht werden sollen Nr. 56/Anl.: D. Hilbert an O. Blumenthal, die Zukunft der Mathematischen Annalen betr. o.O., o.D. [Nov. 1933]. – 1 Br. (Abschr. von Käthe Hilbert; 1 S.) Nr. 57: Otto Blumenthal an die Redakteure der Mathematischen Annalen. – Aachen, 25.04.1935. – Ts.; 1 S. [betr. Abfassung eines Nachrufes auf Emmy Noether] Beil.: Ludwig Maurer an David Hilbert. – Tübingen, 22.02.1926. – 1 Br. + Anl. (= Auszug aus einem Br. D. Hilberts an O. Blumentahl) Inventarnummer: Acc. Mss. 1967.23. – Acc. Mss. 1975.23 [gilt nur für Nr. 43 a, 55, 56, 56 / Anl. und 57] Cod. Ms. D. Hilbert 31 Bochow, Karl An David Hilbert Nordhausen, 02.08.1923. – 1 Br. Cod. Ms. D. Hilbert 32 Boehm, Karl An David Hilbert Heidelberg; Königsberg; Ettlingen, 1913-1922. – 5 Br. Inventarnummer: Acc. Mss. 1975.23 [gilt nur für Nr. 4 und 5] 8 Cod. Ms. D. Hilbert 32 A Böhmer, Paul Eugen An David Hilbert Dresden, 31.07.1922. – 1 Br. Inventarnummer: Acc. Mss. 1975.23 Cod. Ms. D. Hilbert 33 Bohlin, Karl Petrus Teodor An David Hilbert Stockholm, 13.08.1907; 07.05.1918. – 2 Br. Cod. Ms. D. Hilbert 34 Bohlmann, Georg An David Hilbert Berlin-Wilmersdorf, 10.10.1909; 15.05.1910. – 2 Br. Cod. Ms. D. Hilbert 35 Bohniček, Stefan An David Hilbert Agram, Kroatien, 1902-1911. – 4 Br. + 1 Anl. Cod. Ms. D. Hilbert 36 Boltzmann, Ludwig An David Hilbert Wien, 25.11.1903. – 1 Br. Cod. Ms. D. Hilbert 37 Bolza, Oskar An David Hilbert Chicago; Freiburg, 1902-1911.
Recommended publications
  • Arnold Sommerfeld in Einigen Zitaten Von Ihm Und Über Ihn1
    K.-P. Dostal, Arnold Sommerfeld in einigen Zitaten von ihm und über ihn Seite 1 Karl-Peter Dostal, Arnold Sommerfeld in einigen Zitaten von ihm und über ihn1 Kurze biographische Bemerkungen Arnold Sommerfeld [* 5. Dezember 1868 in Königsberg, † 26. April 1951 in München] zählt neben Max Planck, Albert Einstein und Niels Bohr zu den Begründern der modernen theoretischen Physik. Durch die Ausarbeitung der Bohrschen Atomtheorie, als Lehrbuchautor (Atombau und Spektrallinien, Vorlesungen über theoretische Physik) und durch seine „Schule“ (zu der etwa die Nobelpreisträger Peter Debye, Wolfgang Pauli, Werner Heisenberg und Hans Bethe gehören) sorgte Sommerfeld wie kein anderer für die Verbreitung der modernen Physik.2 Je nach Auswahl könnte Sommerfeld [aber] nicht nur als theoretischer Physiker, sondern auch als Mathematiker, Techniker oder Wissenschaftsjournalist porträtiert werden.3 Als Schüler der Mathematiker Ferdinand von Lindemann, Adolf Hurwitz, David Hilbert und Felix Klein hatte sich Sommerfeld zunächst vor allem der Mathematik zugewandt (seine erste Professur: 1897 - 1900 für Mathematik an der Bergakademie Clausthal). Als Professor an der TH Aachen von 1900 - 1906 gewann er zunehmendes Interesse an der Technik. 1906 erhielt er den seit Jahren verwaisten Lehrstuhl für theoretische Physik in München, an dem er mit wenigen Unterbrechungen noch bis 1940 (und dann wieder ab 19464) unterrichtete. Im Gegensatz zur etablierten Experimen- talphysik war die theoretische Physik anfangs des 20. Jh. noch eine junge Disziplin. Sie wurde nun zu
    [Show full text]
  • Mathematicians Fleeing from Nazi Germany
    Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D.
