Designing a Very Light Jet

Total Page:16

File Type:pdf, Size:1020Kb

Designing a Very Light Jet GadShannan DESIGN Akademin för Innovation, Design och Teknik Designing a Very Light Jet Master thesis work 30 credits, D-level Product and process development, concurrent engineering Master Thesis Programme Innovation and Product Design Per Nyblom Report code: IDPPOPEXD:08:11 Commissioned by: GadShaanan DESIGN Tutor (company): Mladen Barbaric Tutor (university): Ragnar Tengstrand Examiner: Rolf Lövgren Abstract Introduction Very light jet is a hot subject growing stronger and stronger. The new type of air craft is an air plane that weighs less than 10000 pounds and uses a jet engine. Problem The student was proposed to designing a conceptual very light jet that could be used for inspiration and accepted the challenge. Method In this thesis the reader can follow the project progress in detail, the proposed methods and the results. The student divided the project into four activities analysis, creation, development and documentation. Result The project ended with a concept very light jet with simple specifications. Illustrations for inspirational usage and a simulation testing for verification of the proposed concept specifications. Keywords: Nm 1 nautical miles = 1.852 kilometres lb 1 pound = 0.45359237 kilograms ft 1 foot = 0.3048 metres in 1 inch = 0.025 metres MTOW Maximum take-off weight Pax Available Seats in an airplane both crew and traveller VLJ (micro jet) Very Light Jet, coined expression. FAA Federal Aviation Administration, www.faa.gov EASA European Aviation Safety Agency, www.easa.eu.int CAA Civil Aviation Authority PDF File format standard Intelligence Information that is presented easy to act on. Thrust Power given by a jet engine measured in pounds. ii Acknowledgements Thanks to GadShaanan DESIGN, the commissioner Mr Mladen Barbaric who has provided with this project and who made all of this possible, Colleges Minku and Damien who also contributed a lot. Thanks to Ragnar Tengstrand for his guidance. Thanks to Joe Kingham for his help in simulations, William E. Herp CEO of Linear Jet, Fazackerley Steve at CAA. Also thanks to the four girls on Barcley Street who all contributed in supporting my willpower to succeed. iii Contents INTRODUCTION ...................................................................................................................................................... 2 PROBLEM ............................................................................................................................................................... 2 METHOD ................................................................................................................................................................ 2 RESULT .................................................................................................................................................................. 2 1. INTRODUCTION ................................................................................................................................................ 6 ABOUT VLJ’ S ........................................................................................................................................................ 6 ABOUT GAD SHAANAN DESIGN ............................................................................................................................ 6 PURPOSE OF THIS THESIS ........................................................................................................................................ 7 2. AIM OF PROJECT ............................................................................................................................................. 7 3. PROJECT DIRECTIVES ................................................................................................................................... 7 COMMISSIONERS DIRECTIVES ................................................................................................................................. 7 STUDENTS DIRECTIVES ........................................................................................................................................... 7 4. PROBLEM STATEMENT ................................................................................................................................. 8 PROJECT SPECIFICATION ........................................................................................................................................ 8 Technical requirements .................................................................................................................................... 8 Inspirational requirements ............................................................................................................................... 8 5. PROJECT LIMITATIONS ................................................................................................................................. 9 TIME AND MONEY .................................................................................................................................................. 9 ANALYSIS , CREATION AND DEVELOPMENT ............................................................................................................. 9 6. THEORETICAL BACKGROUND, SOLUTIONS & METHODS ............................................................... 10 ANALYSIS ............................................................................................................................................................ 10 CREATION ............................................................................................................................................................ 12 Sketching ........................................................................................................................................................ 14 DEVELOPMENT ..................................................................................................................................................... 16 3D modelling .................................................................................................................................................. 16 Model Rendering ............................................................................................................................................ 17 Testing and flight simulation .......................................................................................................................... 