Aircraft Technology Roadmap to 2050 | IATA

Total Page:16

File Type:pdf, Size:1020Kb

Aircraft Technology Roadmap to 2050 | IATA Aircraft Technology Roadmap to 2050 NOTICE DISCLAIMER. The information contained in this publication is subject to constant review in the light of changing government requirements and regulations. No subscriber or other reader should act on the basis of any such information without referring to applicable laws and regulations and/or without taking appropriate professional advice. Although every effort has been made to ensure accuracy, the International Air Transport Association shall not be held responsible for any loss or damage caused by errors, omissions, misprints or misinterpretation of the contents hereof. Furthermore, the International Air Transport Association expressly disclaims any and all liability to any person or entity, whether a purchaser of this publication or not, in respect of anything done or omitted, and the consequences of anything done or omitted, by any such person or entity in reliance on the contents of this publication. © International Air Transport Association. All Rights Reserved. No part of this publication may be reproduced, recast, reformatted or transmitted in any form by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system, without the prior written permission from: Senior Vice President Member & External Relations International Air Transport Association 33, Route de l’Aéroport 1215 Geneva 15 Airport Switzerland Table of Contents Table of Contents ............................................................................................................................................................................................................... 3 Abbreviations ....................................................................................................................................................................................................................... 4 Figures .................................................................................................................................................................................................................................... 5 Tables ...................................................................................................................................................................................................................................... 6 Executive Summary ........................................................................................................................................................................................................... 7 1. Introduction ................................................................................................................................................................................................................ 9 1.1. Background ..................................................................................................................................................................................................... 9 1.2. Scope of this Report ................................................................................................................................................................................. 11 1.3. Technology Objectives ............................................................................................................................................................................ 11 2. Evolutionary Aircraft Technologies ................................................................................................................................................................. 14 2.1. Baseline Fleet and Imminent Aircraft .................................................................................................................................................. 14 2.2. Future Technologies ................................................................................................................................................................................. 16 2.3. Individual Technologies ........................................................................................................................................................................... 18 3. Revolutionary Aircraft Technologies .............................................................................................................................................................. 21 3.1. Novel Airframe Configurations .............................................................................................................................................................. 21 3.2. Revolutionary Structure and Materials ............................................................................................................................................... 24 3.3. Revolutionary Propulsion Technology ................................................................................................................................................ 25 3.4. Assessment of Revolutionary Technology Concepts and Deployment Challenges ......................................................... 31 3.5. Economic Aspects of Revolutionary Aircraft Development Programs .................................................................................. 34 4. Modelling Future Aircraft Emissions ............................................................................................................................................................... 36 4.1. Selection of Technology Scenarios .................................................................................................................................................... 36 4.2. Fleet Simulation Results ........................................................................................................................................................................... 38 4.3. Technology and Aircraft Program Sensitivity: Fuel Calculation Results ............................................................................... 39 4.4. Annual CO2 Improvements at Global Fleet Level ............................................................................................................................ 41 5. Disruptive Technologies ..................................................................................................................................................................................... 43 6. Conclusions and Recommendations ............................................................................................................................................................. 45 7. References ............................................................................................................................................................................................................... 47 Acknowledgements ........................................................................................................................................................................................................ 51 3 Abbreviations ACARE Advisory Council for Aviation Research and Innovation in Europe APU Auxiliary Power Unit ASK Available Seat Kilometer ATRU Auto Transformer Rectifier Unit BLADE Breakthrough Laminar Aircraft Demonstrator in Europe BLI Boundary-Layer Ingestion BPR Bypass Ratio BWB Blended Wing Body CENTRELINE Concept validation study for fuselage wakefillIng propulsion integration CLEEN Continuous Lower Energy, Emissions and Noise CO2 Carbon Dioxide CORSIA Carbon Offsetting and Reduction Scheme for International Aviation DC Direct Current DLR German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt) DOC Direct Operating Costs EGTS Electric Green Taxiing System EIS Entry into Service ERA Environmentally Responsible Aviation GARDN Green Aviation Research and Development Network HLFC Hybrid Laminar Flow Control HWB Hybrid Wing Body IATA International Air Transport Association ICAO International Civil Aviation Organization InP In-production LUC Land-Use Change MIT Massachusetts Institute of Technology NASA National Aeronautics and Space Agency NLF Natural Laminar Flow NMA New Midsize Aircraft NT New Type PFC Propulsive Fuselage Concept RPK Revenue Passenger Kilometer R&T Research and Technology SAF Sustainable Aviation Fuel SAW Spanwise Adaptive Wing SMA Shape Memory Alloy SUGAR Subsonic Ultra Green Aircraft Research TRL Technology Readiness Level VTOL Vertical Take-Off and Landing 4 Figures Figure 1: Evolution of Aircraft Technology ................................................................................................................................................................ 9 Figure 2: (Left) Commercial aviation CO2 emissions (right scale) compared to overall anthropogenic CO2 emissions (left scale), broken down into industrial emissions (fossil fuel and cement) and land use change (LUC) (from [2]); (Right) Commercial aviation CO2 emissions compared to overall anthropogenic CO2 emissions .................................................................. 10 Figure 3: Schematic CO2 emissions reduction roadmap................................................................................................................................... 10 Figure 4: Timeline of expected future fuel efficiency improvements compared to predecessor aircraft or engine of the same category, details are given in Chapters 2 and 3 ...................................................................................................................................................
