Linear Functiona

Total Page:16

File Type:pdf, Size:1020Kb

Linear Functiona - v - Linear FunctIona III'I Analysis Joan Cerda traduate StAft, in Mathematiic, oolpme 1E 6 American Mathematical Society Real Socied'ad.Mateinatica IEspanola t Linear Functional Analysis Linear Functional Analysis Joan Cerda Graduate Studies in Mathematics Volume 116 American Mathematical Society Providence, Rhode Island Real Sociedad Matematica Espanola Madrid, Spain Editorial Board of Graduate Studies in Mathematics David Cox (Chair) Rafe Mazzeo Martin Scharlemann Gigliola Staffilani Editorial Committee of the Real Sociedad Matematica Espanola Guillermo P. Curbera, Director Luis Alias Alberto Elduque Emilio Carrizosa Rosa Maria Miro Bernardo Cascales Pablo Pedregal Javier Duoandikoetxea Juan Soler 2010 Mathematics Subject Classification. Primary 46-01; Secondary 46Axx, 46Bxx, 46Exx, 46Fxx, 46Jxx, 47B15. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-116 Library of Congress Cataloging-in-Publication Data Cerda, Joan, 1942- Linear functional analysis / Joan Cerda. p. cm. - (Graduate studies in mathematics ; v. 116) Includes bibliographical references and index. ISBN 978-0-8218-5115-9 (alk. paper) 1. Functional analysis.I. Title. QA321. C47 2010 515'.7-dc22 2010006449 Copying and reprinting.Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society.Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to reprint-permission@ams . org. Q 2010 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. 0 The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http : //www. ams . org/ 10987654321 151413121110 To Carla and Marc Contents Preface xi Chapter 1.Introduction 1 §1.1.Topological spaces 1 §1.2.Measure and integration 8 §1.3.Exercises 21 Chapter 2.Normed spaces and operators §2.1.Banach spaces §2.2. Linear operators §2.3.Hilbert spaces §2.4.Convolutions and summability kernels §2.5. The Riesz-Thorin interpolation theorem §2.6. Applications to linear differential equations §2.7. Exercises Chapter 3.Frechet spaces and Banach theorems 75 §3.1.Frechet spaces 76 §3.2.Banach theorems 82 §3.3.Exercises 88 Chapter 4.Duality 93 §4.1.The dual of a Hilbert space 93 §4.2.Applications of the Riesz representation theorem 98 §4.3.The Hahn-Banach theorem 106 vii viii Contents §4.4.Spectral theory of compact operators 114 §4.5.Exercises 122 Chapter 5.Weak topologies 127 §5.1.Weak convergence 127 §5.2.Weak and weak* topologies 128 §5.3.An application to the Dirichlet problem in the disc 132 §5.4.Exercises 138 Chapter 6.Distributions 143 §6.1.Test functions 144 §6.2.The distributions 146 §6.3.Differentiation of distributions 150 §6.4.Convolution of distributions 154 §6.5.Distributional differential equations 161 §6.6.Exercises 175 Chapter 7.Fourier transform and Sobolev spaces 181 §7.1.The Fourier integral 182 §7.2.The Schwartz class S 186 §7.3.Tempered distributions 189 §7.4.Fourier transform and signal theory 195 §7.5.The Dirichlet problem in the half-space 200 §7.6.Sobolev spaces 206 §7.7.Applications 213 §7.8.Exercises 222 Chapter 8.Banach algebras 227 §8.1.Definition and examples 228 §8.2.Spectrum 229 §8.3. Commutative Banach algebras 234 §8.4.C*-algebras 238 §8.5.Spectral theory of bounded normal operators 241 §8.6.Exercises 250 Chapter 9.Unbounded operators in a Hilbert space 257 §9.1.Definitions and basic properties 258 §9.2.Unbounded self-adjoint operators 262 Contents ix §9.3.Spectral representation of unbounded self-adjoint operators 273 §9.4.Unbounded operators in quantum mechanics 277 §9.5.Appendix: Proof of the spectral theorem 287 §9.6.Exercises 295 Hints to exercises 299 Bibliography 321 Index 325 Preface The aim of this book is to present the basic facts of linear functional anal- ysis related to applications to some fundamental aspects of mathematical analysis. If mathematics is supposed to show common general facts and struc- tures of particular results, functional analysis does this while dealing with classical problems, many of them related to ordinary and partial differential equations, integral equations, harmonic analysis, function theory, and the calculus of variations. In functional analysis, individual functions satisfying specific equations are replaced by classes of functions and transforms which are determined by each particular problem. The objects of functional analysis are spaces and operators acting between them which, after systematic studies intertwining linear and topological or metric structures, appear to be behind classical problems in a kind of cleaning process. In order to make the scope of functional analysis clearer, I have chosen to sacrifice generality for the sake of an easier understanding of its methods, and to show how they clarify what is essential in analytical problems.I have tried to