17 QFD ................................................................................................................................................................ 17 7. APPLIED SOLUTION PROCEDURES .......................................................................................................... 18 ANALYSIS ............................................................................................................................................................ 18 CREATION ............................................................................................................................................................ 18 Aerodynamics ................................................................................................................................................. 21 Concept creation ............................................................................................................................................ 22 DEVELOPMENT ..................................................................................................................................................... 26 3D model creation .......................................................................................................................................... 26 Simulation and adjustments ............................................................................................................................ 27 Visualising the concept in realistic way ......................................................................................................... 29 8. RESULTS ........................................................................................................................................................... 30 CHOOSING THE APPROPRIATE METHODS FOR DESIGNING A VERY LIGHT JET ....................................................... 30 USING THE CHOSEN METHODS IN A CONTROLLED AND TRACEABLE WAY ............................................................. 30 DESIGNING A VERY LIGHT JET ............................................................................................................................. 30 Meeting the technical requirements ................................................................................................................ 30 Meeting the inspirational requirements .......................................................................................................... 31 SIMULATION RESULTS FROM X-PLANE ................................................................................................................. 32 9. ANALYSIS ......................................................................................................................................................... 33 RESOURCES ANALYSIS ......................................................................................................................................... 33 The problem statement and the achieved result .............................................................................................. 33 ANALYSIS
Recommended publications
  • SULLY's SPLASHDOWN: a Story of Redemption for Pilots the Recession
    AKERS...EUROPE’S ETS PROVES TO BE A FIASCO FOR OPERATORS...NEWSMAKERS...PLATINUM JET EXECS, EMPLOYEES INDICTED...NEWSMAKERS...START-UP FRAX JET REPUBLIC F O L D S . N E W S M A K E R S . F A A A C T S Q U I C K L Y I N NEWSmak2009ers INSIDE: I Sully’s splashdown pg 22 I The recession takes its toll pg 22 I Santulli ejects from NetJets pg 23 I Negative portrayal of bizjets pg 23 I Northwest pilots overfly MSP pg 23 I Europe’s ETS proves a fiasco pg 24 S R E T JetDirect collapse pg 24 U I E R / D I SULLY’S SPLASHDOWN: TSA revises LASP proposal pg 24 M I R E D C M Colgan crash ignites questions pg 26 N I A D A story of redemption for pilots N E R Eclipse Aerospace pg 26 B I NEWSMAKER OF THE YEAR I Hudson River midair pg 28 K C I Platinum Jet workers indicted pg 28 N I P hen Capt. Chesley “Sully” going to be in the Hudson.” E O K Sullenberger brought the aft Only a fellow pilot, aware of the slim odds Jet Republic collapses pg 30 M I I belly skin of his US Airways for putting an airliner down in water without J Capt. Chesley “Sully” Sullenberger (left) and FAA approves Waas upgrades pg 30 WAirbus A320 into contact breaking apart in the process, can fully appre- First Officer Jeffrey Skiles brought some glory I with the cold water of New York’s Hudson ciate the enormity of what confronted Sully to the airline pilot profession.
    [Show full text]
  • Business & Commercial Aviation
    BUSINESS & COMMERCIAL AVIATION LEONARDO AW609 PERFORMANCE PLATEAUS OCEANIC APRIL 2020 $10.00 AviationWeek.com/BCA Business & Commercial Aviation AIRCRAFT UPDATE Leonardo AW609 Bringing tiltrotor technology to civil aviation FUEL PLANNING ALSO IN THIS ISSUE Part 91 Department Inspections Is It Airworthy? Oceanic Fuel Planning Who Says It’s Ready? APRIL 2020 VOL. 116 NO. 4 Performance Plateaus Digital Edition Copyright Notice The content contained in this digital edition (“Digital Material”), as well as its selection and arrangement, is owned by Informa. and its affiliated companies, licensors, and suppliers, and is protected by their respective copyright, trademark and other proprietary rights. Upon payment of the subscription price, if applicable, you are hereby authorized to view, download, copy, and print Digital Material solely for your own personal, non-commercial use, provided that by doing any of the foregoing, you acknowledge that (i) you do not and will not acquire any ownership rights of any kind in the Digital Material or any portion thereof, (ii) you must preserve all copyright and other proprietary notices included in any downloaded Digital Material, and (iii) you must comply in all respects with the use restrictions set forth below and in the Informa Privacy Policy and the Informa Terms of Use (the “Use Restrictions”), each of which is hereby incorporated by reference. Any use not in accordance with, and any failure to comply fully with, the Use Restrictions is expressly prohibited by law, and may result in severe civil and criminal penalties. Violators will be prosecuted to the maximum possible extent. You may not modify, publish, license, transmit (including by way of email, facsimile or other electronic means), transfer, sell, reproduce (including by copying or posting on any network computer), create derivative works from, display, store, or in any way exploit, broadcast, disseminate or distribute, in any format or media of any kind, any of the Digital Material, in whole or in part, without the express prior written consent of Informa.