Recommended publications
  • Remote Pilot – Small Unmanned Aircraft Systems Study Guide
    F FAA-G-8082-22 U.S. Department of Transportation Federal Aviation Administration Remote Pilot – Small Unmanned Aircraft Systems Study Guide August 2016 Flight Standards Service Washington, DC 20591 This page intentionally left blank. Preface The Federal Aviation Administration (FAA) has published the Remote Pilot – Small Unmanned Aircraft Systems (sUAS) Study Guide to communicate the knowledge areas you need to study to prepare to take the Remote Pilot Certificate with an sUAS rating airman knowledge test. This Remote Pilot – Small Unmanned Aircraft Systems Study Guide is available for download from faa.gov. Please send comments regarding this document to [email protected]. Remote Pilot – Small Unmanned Aircraft Systems Study Guide i This page intentionally left blank. Remote Pilot – Small Unmanned Aircraft Systems Study Guide ii Table of Contents Introduction ........................................................................................................................... 1 Obtaining Assistance from the Federal Aviation Administration (FAA) .............................................. 1 FAA Reference Material ...................................................................................................................... 1 Chapter 1: Applicable Regulations .......................................................................................... 3 Chapter 2: Airspace Classification, Operating Requirements, and Flight Restrictions .............. 5 Introduction ........................................................................................................................................
    [Show full text]
  • Easy Access Rules for Auxiliary Power Units (CS-APU)
    APU - CS Easy Access Rules for Auxiliary Power Units (CS-APU) EASA eRules: aviation rules for the 21st century Rules and regulations are the core of the European Union civil aviation system. The aim of the EASA eRules project is to make them accessible in an efficient and reliable way to stakeholders. EASA eRules will be a comprehensive, single system for the drafting, sharing and storing of rules. It will be the single source for all aviation safety rules applicable to European airspace users. It will offer easy (online) access to all rules and regulations as well as new and innovative applications such as rulemaking process automation, stakeholder consultation, cross-referencing, and comparison with ICAO and third countries’ standards. To achieve these ambitious objectives, the EASA eRules project is structured in ten modules to cover all aviation rules and innovative functionalities. The EASA eRules system is developed and implemented in close cooperation with Member States and aviation industry to ensure that all its capabilities are relevant and effective. Published February 20181 1 The published date represents the date when the consolidated version of the document was generated. Powered by EASA eRules Page 2 of 37| Feb 2018 Easy Access Rules for Auxiliary Power Units Disclaimer (CS-APU) DISCLAIMER This version is issued by the European Aviation Safety Agency (EASA) in order to provide its stakeholders with an updated and easy-to-read publication. It has been prepared by putting together the certification specifications with the related acceptable means of compliance. However, this is not an official publication and EASA accepts no liability for damage of any kind resulting from the risks inherent in the use of this document.