    [Show full text]
  • Chapter 6 Free Electron Fermi Gas
    理学院 物理系 沈嵘 Chapter 6 Free Electron Fermi Gas 6.1 Electron Gas Model and its Ground State 6.2 Thermal Properties of Electron Gas 6.3 Free Electrons in Electric Fields 6.4 Hall Effect 6.5 Thermal Conductivity of Metals 6.6 Failures of the free electron gas model 1 6.1 Electron Gas Model and its Ground State 6.1 Electron Gas Model and its Ground State I. Basic Assumptions of Electron Gas Model Metal: valence electrons → conduction electrons (moving freely) ü The simplest metals are the alkali metals—lithium, sodium, 2 potassium, cesium, and rubidium. 6.1 Electron Gas Model and its Ground State density of electrons: Zr n = N m A A where Z is # of conduction electrons per atom, A is relative atomic mass, rm is the density of mass in the metal. The spherical volume of each electron is, 1 3 1 V 4 3 æ 3 ö = = p rs rs = ç ÷ n N 3 è 4p nø Free electron gas model: Suppose, except the confining potential near surfaces of metals, conduction electrons are completely free. The conduction electrons thus behave just like gas atoms in an ideal gas --- free electron gas. 3 6.1 Electron Gas Model and its Ground State Basic Properties: ü Ignore interactions of electron-ion type (free electron approx.) ü And electron-eletron type (independent electron approx). Total energy are of kinetic type, ignore potential energy contribution. ü The classical theory had several conspicuous successes 4 6.1 Electron Gas Model and its Ground State Long Mean Free Path: ü From many types of experiments it is clear that a conduction electron in a metal can move freely in a straight path over many atomic distances.
    [Show full text]
  • 5 X-Ray Crystallography
    Introductory biophysics A. Y. 2016-17 5. X-ray crystallography and its applications to the structural problems of biology Edoardo Milotti Dipartimento di Fisica, Università di Trieste The interatomic distance in a metallic crystal can be roughly estimated as follows. Take, e.g., iron • density: 7.874 g/cm3 • atomic weight: 56 3 • molar volume: VM = 7.1 cm /mole then the interatomic distance is roughly VM d ≈ 3 ≈ 2.2nm N A Edoardo Milotti - Introductory biophysics - A.Y. 2016-17 The atomic lattice can be used a sort of diffraction grating for short-wavelength radiation, about 100 times shorter than visible light which is in the range 400-750 nm. Since hc 2·10−25 J m 1.24 eV µm E = ≈ ≈ γ λ λ λ 1 nm radiation corresponds to about 1 keV photon energy. Edoardo Milotti - Introductory biophysics - A.Y. 2016-17 !"#$%&'$(")* S#%/J&T&U2*#<.%&CKET3&VG$GG./"#%G3&W.%-$/; +(."J&AN&>,%()&CTDB3&S.%)(/3&X.1*&W.%-$/; Y#<.)&V%(Z.&(/&V=;1(21&(/&CTCL&[G#%&=(1&"(12#5.%;&#G&*=.& "(GG%$2*(#/&#G&\8%$;1&<;&2%;1*$)1] 9/(*($));&=.&1*:"(."&H(*=&^_/F*./3&$/"&*=./&H(*=&'$`&V)$/2I&(/& S.%)(/3&H=.%.&=.&=$<()(*$*."&(/&CTBD&H(*=&$&*=.1(1&[a<.% "(.& 9/*.%G.%./Z.%12=.(/:/F./ $/&,)$/,$%$)).)./ V)$**./[?& 7=./&=.&H#%I."&$*&*=.&9/1*(*:*.&#G&7=.#%.*(2$)&V=;1(213&=.$"."& <;&>%/#)"&Q#--.%G.)"3&:/*()&=.&H$1&$,,#(/*."&G:))&,%#G.11#%&$*& *=.&4/(5.%1(*;&#G&0%$/IG:%*&(/&CTCL3&H=./&=.&$)1#&%.2.(5."&=(1& Y#<.)&V%(Z.?& !"#$%"#&'()#**(&8 9/*%#":2*#%;&<(#,=;1(21&8 >?@?&ABCD8CE Arnold Sommerfeld (1868-1951) ... Four of Sommerfeld's doctoral students, Werner Heisenberg, Wolfgang Pauli, Peter Debye, and Hans Bethe went on to win Nobel Prizes, while others, most notably, Walter Heitler, Rudolf Peierls, Karl Bechert, Hermann Brück, Paul Peter Ewald, Eugene Feenberg, Herbert Fröhlich, Erwin Fues, Ernst Guillemin, Helmut Hönl, Ludwig Hopf, Adolf KratZer, Otto Laporte, Wilhelm LenZ, Karl Meissner, Rudolf Seeliger, Ernst C.