    [Show full text]
  • Eclipse and Kestrel Are One!
    INTERNATIONAL FLYING THE DIY TRAVEL PREP MAGENTA LINE Border crossings made easier Will you fall victim? EJOPA EDITION PAGE 14 THE PRIVATE JET MAGAZINE • SUMMER 2015 ECLIPSE AND KESTREL ARE ONE! AUTOMATED FORECASTS Why computer WX prediction is worrisome READY FOR A FLYING CAR? Lots of manufacturers race from freeways to airways PAGE 54 FAA Type Ratings & Recurrent Flight Training Sales • Training • Delivery Your Turbine Transition Specialists jetAVIVA is an authority on owner/operator flown turbine aircraft, oering acquisition and sales services backed with the experience of completing hundreds of transactions. Furthermore, we provide acceptance, delivery, and training services in all production light turbine aircraft. jetAVIVA is focused Featured in AOPA PILOT Magazine on providing Clients with comprehensive services to choose the right aircraft and operate it with maximum eciency and safety. Customized Flight Training Programs on Your Time at Your Location FAA Type Rating Practical Tests & Recurrent Training Per FAR 61.58 CE-500 • CE-510 • CE-525 • CE-560 XL • CE-650 • LR-JET • RA-390 • DA-50 John Azma is an FAA Designated Pilot Examiner qualified to provide Recurrent Training & Type Rating Practical Tests that may be added to your private, commercial and airline transport pilot certificate. Azma FLT Inc. is based in Orlando Florida at KORL. Our experienced & professional flight instructors are also available to provide training at your location. Highly regarded in the industry, and approved by insurance companies, Azma Contact Us To Learn More: FLT Inc. has been featured in aviation specific publications and editorials. Our 844-296-2358 commitment to excellence and superior services begins when you first contact Learn what jetAVIVA can do for you at www.jetAVIVA.com [email protected] us and continues beyond the completion of your training.
    [Show full text]
  • Business Opportunities in Aircraft Cabin Conversion and Refurbishing
    Business Opportunities in Aircraft Cabin Conversion and Refurbishing Mihaela F. Niţă1 and Dieter Scholz2 Hamburg University of Applied Sciences, Berliner Tor 9, 20099 Hamburg, Germany This paper identifies several meaningful business opportunity cases in the area of aircraft cabin conversion and refurbishing and predicts the market volume and the world distribution for each of them: 1.) international cabins, 2.) domestic cabins, 3.) aircraft on operating lease, 4.) freighter conversions and 5.) VIP completions. This implies the determination of cabin modification/conversion scenarios, along with their duration and frequency. Factors driving the cabin conversion and refurbishing are identified. Several aircraft databases, containing the current world feet as well as the forecasted fleet for the next years, are analyzed. The results are obtained by creating a program able to read and analyze the gathered data. It is shown that about 38000 cabin redesigns will be undertaken within the next 20 years. About 2500 conversions from jetliners into freighters and 25000 cabin modifications at VIP standards will emerge on the market. The North American and European markets will keep providing good business opportunities in this area. The Asian market, however, is growing fast, and its very strong influence on demand puts it in the front rank for the next 20 years. Nomenclature agescenario_limit = aircraft age for which the refurbishing is no longer planned by the operator. dateaircraft_delivery = date of the aircraft first delivery datemodification
    [Show full text]
  • Design of a Light Business Jet Family David C
    Design of a Light Business Jet Family David C. Alman Andrew R. M. Hoeft Terry H. Ma AIAA : 498858 AIAA : 494351 AIAA : 820228 Cameron B. McMillan Jagadeesh Movva Christopher L. Rolince AIAA : 486025 AIAA : 738175 AIAA : 808866 I. Acknowledgements We would like to thank Mr. Carl Johnson, Dr. Neil Weston, and the numerous Georgia Tech faculty and students who have assisted in our personal and aerospace education, and this project specifically. In addition, the authors would like to individually thank the following: David C. Alman: My entire family, but in particular LCDR Allen E. Alman, USNR (BSAE Purdue ’49) and father James D. Alman (BSAE Boston University ’87) for instilling in me a love for aircraft, and Karrin B. Alman for being a wonderful mother and reading to me as a child. I’d also like to thank my friends, including brother Mark T. Alman, who have provided advice, laughs, and made life more fun. Also, I am forever indebted to Roe and Penny Stamps and the Stamps President’s Scholarship Program for allowing me to attend Georgia Tech and to the Georgia Tech Research Institute for providing me with incredible opportunities to learn and grow as an engineer. Lastly, I’d like to thank the countless mentors who have believed in me, helped me learn, and Page i provided the advice that has helped form who I am today. Andrew R. M. Hoeft: As with every undertaking in my life, my involvement on this project would not have been possible without the tireless support of my family and friends.