    [Show full text]
  • Aircraft Engine Performance Study Using Flight Data Recorder Archives
    Aircraft Engine Performance Study Using Flight Data Recorder Archives Yashovardhan S. Chati∗ and Hamsa Balakrishnan y Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA Aircraft emissions are a significant source of pollution and are closely related to engine fuel burn. The onboard Flight Data Recorder (FDR) is an accurate source of information as it logs operational aircraft data in situ. The main objective of this paper is the visualization and exploration of data from the FDR. The Airbus A330 - 223 is used to study the variation of normalized engine performance parameters with the altitude profile in all the phases of flight. A turbofan performance analysis model is employed to calculate the theoretical thrust and it is shown to be a good qualitative match to the FDR reported thrust. The operational thrust settings and the times in mode are found to differ significantly from the ICAO standard values in the LTO cycle. This difference can lead to errors in the calculation of aircraft emission inventories. This paper is the first step towards the accurate estimation of engine performance and emissions for different aircraft and engine types, given the trajectory of an aircraft. I. Introduction Aircraft emissions depend on engine characteristics, particularly on the fuel flow rate and the thrust. It is therefore, important to accurately assess engine performance and operational fuel burn. Traditionally, the estimation of fuel burn and emissions has been done using the ICAO Aircraft Engine Emissions Databank1. However, this method is approximate and the results have been shown to deviate from the measured values of emissions from aircraft in operation2,3.
    [Show full text]
  • Trends in International Arms Transfers, 2020 3
    SIPRI Fact Sheet March 2021 TRENDS IN INTERNATIONAL KEY FACTS w The volume of international ARMS TRANSFERS, 2020 transfers of major arms in 2016–20 was 0.5 per cent lower than in 2011–15 and 12 per cent pieter d. wezeman, alexandra kuimova and higher than in 2006–10. siemon t. wezeman w The five largest arms exporters in 2016–20 were the The volume of international transfers of major arms in 2016–20 was United States, Russia, France, 0.5 per cent lower than in 2011–15 and 12 per cent higher than in 2006–10 Germany and China. Together, they accounted for 76 per cent of (see figure 1).1 The five largest arms exporters in 2016–20 were the United all exports of major arms in States, Russia, France, Germany and China (see table 1). The five largest 2016–20. arms importers were Saudi Arabia, India, Egypt, Australia and China w In 2016–20 US arms exports (see table 2). Between 2011–15 and 2016–20 there were increases in arms accounted for 37 per cent of the transfers to the Middle East (25 per cent) and to Europe (12 per cent), while global total and were 15 per cent there were decreases in the transfers to Africa (–13 per cent), the Americas higher than in 2011–15. (–43 per cent), and Asia and Oceania (–8.3 per cent). w Russian arms exports From 15 March 2021 SIPRI’s open-access Arms Transfers Database decreased by 22 per cent includes updated data on transfers of major arms for 1950–2020, which between 2011–15 and 2016–20.
    [Show full text]
  • [20Pt]Algorithms for Constrained Optimization: [ 5Pt]
    SOL Optimization 1970s 1980s 1990s 2000s 2010s Summary 2020s Algorithms for Constrained Optimization: The Benefits of General-purpose Software Michael Saunders MS&E and ICME, Stanford University California, USA 3rd AI+IoT Business Conference Shenzhen, China, April 25, 2019 Optimization Software 3rd AI+IoT Business Conference, Shenzhen, April 25, 2019 1/39 SOL Optimization 1970s 1980s 1990s 2000s 2010s Summary 2020s SOL Systems Optimization Laboratory George Dantzig, Stanford University, 1974 Inventor of the Simplex Method Father of linear programming Large-scale optimization: Algorithms, software, applications Optimization Software 3rd AI+IoT Business Conference, Shenzhen, April 25, 2019 2/39 SOL Optimization 1970s 1980s 1990s 2000s 2010s Summary 2020s SOL history 1974 Dantzig and Cottle start SOL 1974{78 John Tomlin, LP/MIP expert 1974{2005 Alan Manne, nonlinear economic models 1975{76 MS, MINOS first version 1979{87 Philip Gill, Walter Murray, MS, Margaret Wright (Gang of 4!) 1989{ Gerd Infanger, stochastic optimization 1979{ Walter Murray, MS, many students 2002{ Yinyu Ye, optimization algorithms, especially interior methods This week! UC Berkeley opened George B. Dantzig Auditorium Optimization Software 3rd AI+IoT Business Conference, Shenzhen, April 25, 2019 3/39 SOL Optimization 1970s 1980s 1990s 2000s 2010s Summary 2020s Optimization problems Minimize an objective function subject to constraints: 0 x 1 min '(x) st ` ≤ @ Ax A ≤ u c(x) x variables 0 1 A matrix c1(x) B . C c(x) nonlinear functions @ . A c (x) `; u bounds m Optimization
    [Show full text]
  • Improving Passenger Experiences