avoid the introduction of cold abstractions and unnecessary terminology in further developments and, when choosing the different topics, I have included some applications that connect functional analysis with other areas. The text is based on a graduate course taught at the Universitat de Barcelona, with some additions, mainly to make it more self-contained. The material in the first chapters could be adapted as an introductory course on functional analysis, aiming to present the role of duality in analysis, and xi xii Preface also the spectral theory of compact linear operators in the context of Hilbert and Banach spaces. In this first part of the book, the mutual influence between functional analysis and other areas of analysis is shown when studying duality, with von Neumann's proof of the Radon-Nikodym theorem based on the Riesz representation theorem for the dual of a Hilbert space, followed by the rep- resentations of the duals of the I? spaces and of C (K), in this case by means of complex Borel measures. The reader will also see how to deal with initial and boundary value problems in ordinary linear differential equations via the use of integral operators. Moreover examples are included that illustrate how functional analytic methods are useful in the study of Fourier series. In the second part, distributions provide a natural framework extend- ing some fundamental operations in analysis. Convolution and the Fourier transform are included as useful tools for dealing with partial differential operators, with basic notions such as fundamental solutions and Green's functions. Distributions are also appropriate for the introduction of Sobolev spaces, which are very useful for the study of the solutions of partial differential equations. A clear example is provided by the resolution of the Dirichlet problem and the description of the eigenvalues of the Laplacian, in combi- nation with Hilbert space techniques. The last two chapters are essentially devoted to the spectral theory of bounded and unbounded self-adjoint operators, which is presented by us- ing the Gelfand transform for Banach algebras.This spectral theory is illustrated with an introduction to the basic axioms of quantum mechanics, which motivated many studies in the Hilbert space theory. Some very short historical comments have been included, mainly by means of footnotes.For a good overview of the evolution of functional analysis, J. Dieudonne's and A. F. Monna's books, [10] and [31], are two good references. The limitation of space has forced us to leave out many other important topics that could, and probably should, have been included. Among them are the geometry of Banach spaces, a general theory of locally convex spaces and structure theory of Frechet spaces, functional calculus of nonnormal operators, groups and semigroups of operators, invariant subspaces, index theory, von Neumann algebras, and scattering theory. Fortunately, many excellent texts dealing with these subjects are available and a few references have been selected for further study. Preface xiii A small number of references have been gathered at the end of each chapter to focus the reader's attention on some appropriate items from a general bibliographical list of 44 items. Almost 240 exercises are gathered at the end of the chapters and form an important part of the book. They are intended to help the reader to develop techniques and working knowledge of functional analysis.These exercises are highly nonuniform in difficulty. Some are very simple, to aid in better understanding of the concepts employed, whereas others are fairly challenging for the beginners. Hints and solutions are provided at the end of the book. The prerequisites are very standard. Although it is assumed that the reader has some a priori knowledge of general topology, integral calculus with Lebesgue measure, and elementary aspects of normed or Hilbert spaces, a review of the basic aspects of these topics has been included in the first chapters. I turn finally to the pleasant task of thanking those who helped me during the writing. Particular thanks are due to Javier Soria, who revised most of the manuscript and proposed important corrections and suggestions. I have also received valuable advice and criticism from Maria J. Carro and Joaquim Ortega-Cerda. I have been very fortunate to have received their assistance. Joan Cerda Universitat de Barcelona Chapter 1 Introduction The purpose of this introductory chapter is to fix some terminology that will be used throughout the book and to review the results from general topology and measure theory that will be needed later.
Recommended publications
  • Mathematicians Fleeing from Nazi Germany
    Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D.