    [Show full text]
  • Disrupting the Business Jet: but How? by Ryan S
    Disrupting the Business Jet: But How? By Ryan S. Wood Founder and CEO Frontline Aerospace, Inc Blu from Movie: RIO Just Keep It Simple Overall Aircraft Efficiency 휂 Thermal X 휂 Propulsive Disrupting Engine Performance • Problem is cooling! • Solution go full compressor flow cooling Overall Efficiency = Propulsive x Thermal Ducted Business Fan Jets Drag: Boundary Layer Ingestion (BLI) • drag reduction of 8.6% Source: AIAA Paper: Boundary Layer Ingestion Benefit of the D8 Transport Aircraft. August 24, 2017 SkyFan: Here Is One Way to Disrupt Joined Wing: Weight-Drag Reduction • 5X less bending moment at root • Less drag • Lighter wing Landing Zone Flexibility—Paved Runways •Save Time Business Jets •Get Closer to SkyFan business • Others SkyFan Reaches 2X the airports •Why? Fan thrust to weight ratio Source: CIA Factbook 2010, Top 30 Countries, Paved Runways, 11,441 Fuel Cost per Seat Mile SkyFan is as fuel efficient as Boeing 737-MAX, some 5X competitors SkyFan Circle Range Map (4 pax 5200 nmi) Challenger 350 Gulfstream G280 SkyFan SkyFan Noise Reduction •Engines inside fuselage •Intake/exhaust cowlings •Noise absorbing ducts Electronic Aircraft Window - PanDow Cameras driving internal 8K monitors GE CT7/T700 Engine • 22,000 built • 100 million flight hours • Global MRO • Upgrades Pending Intellectual Property (IP) •SkyFan Utility Patent •Engine drive ducted fan propulsion •Engine Isothermal compression (2) SkyFan Performance Metric Comparison SkyFan • Pick any set of metrics • Thrill index= (thrust/weight) • Aircraft Total Value= Bus Jets S*R*P*Airports/DOC* TOGW*Purchase Price Determining Market Demand—Mee Inc How to Price SkyFan? SkyFan Market Demand Curve – Mee Inc.
    [Show full text]
  • Conceptual Design of a Business Jet Aircraft
    International Conference on Mechanical, Industrial and Energy Engineering 2014 25-26 December, 2014, Khulna, BANGLADESH ICMIEE-PI-14035310 CONCEPTUAL DESIGN OF A BUSINESS JET AIRCRAFT Jannatun Nawar 1,*, Nafisa Nawal Probha 2 Adnan Shariar 3, Abdul Wahid4, Saifur Rahman Bakaul5 1,2,3,4 Student, Department of Aeronautical Engineering, Military Institute of Science & Technology, Dhaka-1216, 5 Associate Professor , Department of Aeronautical Engineering, Military Institute of Science & Technology, Dhaka-1216, ABSTRACT The modern jet transport is considered as one of the finest integration of technologies. Its economic success depends on performance, low maintenance costs and high passenger appeal and design plays a vital role in summing up all these factors. Conceptual design is the first step to design of an aircraft. In this paper a business jet aircraft is designed to carry 8 passengers and to cover a range of 2000 NM with maximum Mach No of 0.7 and with maximum ceiling of 29,000 ft. The conceptual design consisted of initial sizing, aerodynamics and performance analysis. Through trade studies and comparison with other business jet aircrafts a final model of the aircraft was built to achieve the requirements. Key Words: Business jet, Conceptual design, Initial Sizing, Aerodynamics, Aircraft performance, Trade study. 1. Introduction Airplane design is an art with scientifically approach. It requires both the intellectual engineering and ngiseD ygolDchceT cDogne sensible assumptions. Aircraft design is actually sgnesegigDei ytbshbashseT hcgeol done to meet certain specifications and requirements established by potential users or pioneer innovative, new ideas and technology. Now-a-days business jet aircraft is one of the most popular forms of transport aircraft.