    IMPROVING PASSENGER EXPERIENCES Meeting the Expectations of Modern Passengers Customer experiences are composed of every interaction between 3 The Customer Expectation Framework an organization and its customers throughout their relationship. In industries of all kinds, this relationship is becoming more and more 86% 4 Staying Connected in the Sky important to success. of buyers are willing to pay more for a great customer 5 Entertainment at 30,000 Feet Customers simply expect more - and not just more product for their experience. 6 Reduced Turbulence for Smoother Flights money. They expect a more consistent and fulfilling experience 7 Faster Turnarounds for More from the moment they begin searching for a product like air travel to long after the flight is over. On-Time Arrivals and Departures 8 Air Quality and Temperature Control When customers book air travel, they don’t just buy tickets. They buy an experience. So for airlines, business aviation operators and 73% for More Comfortable Cabins others, the quest is on to maximize that experience. They must of buyers point to customer experience as an important 9 Spotlight on Airliners transform the way flight works to build a new, more customer- factor in purchasing decisions.1 centered future for air travel. Doing so requires seeing each step of 10 Spotlight on Helicopters the experience from the viewpoint of the customer. 11 Spotlight on Business Jets 12 Honeywell Solutions for Comfort and Passenger Experience 13 User-Focused Communication Systems 14 Solutions for Reducing Weather Hazards and Turbulence 15 Tools to Achieve Better On-Time Performance 16 Systems for Optimized Temperature and Air Quality 1.
    [Show full text]
  • Aerospace Engine Data
    AEROSPACE ENGINE DATA Data for some concrete aerospace engines and their craft ................................................................................. 1 Data on rocket-engine types and comparison with large turbofans ................................................................... 1 Data on some large airliner engines ................................................................................................................... 2 Data on other aircraft engines and manufacturers .......................................................................................... 3 In this Appendix common to Aircraft propulsion and Space propulsion, data for thrust, weight, and specific fuel consumption, are presented for some different types of engines (Table 1), with some values of specific impulse and exit speed (Table 2), a plot of Mach number and specific impulse characteristic of different engine types (Fig. 1), and detailed characteristics of some modern turbofan engines, used in large airplanes (Table 3). DATA FOR SOME CONCRETE AEROSPACE ENGINES AND THEIR CRAFT Table 1. Thrust to weight ratio (F/W), for engines and their crafts, at take-off*, specific fuel consumption (TSFC), and initial and final mass of craft (intermediate values appear in [kN] when forces, and in tonnes [t] when masses). Engine Engine TSFC Whole craft Whole craft Whole craft mass, type thrust/weight (g/s)/kN type thrust/weight mini/mfin Trent 900 350/63=5.5 15.5 A380 4×350/5600=0.25 560/330=1.8 cruise 90/63=1.4 cruise 4×90/5000=0.1 CFM56-5A 110/23=4.8 16
    [Show full text]
  • Air Force Airframe and Powerplant (A&P) Certification Program
    Air Force Airframe and Powerplant (A&P) Certification Program Introduction: Most military aircraft maintenance technicians are eligible to pursue the Federal Aviation Administration (FAA) Airframe & Powerplant (A&P) certification based on documented evidence of 30 months practical aircraft maintenance experience in airframe and powerplant systems per Title 14, Code of Federal Regulations (CFR), Part 65- Certification: Airmen Other Than Flight Crew Members; Subpart D-Mechanics. Air Force education, training and experience and FAA eligibility requirements per Title 14, CFR Part 65.77. This FAA-approved program is a voluntary program which benefits the technician and the Air Force, with consideration to professional development, recruitment, retention, and transition. Completing this program, outlined in the program Qualification Training Package (QTP), will assist technicians in meeting FAA eligibility requirements and being better-prepared for the FAA exams. Three-Tier Program: The program is a three-tier training and experience program. These elements are required for program completion and are important for individual development, knowledge assessment, meeting FAA certification eligibility, and preparation for the FAA exams: Three Online Courses (02AF1-General, 02AF2-Airframe, & 02AF3-Powerplant). On the Job Training (OJT) Qualification Training Package(QTP). Documented evidence of 30 months practical experience in airframe and powerplant systems. Program Eligibility: Active duty, guard and reserve technicians who possess at least a 5-skill level in one of the following aircraft maintenance AFSCs are eligible to enroll: 2A0X1, 2A090, 2A2X1, 2A2X2, 2A2X3, 2A3X3, 2A3X4, 2A3X5, 2A3X7, 2A3X8, 2A390, 2A300, 2A5X1, 2A5X2, 2A5X3, 2A5X4, 2A590, 2A500, 2A6X1, 2A6X3, 2A6X4, 2A6X5, 2A6X6, 2A690, 2A691, 2A600 (except AGE), 2A7X1, 2A7X2, 2A7X3, 2A7X5, 2A790, 2A8X1, 2A8X2, 2A9X1, 2A9X2, and 2A9X3.