    [Show full text]
  • The Banach-Alaoglu Theorem for Topological Vector Spaces
    The Banach-Alaoglu theorem for topological vector spaces Christiaan van den Brink a thesis submitted to the Department of Mathematics at Utrecht University in partial fulfillment of the requirements for the degree of Bachelor in Mathematics Supervisor: Fabian Ziltener date of submission 06-06-2019 Abstract In this thesis we generalize the Banach-Alaoglu theorem to topological vector spaces. the theorem then states that the polar, which lies in the dual space, of a neighbourhood around zero is weak* compact. We give motivation for the non-triviality of this theorem in this more general case. Later on, we show that the polar is sequentially compact if the space is separable. If our space is normed, then we show that the polar of the unit ball is the closed unit ball in the dual space. Finally, we introduce the notion of nets and we use these to prove the main theorem. i ii Acknowledgments A huge thanks goes out to my supervisor Fabian Ziltener for guiding me through the process of writing a bachelor thesis. I would also like to thank my girlfriend, family and my pet who have supported me all the way. iii iv Contents 1 Introduction 1 1.1 Motivation and main result . .1 1.2 Remarks and related works . .2 1.3 Organization of this thesis . .2 2 Introduction to Topological vector spaces 4 2.1 Topological vector spaces . .4 2.1.1 Definition of topological vector space . .4 2.1.2 The topology of a TVS . .6 2.2 Dual spaces . .9 2.2.1 Continuous functionals .
    [Show full text]
  • Matical Society Was Held at Columbia University on Friday and Saturday, April 25-26, 1947
    THE APRIL MEETING IN NEW YORK The four hundred twenty-fourth meeting of the American Mathe­ matical Society was held at Columbia University on Friday and Saturday, April 25-26, 1947. The attendance was over 300, includ­ ing the following 300 members of the Society: C. R. Adams, C. F. Adler, R. P. Agnew, E.J. Akutowicz, Leonidas Alaoglu, T. W. Anderson, C. B. Allendoerfer, R. G. Archibald, L. A. Aroian, M. C. Ayer, R. A. Bari, Joshua Barlaz, P. T. Bateman, G. E. Bates, M. F. Becker, E. G. Begle, Richard Bellman, Stefan Bergman, Arthur Bernstein, Felix Bernstein, Lipman Bers, D. H. Blackwell, Gertrude Blanch, J. H. Blau, R. P. Boas, H. W. Bode, G. L. Bolton, Samuel Borofsky, J. M. Boyer, A. D. Bradley, H. W. Brinkmann, Paul Brock, A. B. Brown, G. W. Brown, R. H. Brown, E. F. Buck, R. C. Buck, L. H. Bunyan, R. S. Burington, J. C. Burkill, Herbert Busemann, K. A. Bush, Hobart Bushey, J. H. Bushey, K. E. Butcher, Albert Cahn, S. S. Cairns, W. R. Callahan, H. H. Campaigne, K. Chandrasekharan, J. O. Chellevold, Herman Chernoff, Claude Chevalley, Ed­ mund Churchill, J. A. Clarkson, M. D. Clement, R. M. Cohn, I. S. Cohen, Nancy Cole, T. F. Cope, Richard Courant, M. J. Cox, F. G. Critchlow, H. B. Curry, J. H. Curtiss, M. D. Darkow, A. S. Day, S. P. Diliberto, J. L. Doob, C. H. Dowker, Y. N. Dowker, William H. Durf ee, Churchill Eisenhart, Benjamin Epstein, Ky Fan, J.M.Feld, William Feller, F. G. Fender, A. D.
    [Show full text]
  • Fundamental Theorems in Mathematics
    SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635].
    [Show full text]
  • Linear Functional Analysis
    Linear Functional Analysis Joan Cerdà Graduate Studies in Mathematics Volume 116 American Mathematical Society Real Sociedad Matemática Española Linear Functional Analysis Linear Functional Analysis Joan Cerdà Graduate Studies in Mathematics Volume 116 American Mathematical Society Providence, Rhode Island Real Sociedad Matemática Española Madrid, Spain Editorial Board of Graduate Studies in Mathematics David Cox (Chair) Rafe Mazzeo Martin Scharlemann Gigliola Staffilani Editorial Committee of the Real Sociedad Matem´atica Espa˜nola Guillermo P. Curbera, Director Luis Al´ıas Alberto Elduque Emilio Carrizosa Rosa Mar´ıa Mir´o Bernardo Cascales Pablo Pedregal Javier Duoandikoetxea Juan Soler 2010 Mathematics Subject Classification. Primary 46–01; Secondary 46Axx, 46Bxx, 46Exx, 46Fxx, 46Jxx, 47B15. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-116 Library of Congress Cataloging-in-Publication Data Cerd`a, Joan, 1942– Linear functional analysis / Joan Cerd`a. p. cm. — (Graduate studies in mathematics ; v. 116) Includes bibliographical references and index. ISBN 978-0-8218-5115-9 (alk. paper) 1. Functional analysis. I. Title. QA321.C47 2010 515.7—dc22 2010006449 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA.