    [Show full text]
  • Translation of Three Short Papers by Grete Hermann
    Journal for General Philosophy of Science (2020) 51:615–619 https://doi.org/10.1007/s10838-020-09530-6 ARTICLE Translation of Three Short Papers by Grete Hermann Guido Bacciagaluppi1 Published online: 27 November 2020 © The Author(s) 2020 After a number of years of relative neglect, it is now becoming apparent that Grete Her- mann (1901–1984) was one of the most accomplished neo-Kantian philosophers of the last century—in part thanks to the recent publication of two volumes on and of her work, one in English (Crull and Bacciagaluppi 2017) and one in German (Herrmann 2019), both reviewed in this issue. The latter in particular contains Hermann’s entire output on modern physics and philosophy of science. Below I translate the three shortest papers by Hermann in that volume, which I intro- duce here. They provide quick but fascinating glimpses into some of Hermann’s ideas on philosophy of science, quantum mechanics and transcendental idealism. They are: from 1935 a book review of Popper’s Logik der Forschung (the original German edition of The Logic of Scientifc Discovery), from 1936 a comment on Schlick’s posthumously published talk ‘Quantentheorie und Erkennbarkeit der Natur’ (‘Quantum Theory and Knowability of Nature’) and from 1937 a short summary of Hermann’s ideas on the relation between Kant’s philosophy and modern physics (specifcally electrodynamics, the special and gen- eral theories of relativity and quantum mechanics) presented at the Congrès Descartes in Paris.1 1 Popper Review Popper had published Logik der Forschung in late 1934 (with the impressum of the fol- lowing year, Popper 1935).
    [Show full text]
  • The Isotope Effect: Prediction, Discussion, and Discovery
    1 The isotope effect: Prediction, discussion, and discovery Helge Kragh Centre for Science Studies, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus, Denmark. ABSTRACT The precise position of a spectral line emitted by an atomic system depends on the mass of the atomic nucleus and is therefore different for isotopes belonging to the same element. The possible presence of an isotope effect followed from Bohr’s atomic theory of 1913, but it took several years before it was confirmed experimentally. Its early history involves the childhood not only of the quantum atom, but also of the concept of isotopy. Bohr’s prediction of the isotope effect was apparently at odds with early attempts to distinguish between isotopes by means of their optical spectra. However, in 1920 the effect was discovered in HCl molecules, which gave rise to a fruitful development in molecular spectroscopy. The first detection of an atomic isotope effect was no less important, as it was by this means that the heavy hydrogen isotope deuterium was discovered in 1932. The early development of isotope spectroscopy illustrates the complex relationship between theory and experiment, and is also instructive with regard to the concepts of prediction and discovery. Keywords: isotopes; spectroscopy; Bohr model; atomic theory; deuterium. 1. Introduction The wavelength of a spectral line arising from an excited atom or molecule depends slightly on the isotopic composition, hence on the mass, of the atomic system. The phenomenon is often called the “isotope effect,” although E-mail: [email protected]. 2 the name is also used in other meanings.