    [Show full text]
  • Faa Ac 20-186
    U.S. Department Advisory of Transportation Federal Aviation Administration Circular Subject: Airworthiness and Operational Date: 7/22/16 AC No: 20-186 Approval of Cockpit Voice Recorder Initiated by: AFS-300 Change: Systems 1 GENERAL INFORMATION. 1.1 Purpose. This advisory circular (AC) provides guidance for compliance with applicable regulations for the airworthiness and operational approval for required cockpit voice recorder (CVR) systems. Non-required installations may use this guidance when installing a CVR system as a voluntary safety enhancement. This AC is not mandatory and is not a regulation. This AC describes an acceptable means, but not the only means, to comply with Title 14 of the Code of Federal Regulations (14 CFR). However, if you use the means described in this AC, you must conform to it in totality for required installations. 1.2 Audience. We, the Federal Aviation Administration (FAA), wrote this AC for you, the aircraft manufacturers, CVR system manufacturers, aircraft operators, Maintenance Repair and Overhaul (MRO) Organizations and Supplemental Type Certificate (STC) applicants. 1.3 Cancellation. This AC cancels AC 25.1457-1A, Cockpit Voice Recorder Installations, dated November 3, 1969. 1.4 Related 14 CFR Parts. Sections of 14 CFR parts 23, 25, 27, 29, 91, 121, 125, 129, and 135 detail design substantiation and operational approval requirements directly applicable to the CVR system. See Appendix A, Flowcharts, to determine the applicable regulations for your aircraft and type of operation. Listed below are the specific 14 CFR sections applicable to this AC: • Part 23, § 23.1457, Cockpit Voice Recorders. • Part 23, § 23.1529, Instructions for Continued Airworthiness.
    [Show full text]
  • Spacecraft American Aerospace Controls
    Spacecraft For More Than 50 Years, Our Experience Is Your Assurance™ AAC Manufactures high-reliability voltage and current sensors for: Satellites UAVs Commercial Aircraft Missiles Underwater Vehicles Military Aircraft Launch Systems Armored Vehicles Ships Helicopters Industrial Equipment Rail AAC is a Woman-Owned Business and all parts are manufactured at AAC’s Farmingdale, NY location. American Aerospace Controls 570 Smith Street, Farmingdale NY 11735 Phone: +1 (631) 694-5100 – Fax: +1 (631) 694-6739 http://a-a-c.com ©American Aerospace Controls 10-2016 Aircraft-UAVs Rail AAC Quality and Engineering Industrial Defense For More Than 50 Years, Our Experience is Your Assurance™ AAC Engineering and Quality Depart- Since 1965, American Aerospace Controls has been manufacturing high reliability ments are here to work with you on the AC & DC current, voltage and frequency sensors, transducers and detectors. With design and qualification of your parts. an emphasis on engineering solutions and customer support, AAC has developed Our vast experience in space flight app- long-term relationships with some of the largest aerospace, defense, transit and industrial companies around the globe. lications allows us to offer insight into the design and requirements of each unique Space Application. AAC main- AAC in Space tains the highest standards in Quality and Production. AAC sensors have been used on numerous manned and unmanned spacecraft, satellite, rocket and Unmanned Aerial Vehicle (UAV) programs. AAC has been involved with space flight applications since the mid-1960s. AAC’s extensive From the Mercury Program in the 1960’s to today’s international commercial and knowledge and decades of experience in designing and manufacturing defense satellite systems, AAC engineers have helped design current and voltage transducers and detectors capable of providing high reliability in harsh remote detectors and transducers that are the best available.