    [Show full text]
  • Annual Report Academic Year 2009/10
    Annual Report Academic Year 2009/10 This report contains information on the Swiss Doctoral Program in Mathematics. It covers the period of the academic year 2009/10, with a preview of the following academic year. To benefit from the hyperlinks, please use the online version on www.math.ch/dp. Extended Table of Contents page 1 Welcome: A brief description of the Doctoral Program page 2 Objectives: Intention and aims of the Doctoral Program page 3 Neighboring Schools: The partners of the Doctoral Program page 4 Spectrum of Activities: Overview of the character of activities of the Doctoral Program page 6 Responsibilities of the Committee: The administration of the Doctoral Program page 7 Directors: The two directors of the Doctoral Program and a PhD student representative page 8 Senior Committee Members and Junior Committee Members: The lists of senior and junior representatives of each university page 9 Secretary: The secretary of the Doctoral Program page 10 Enrollment: Terms and conditions for the participation in the Doctoral Program page 11 Scoring: Description of the scoring system page 12 Application Form: Online application form for students page 13 Registration Form: Online registration form for research groups page 14 Validation: Description of the validation procedure page 15 Validation Form: The validation form for students page 16 Reimbursement: Terms and conditions for reimbursement of participation costs page 17 Reimbursement Form: The reimbursement form for students page 18 Reporting: Description of the annual reporting system
    [Show full text]
  • (2007), No. 1, 1–10
    Banach J. Math. Anal. 1 (2007), no. 1, 1–10 Banach Journal of Mathematical Analysis ISSN: 1735-8787 (electronic) http://www.math-analysis.org ON STEFAN BANACH AND SOME OF HIS RESULTS KRZYSZTOF CIESIELSKI1 Dedicated to Professor Themistocles M. Rassias Submitted by P. Enflo Abstract. In the paper a short biography of Stefan Banach, a few stories about Banach and the Scottish Caf´eand some results that nowadays are named by Banach’s surname are presented. 1. Introduction Banach Journal of Mathematical Analysis is named after one of the most out- standing mathematicians in the XXth century, Stefan Banach. Thus it is natural to recall in the first issue of the journal some information about Banach. A very short biography, some of his most eminent results and some stories will be presented in this article. 2. Banach and the Scottish Cafe´ Stefan Banach was born in the Polish city Krak´owon 30 March, 1892. Some sources give the date 20 March, however it was checked (in particular, in the parish sources by the author ([12]) and by Roman Ka lu˙za([26])) that the date 30 March is correct. Banach’s parents were not married. It is not much known about his mother, Katarzyna Banach, after whom he had a surname. It was just recently discovered (see [25]) that she was a maid or servant and Banach’s father, Stefan Greczek, who Date: Received: 14 June 2007; Accepted: 25 September 2007. 2000 Mathematics Subject Classification. Primary 01A60; Secondary 46-03, 46B25. Key words and phrases. Banach, functional analysis, Scottish Caf´e,Lvov School of mathe- matics, Banach space.