    [Show full text]
  • A History of Quantum Chemistry
    1 Quantum Chemistry qua Physics: The Promises and Deadlocks of Using First Principles In the opening paragraph of his 1929 paper “ Quantum Mechanics of Many-Electron Systems, ” Paul Adrien Maurice Dirac announced that: The general theory of quantum mechanics is now almost complete, the imperfections that still remain being in connection with the exact fi tting in of the theory with relativity ideas. These give rise to diffi culties only when high-speed particles are involved, and are therefore of no importance in the consideration of atomic and molecular structure and ordinary chemical reac- tions, in which it is, indeed, usually suffi ciently accurate if one neglects relativity variation of mass with velocity and assumes only Coulomb forces between the various electrons and atomic nuclei. The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the diffi culty is only that the exact applica- tion of these laws leads to equations much too complicated to be soluble. It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation. (Dirac 1929, 714, emphasis ours) For most members of the community of physicists, it appeared that the solution of chemical problems amounted to no more than quantum-mechanical calculations. Physicists came under the spell of Dirac ’ s reductionist program, and quantum chem- istry came to be usually regarded as a success story of quantum mechanics.
    [Show full text]
  • Linear Functional Analysis
    Linear Functional Analysis Joan Cerdà Graduate Studies in Mathematics Volume 116 American Mathematical Society Real Sociedad Matemática Española Linear Functional Analysis Linear Functional Analysis Joan Cerdà Graduate Studies in Mathematics Volume 116 American Mathematical Society Providence, Rhode Island Real Sociedad Matemática Española Madrid, Spain Editorial Board of Graduate Studies in Mathematics David Cox (Chair) Rafe Mazzeo Martin Scharlemann Gigliola Staffilani Editorial Committee of the Real Sociedad Matem´atica Espa˜nola Guillermo P. Curbera, Director Luis Al´ıas Alberto Elduque Emilio Carrizosa Rosa Mar´ıa Mir´o Bernardo Cascales Pablo Pedregal Javier Duoandikoetxea Juan Soler 2010 Mathematics Subject Classification. Primary 46–01; Secondary 46Axx, 46Bxx, 46Exx, 46Fxx, 46Jxx, 47B15. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-116 Library of Congress Cataloging-in-Publication Data Cerd`a, Joan, 1942– Linear functional analysis / Joan Cerd`a. p. cm. — (Graduate studies in mathematics ; v. 116) Includes bibliographical references and index. ISBN 978-0-8218-5115-9 (alk. paper) 1. Functional analysis. I. Title. QA321.C47 2010 515.7—dc22 2010006449 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA.
    [Show full text]
  • Annual Report Academic Year 2009/10
    Annual Report Academic Year 2009/10 This report contains information on the Swiss Doctoral Program in Mathematics. It covers the period of the academic year 2009/10, with a preview of the following academic year. To benefit from the hyperlinks, please use the online version on www.math.ch/dp. Extended Table of Contents page 1 Welcome: A brief description of the Doctoral Program page 2 Objectives: Intention and aims of the Doctoral Program page 3 Neighboring Schools: The partners of the Doctoral Program page 4 Spectrum of Activities: Overview of the character of activities of the Doctoral Program page 6 Responsibilities of the Committee: The administration of the Doctoral Program page 7 Directors: The two directors of the Doctoral Program and a PhD student representative page 8 Senior Committee Members and Junior Committee Members: The lists of senior and junior representatives of each university page 9 Secretary: The secretary of the Doctoral Program page 10 Enrollment: Terms and conditions for the participation in the Doctoral Program page 11 Scoring: Description of the scoring system page 12 Application Form: Online application form for students page 13 Registration Form: Online registration form for research groups page 14 Validation: Description of the validation procedure page 15 Validation Form: The validation form for students page 16 Reimbursement: Terms and conditions for reimbursement of participation costs page 17 Reimbursement Form: The reimbursement form for students page 18 Reporting: Description of the annual reporting system
    [Show full text]
  • Aspects of Zeta-Function Theory in the Mathematical Works of Adolf Hurwitz
    ASPECTS OF ZETA-FUNCTION THEORY IN THE MATHEMATICAL WORKS OF ADOLF HURWITZ NICOLA OSWALD, JORN¨ STEUDING Dedicated to the Memory of Prof. Dr. Wolfgang Schwarz Abstract. Adolf Hurwitz is rather famous for his celebrated contributions to Riemann surfaces, modular forms, diophantine equations and approximation as well as to certain aspects of algebra. His early work on an important gener- alization of Dirichlet’s L-series, nowadays called Hurwitz zeta-function, is the only published work settled in the very active field of research around the Rie- mann zeta-function and its relatives. His mathematical diaries, however, provide another picture, namely a lifelong interest in the development of zeta-function theory. In this note we shall investigate his early work, its origin and its recep- tion, as well as Hurwitz’s further studies of the Riemann zeta-function and allied Dirichlet series from his diaries. It turns out that Hurwitz already in 1889 knew about the essential analytic properties of the Epstein zeta-function (including its functional equation) 13 years before Paul Epstein. Keywords: Adolf Hurwitz, Zeta- and L-functions, Riemann hypothesis, entire functions Mathematical Subject Classification: 01A55, 01A70, 11M06, 11M35 Contents 1. Hildesheim — the Hurwitz Zeta-Function 1 1.1. Prehistory: From Euler to Riemann 3 1.2. The Hurwitz Identity 8 1.3. Aftermath and Further Generalizations by Lipschitz, Lerch, and Epstein 13 2. K¨onigsberg & Zurich — Entire Functions 19 2.1. Prehistory:TheProofofthePrimeNumberTheorem 19 2.2. Hadamard’s Theory of Entire Functions of Finite Order 20 2.3. P´olya and Hurwitz’s Estate 21 arXiv:1506.00856v1 [math.HO] 2 Jun 2015 3.