    [Show full text]
  • Facts & Figures & Figures
    OCTOBER 2019 FACTS & FIGURES & FIGURES THE STAR ALLIANCE NETWORK RADAR The Star Alliance network was created in 1997 to better meet the needs of the frequent international traveller. MANAGEMENT INFORMATION Combined Total of the current Star Alliance member airlines: FOR ALLIANCE EXECUTIVES Total revenue: 179.04 BUSD Revenue Passenger 1,739,41 bn Km: Daily departures: More than Annual Passengers: 762,27 m 19,000 Countries served: 195 Number of employees: 431,500 Airports served: Over 1,300 Fleet: 5,013 Lounges: More than 1,000 MEMBER AIRLINES Aegean Airlines is Greece’s largest airline providing at its inception in 1999 until today, full service, premium quality short and medium haul services. In 2013, AEGEAN acquired Olympic Air and through the synergies obtained, network, fleet and passenger numbers expanded fast. The Group welcomed 14m passengers onboard its flights in 2018. The Company has been honored with the Skytrax World Airline award, as the best European regional airline in 2018. This was the 9th time AEGEAN received the relevant award. Among other distinctions, AEGEAN captured the 5th place, in the world's 20 best airlines list (outside the U.S.) in 2018 Readers' Choice Awards survey of Condé Nast Traveler. In June 2018 AEGEAN signed a Purchase Agreement with Airbus, for the order of up to 42 new generation aircraft of the 1 MAY 2019 FACTS & FIGURES A320neo family and plans to place additional orders with lessors for up to 20 new A/C of the A320neo family. For more information please visit www.aegeanair.com. Total revenue: USD 1.10 bn Revenue Passenger Km: 11.92 m Daily departures: 139 Annual Passengers: 7.19 m Countries served: 44 Number of employees: 2,498 Airports served: 134 Joined Star Alliance: June 2010 Fleet size: 49 Aircraft Types: A321 – 200, A320 – 200, A319 – 200 Hub Airport: Athens Airport bases: Thessaloniki, Heraklion, Rhodes, Kalamata, Chania, Larnaka Current as of: 14 MAY 19 Air Canada is Canada's largest domestic and international airline serving nearly 220 airports on six continents.
    [Show full text]
  • Comparison of Helicopter Turboshaft Engines
    Comparison of Helicopter Turboshaft Engines John Schenderlein1, and Tyler Clayton2 University of Colorado, Boulder, CO, 80304 Although they garnish less attention than their flashy jet cousins, turboshaft engines hold a specialized niche in the aviation industry. Built to be compact, efficient, and powerful, turboshafts have made modern helicopters and the feats they accomplish possible. First implemented in the 1950s, turboshaft geometry has gone largely unchanged, but advances in materials and axial flow technology have continued to drive higher power and efficiency from today's turboshafts. Similarly to the turbojet and fan industry, there are only a handful of big players in the market. The usual suspects - Pratt & Whitney, General Electric, and Rolls-Royce - have taken over most of the industry, but lesser known companies like Lycoming and Turbomeca still hold a footing in the Turboshaft world. Nomenclature shp = Shaft Horsepower SFC = Specific Fuel Consumption FPT = Free Power Turbine HPT = High Power Turbine Introduction & Background Turboshaft engines are very similar to a turboprop engine; in fact many turboshaft engines were created by modifying existing turboprop engines to fit the needs of the rotorcraft they propel. The most common use of turboshaft engines is in scenarios where high power and reliability are required within a small envelope of requirements for size and weight. Most helicopter, marine, and auxiliary power units applications take advantage of turboshaft configurations. In fact, the turboshaft plays a workhorse role in the aviation industry as much as it is does for industrial power generation. While conventional turbine jet propulsion is achieved through thrust generated by a hot and fast exhaust stream, turboshaft engines creates shaft power that drives one or more rotors on the vehicle.
    [Show full text]