    [Show full text]
  • Aspects of Zeta-Function Theory in the Mathematical Works of Adolf Hurwitz
    ASPECTS OF ZETA-FUNCTION THEORY IN THE MATHEMATICAL WORKS OF ADOLF HURWITZ NICOLA OSWALD, JORN¨ STEUDING Dedicated to the Memory of Prof. Dr. Wolfgang Schwarz Abstract. Adolf Hurwitz is rather famous for his celebrated contributions to Riemann surfaces, modular forms, diophantine equations and approximation as well as to certain aspects of algebra. His early work on an important gener- alization of Dirichlet’s L-series, nowadays called Hurwitz zeta-function, is the only published work settled in the very active field of research around the Rie- mann zeta-function and its relatives. His mathematical diaries, however, provide another picture, namely a lifelong interest in the development of zeta-function theory. In this note we shall investigate his early work, its origin and its recep- tion, as well as Hurwitz’s further studies of the Riemann zeta-function and allied Dirichlet series from his diaries. It turns out that Hurwitz already in 1889 knew about the essential analytic properties of the Epstein zeta-function (including its functional equation) 13 years before Paul Epstein. Keywords: Adolf Hurwitz, Zeta- and L-functions, Riemann hypothesis, entire functions Mathematical Subject Classification: 01A55, 01A70, 11M06, 11M35 Contents 1. Hildesheim — the Hurwitz Zeta-Function 1 1.1. Prehistory: From Euler to Riemann 3 1.2. The Hurwitz Identity 8 1.3. Aftermath and Further Generalizations by Lipschitz, Lerch, and Epstein 13 2. K¨onigsberg & Zurich — Entire Functions 19 2.1. Prehistory:TheProofofthePrimeNumberTheorem 19 2.2. Hadamard’s Theory of Entire Functions of Finite Order 20 2.3. P´olya and Hurwitz’s Estate 21 arXiv:1506.00856v1 [math.HO] 2 Jun 2015 3.
    [Show full text]
  • Hilbert, David [1862-1943]
    Niedersächsische Staats- und Universitätsbibliothek Göttingen Nachlass David Hilbert Mathematiker 1862 – 1943 Umfang: 26 Kst., 5 Mpn, 1 Fotoalbum Provenienz: Acc. Mss. 1967.23 (= Hauptteil; in den Beschreibungen nicht erwähnt) Acc. Mss. 1975.23 Acc. Mss. 1984.21 Acc. Mss. 1988.6 Ac. Mss. 1989.10 Acc. Mss. 1993.35 Acc. Mss. 1994.30 Acc. Mss. 2000.6 Acc. Mss. 2000.24 Acc. Mss. 2004.15/1-2 Erschließung: 1968 Ordnung der Korrespondenz durch Dietrich Kornexl 1969 Ordnung der Gutachten, Manuskripte und Materialien sowie der privaten Dokumente durch Inge-Maren Peters Ab 2004 Verzeichnung in der Datenbank HANS der SUB Göttingen Weitere Nachschriften Hilbertscher Vorlesungen sind vorhanden in der BIBLIOTHEK DES MATHEMATISCHEN INSTITUTS DER GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN Inhaltsverzeichnis Seite Briefe Allgemeine Korrespondenz Signatur: Cod. Ms. D. Hilbert 1 – 452 4 Glückwünsche Signatur: Cod. Ms. D. Hilbert 452 a-d 72 Sonstige Briefe Signatur: Cod. Ms. D. Hilbert 453 – 456 97 Briefentwürfe von David Hilbert Signatur: Cod. Ms. D. Hilbert 457 99 Berufungsangelegenheiten und sonstige Gutachten Signatur: Cod. Ms. D. Hilbert 458 – 493 103 Hilbert als Direktor des Mathematischen Seminars der Universität Göttingen Signatur: Cod. Ms. D. Hilbert 494 110 Materialien und Manuskripte Vorlesungsnachschriften und –ausarbeitungen des Studenten Hilbert Dozenten bekannt Signatur: Cod. Ms. D. Hilbert 495 – 504 112 Dozenten und Vorlesungen nicht ermittelt Signatur: Cod. Ms. D. Hilbert 505 – 519 113 Hilbertsche Vorlesungen Signatur: Cod. Ms. D. Hilbert 520 – 570a 115 [Anmerkung: Cod. Ms. D. Hilbert 520 = Verzeichnis der Vorlesungen 1886-1932] Hilbertsche Seminare Signatur: Cod. Ms. D. Hilbert 570 / 1 – 570 / 10 122 Vorträge und Reden über Mathematiker Signatur: Cod.