    [Show full text]
  • Jarník's Notes of the Lecture Course Allgemeine Idealtheorie by BL Van
    Jarník’s Notes of the Lecture Course Allgemeine Idealtheorie by B. L. van der Waerden (Göttingen 1927/1928) Bartel Leendert van der Waerden (1903-1996) In: Jindřich Bečvář (author); Martina Bečvářová (author): Jarník’s Notes of the Lecture Course Allgemeine Idealtheorie by B. L. van der Waerden (Göttingen 1927/1928). (English). Praha: Matfyzpress, 2020. pp. 7–[32]. Persistent URL: http://dml.cz/dmlcz/404377 Terms of use: Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz 7 BARTEL LEENDERT VAN DER WAERDEN (1903 – 1996) Family, childhood and studies Bartel Leendert van der Waerden was born on February 2, 1903 in Amster- dam in the Netherlands. His father Theodorus van der Waerden (1876–1940) studied civil engineering at the Delft Technical University and then he taught mathematics and mechanics in Leewarden and Dordrecht. On August 28, 1901, he married Dorothea Adriana Endt (?–1942), daughter of Dutch Protestants Coenraad Endt and Maria Anna Kleij. In 1902, the young family moved to Amsterdam and Theodorus van der Waerden continued teaching mathematics and mechanics at the University of Amsterdam where he had become interes- ted in politics; all his life he was a left wing Socialist. In 1910, he was elected as a member of the Sociaal-Democratische Arbeiderspartij to the Provincial government of North Holland.
    [Show full text]
  • The Many Faces of the Bohr Atom
    1 The many faces of the Bohr atom Helge Kragh The atomic model that Bohr proposed in 1913 constituted a break with all earlier conceptions of the atom. Keeping to the theory’s basic postulates – the stationary states and the frequency condition – he conceived the model as preliminary and immediately began developing and modifying it. Strictly speaking there was no single Bohr atom but rather a series of different models sharing some common features. In this paper I start with calling attention to some less well known aspects of Bohr’s early model of one-electron atoms the significance of which only became recognized after his death in 1962. I then briefly sketch how he abandoned the ring model for many-electron atoms about 1920 and subsequently went on developing the ambitious orbital model that he thought would unravel the secrets of the periodic system. Bohr’s model of 1921-1922 marked the culmination of the orbital atom within the old quantum theory, but it would soon be replaced by a symbolic and non- visualizable view of atomic structure leading to the atom of quantum mechanics. 1. Rydberg atoms and isotope effect Among the unusual features of the atom that Bohr presented in the first part of his trilogy of 1913 was that the hydrogen atom, and other atoms as well, did not have a fixed size. For the radius of a one-electron atom with nuclear charge Ze he derived the expression where = 1, 2, 3,… and the other symbols have their usual meanings. For a hydrogen atom (Z = 1) in its ground state = 1 he found the value a1 = 0.55 × 10-8 cm as compared to the modern value 0.53 × 10-8 cm.
    [Show full text]