    [Show full text]
  • Aircraft Technology Roadmap to 2050 | IATA
    Aircraft Technology Roadmap to 2050 NOTICE DISCLAIMER. The information contained in this publication is subject to constant review in the light of changing government requirements and regulations. No subscriber or other reader should act on the basis of any such information without referring to applicable laws and regulations and/or without taking appropriate professional advice. Although every effort has been made to ensure accuracy, the International Air Transport Association shall not be held responsible for any loss or damage caused by errors, omissions, misprints or misinterpretation of the contents hereof. Furthermore, the International Air Transport Association expressly disclaims any and all liability to any person or entity, whether a purchaser of this publication or not, in respect of anything done or omitted, and the consequences of anything done or omitted, by any such person or entity in reliance on the contents of this publication. © International Air Transport Association. All Rights Reserved. No part of this publication may be reproduced, recast, reformatted or transmitted in any form by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system, without the prior written permission from: Senior Vice President Member & External Relations International Air Transport Association 33, Route de l’Aéroport 1215 Geneva 15 Airport Switzerland Table of Contents Table of Contents ..............................................................................................................................................................................................................
    [Show full text]
  • The Evolution of U.S. Commercial Domestic Aircraft Operations from 1991 to 2010
    THE EVOLUTION OF U.S. COMMERCIAL DOMESTIC AIRCRAFT OPERATIONS FROM 1991 TO 2010 by MASSACHUSETTS INSTME OF TECHNOLOGY ALEXANDER ANDREW WULZ UL02 1 B.S., Aerospace Engineering University of Notre Dame (2008) Submitted to the Department of Aeronautics and Astronautics in PartialFulfillment of the Requirementsfor the Degree of MASTER OF SCIENCE at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2012 0 2012 Alexander Andrew Wulz. All rights reserved. .The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author ..................................................................... .. ...................... Department of Aeronautr and Astronautics n n May 11, 2012 Certified by ............................................................................ Peter P. Belobaba Principle Research Scientist of Aeronautics and Astronautics / Thesis Supervisor A ccepted by ................................................................... Eytan H. Modiano Professor of Aeronautics and Astronautics Chair, Graduate Program Committee 1 PAGE INTENTIONALLY LEFT BLANK 2 THE EVOLUTION OF U.S. COMMERCIAL DOMESTIC AIRCRAFT OPERATIONS FROM 1991 TO 2010 by ALEXANDER ANDREW WULZ Submitted to the Department of Aeronautics and Astronautics on May 11, 2012 in PartialFulfillment of the Requirementsfor the Degree of MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS ABSTRACT The main objective of this thesis is to explore the evolution of U.S. commercial domestic aircraft operations from 1991 to 2010 and describe the implications for future U.S. commercial domestic fleets. Using data collected from the U.S. Bureau of Transportation Statistics, we analyze 110 different aircraft types from 145 airlines operating U.S. commercial domestic service between 1991 and 2010. We classify the aircraft analyzed into four categories: turboprop, regional jet, narrow-body, and wide-body.