    [Show full text]
  • You Do the Math. the Newton Fellowship Program Is Looking for Mathematically Sophisticated Individuals to Teach in NYC Public High Schools
    AMERICAN MATHEMATICAL SOCIETY Hamilton's Ricci Flow Bennett Chow • FROM THE GSM SERIES ••. Peng Lu Lei Ni Harryoyrn Modern Geometric Structures and Fields S. P. Novikov, University of Maryland, College Park and I. A. Taimanov, R ussian Academy of Sciences, Novosibirsk, R ussia --- Graduate Studies in Mathematics, Volume 71 ; 2006; approximately 649 pages; Hardcover; ISBN-I 0: 0-8218- 3929-2; ISBN - 13 : 978-0-8218-3929-4; List US$79;AII AMS members US$63; Order code GSM/71 Applied Asymptotic Analysis Measure Theory and Integration Peter D. Miller, University of Michigan, Ann Arbor, MI Graduate Studies in Mathematics, Volume 75; 2006; Michael E. Taylor, University of North Carolina, 467 pages; Hardcover; ISBN-I 0: 0-82 18-4078-9; ISBN -1 3: 978-0- Chapel H ill, NC 8218-4078-8; List US$69;AII AMS members US$55; Order Graduate Studies in Mathematics, Volume 76; 2006; code GSM/75 319 pages; Hardcover; ISBN- I 0: 0-8218-4180-7; ISBN- 13 : 978-0-8218-4180-8; List US$59;AII AMS members US$47; Order code GSM/76 Linear Algebra in Action Harry Dym, Weizmann Institute of Science, Rehovot, Hamilton's Ricci Flow Israel Graduate Studies in Mathematics, Volume 78; 2006; Bennett Chow, University of California, San Diego, 518 pages; Hardcover; ISBN-I 0: 0-82 18-38 13-X; ISBN- 13: 978-0- La Jolla, CA, Peng Lu, University of Oregon, Eugene, 8218-3813-6; Li st US$79;AII AMS members US$63; O rder OR , and Lei Ni, University of California, San Diego, code GSM/78 La ] olla, CA Graduate Studies in Mathematics, Volume 77; 2006; 608 pages; Hardcover; ISBN-I 0:
    [Show full text]
  • Association for Symbolic Logic
    Association for Symbolic Logic Business Office: Box 742, Vassar College 124 Raymond Avenue, Poughkeepsie, New York 12604, USA Fax: 1-845-437-7830; email: [email protected] Web: http://www.aslonline.org ASL NEWSLETTER January 2012 • In Memoriam: Ernst Specker. Ernst Specker passed away unexpectedly on December 10, 2011, aged almost 92. He began his studies in the department of mathematics of ETH Zurich in 1940, and received his M.Sc. degree in 1945 and his Ph.D. (Dr. sc. math.) in 1948, with theses in topology supervised by Heinz Hopf. During this period Specker also studied logic with Paul Bernays. Among his other teachers were Michel Plancherel, Frederic Gonseth, and Beno Eckemann, who was only slightly older than he was. At the University of Zurich he took courses with Paul Finsler. During the years 1948-1950 he was at the Institute for Advanced Study in Princeton. After his return to Switzerland he taught at the Universities of Geneva and Neuchatel and at ETH Zurich. In 1955 he was appointed professor for mathematics and logic at ETH Zurich, the position he held until his retirement in 1987, heading the Zurich Logic School founded by Paul Bernays. After his retirement he continued to chair the Logic Seminar until a few years ago, and he followed the latest developments in logic and algorithmics with unabated interest until his last days. Although compared to the records of many researchers of today Specker's papers are few, each one is a landmark in its respective field. The Selecta Ernst Specker, published on the occasion of his 70th birthday bears witness to this.
    [Show full text]
  • 3. Topological Vector Spaces
    3. Topological vector spaces 3.1 Definitions Banach spaces, and more generally normed spaces, are endowed with two structures: a linear structure and a notion of limits, i.e., a topology. Many useful spaces are Banach spaces, and indeed, we saw many examples of those. In certain cases, however, one deals with vector spaces with a notion of convergence that is not normable. Perhaps the best example is the space of C0 K functions that are compactly supported inside some open domain K (this space∞ is the basis for the theory of distributions). Another such example is the space of( continuous) functions C W defined on some open set W Rn. In such cases, we need a more general construct that embodies both the vector space structure and a topology, without having( ) a norm. In certain cases, the topology⊂ is not only not normable, but even not metrizable (there are situations in which it is metrizable but not normable). We start by recalling basic definition in topological spaces: Definition 3.1 — Topological space. A topological space (*#&-&5&) "(9/) is a set S with a collection t of subsets (called the open sets) that contains both S and , and is closed under arbitrary union and finite intersections. A topological space is the most basic concept of a set endowed with a notion of neighborhood. Definition 3.2 — Open neighborhood. In a topological space S,t ,aneigh- borhood (%"*"2) of a point x is an open set that contains x. We will denote the collection of all the neighborhoods of x by ( ) Nx U t x U .
    [Show full text]