    [Show full text]
  • Download the Sbj Brochure
    RESERVED FOR HIGH FLYERS RECOGNISING HIGHER ACHIEVEMENT High achievers must have the freedom to travel anywhere in the world, often at short notice. They must have the facilities they need, as well as the comfort they want, wherever they go. They need that freedom and those facilities to be eco‑friendly too. The Sukhoi Business Jet recognises those needs, and provides the solution. COMFOrt, PERFOrmancE anD LUXURY With much more space than any other Business Jet in its class, the Sukhoi Business Jet offers more scope for comfort, Sukhoi Business Jet luxury and facilities; and for interiors tailored around your preferences and reflecting your prestige. Lineage 1000 Versions are available for Corporate, Government and Gulfstream 650 VIP users. All can be configured with the features – from staterooms, conference rooms and communications suites Falcon 2000 to staff accommodation – that you dictate. CORPOratE Galley Bar Lounge Conference Area Galley Lavatory VIP Lavatory Guest Seating Lavatory GOVERNMENT Galley Bar First Class Compartment Office Private Bedroom Lavatory VIP Lavatory Private Washroom VIP Galley Bar Lounge & Conference Area Private Office Private Bedroom Lavatory VIP Lavatory Private Washroom A HIGHER LEVEL OF LUXURY The Sukhoi Business Jet – SBJ – has been developed to be the most advanced executive business aircraft in service today. It combines the cabin space of an airliner with the luxury of bespoke Italian interior design, optimising style and quality with effective, practical answers to your requirements. It also offers cutting edge airframe and engine technology, ensuring that the higher level of luxury offered by the SBJ can be provided with a cost performance more typical of a standard executive aircraft.
    [Show full text]
  • Business Aviation a Boardroom Issue
    MAKING BUSINESS AVIATION A BOARDROOM ISSUE SPECIAL PRE-PRINT REPORT BY FIRST MAGAZINE, CELEBRATING EBACE 2017 An Ever-Resilient Industry Readies For A Much-Needed Rebound usiness Aviation has had its share of partnership with NBAA hosting the annual billion in time saved annually by European ups and downs certainly, but being European Business Aviation Convention companies using business aviation for their Ba cyclical industry and subject to the & Exhibition (EBACE) also shared the employees; and EUR 2,840 in average whims of global economic conditions, it good news that business aviation traffic productivity gains per passenger, per trip. has remained resilient and persistent over figures rose for the fifth consecutive (For more information, visit www.ebaa.org.) the years. Industry leaders have learned to month in March compared to the same cope amazingly well, under the most trying period in 2016. As Brandon Mitchener, Manufacturers’ R&D Investments Drive conditions. As Ed Bolen, President and the recently appointed Chief Executive Business Aviation Industry CEO of NBAA (National Business Aviation Officer of EBAA was pleased to report, In a sense, manufacturers are continuing to Association) notes, “It’s almost impossible “After several years of sluggish growth, the create their own “pent-up demand” for new to predict what we’ll see on the world stage signs are favourable for a new direction in products and technologies across all sectors over the next several years. But reliable 2017, with first quarter traffic figures up of the industry, while lending a measure indicators do point to continued, measured 6.7 percent from a year ago.
    [Show full text]
  • The Very Light Jet Arrives: Stakeholders and Their Perceptions
    Journal of Air Transportation Vol. 12, No. 1 -2007 THE VERY LIGHT JET ARRIVES: STAKEHOLDERS AND THEIR PERCEPTIONS Richard Cobb Jacksonville State University Jacksonville, Alabama James L. Thomas Jacksonville State University Jacksonville, Alabama Laura A. Cobb Auburn University Auburn, Alabama ABSTRACT This article summarizes the initial results of a systematic study that addressed issues related to the direct and indirect market impact of very light jet (VLJ) aircraft. Although reports in the popular press offer wide-ranging estimates of the impact that these new jets will have on existing air travel, no systematic data exists that may be of use to all potential stakeholders. This introductory study serves to describe potential VLJ users and their perceptions of this new type of aircraft. _____________________________________________________________________________ Richard Cobb (Ph.D., The University of Alabama) is a professor of management at Jacksonville State University. His research has appeared in such publications as Simulation, Quality Progress, Academy of Strategic Management, Journal of Air Transport Management, and the Journal of the International Academy for Case Studies. He has been published in numerous conference proceedings. James L. Thomas (Ph.D., University of Mississippi) is currently an associate professor of marketing at Jacksonville State University. His research has appeared in such publications as the Journal of Retailing, Business Ethics Quarterly, Journal of Nonprofit and Public Sector Marketing, and the Journal of Marketing Theory & Practice. He has also published papers in several national and regional conference proceedings. Laura A. Cobb (MBA, Auburn University) is a cost specialist in the market research and technology department of Blue Cross and Blue Shield of Alabama.
    [Show full text]