Lung Damaging Agents (Choking Agents)

Total Page:16

File Type:pdf, Size:1020Kb

Lung Damaging Agents (Choking Agents) 377 J R Army Med Corps: first published as 10.1136/jramc-148-04-07 on 1 December 2002. Downloaded from Lung Damaging Agents (Choking Agents) GENERAL lung damaging materials injury such as those in smoke or products of combustion may Introduction cause toxic inhalational injury following the Lung damaging agents are chemical agents, generation of particulate aerosols. which produce a toxic inhalational injury – Military dispersion of phosgene during they attack lung tissue and primarily cause World War I followed the explosion of liquid pulmonary oedema. Whether produced for filled shells with subsequent rapid military or industrial use, these chemical evaporation and formation of a white cloud agents pose a very real threat to military due to its slight solubility in an aqueous personnel. environment. It spontaneously converted to a The term choking agents has been colourless, low-lying gas four times as dense traditionally applied to the use of certain as air. Because of its relatively low boiling lung damaging agents as chemical weapons, point (7.5ºC), phosgene was often mixed with and includes phosgene (CG), diphosgene other substances. Chlorine was released from (DP), chlorine (CL), and chloropicrin (PS). pressurised cylinders to form a pungent Phosgene accounted for 80% of all chemical greenish-yellow gas that was heavier than air. fatalities in World War I, but at least 14 different respiratory agents were used, as well Detection as obscurants (smokes), harassing agents Although field-detection equipment for (chloracetone), and vesicants (mustard) that classical choking agents is currently could cause pulmonary injury. employed by some nations, and various Today, only a handful of such pulmonary commercial industrial detectors are available toxicants still exist in stockpiles around the for the wider of lung damaging agents, there world. Several however, such as chlorine and are no automatic detectors in service. The phosgene, are currently produced in large characteristic odour of some lung damaging quantities for industrial purposes; other toxic agents may be unreliable as a sure means of industrial chemicals which may cause toxic detection. For example, in low concentration http://militaryhealth.bmj.com/ inhalational injury include ammonia, phosgene has a smell resembling new mown isocyanates, mineral acids etc. hay, but the odour may be faint or lost after Other lung damaging materials – although accommodation. There is also considerable not likely to be used as CW agents - are still variation in the sense of smell between likely to be encountered on the battlefield. individuals. Perfluoroisobutylene (PFIB) is a toxic Similarly the eye irritation, coughing, pyrolysis product of tetrafluoroethylene sneezing, hoarseness, and other central polymers encountered in military materiel respiratory effects seen after exposure to high (e.g., Teflon®, found in the interior of many concentrations of some pulmonary toxicants are also unreliable indicators of exposure, as military vehicles). The oxides of nitrogen on September 29, 2021 by guest. Protected copyright. (NOx) are components of blast weapons or these may be transient or entirely absent at may be toxic decomposition products. lower but still potentially lethal Smokes (e.g. HC) contain toxic compounds concentrations. This is particularly true in that cause the same effects as phosgene. the case of phosgene. Similar substances encountered in fires, e.g. PFIB, isocyanates, phosgene, and HCl may Protection also produce lung damage. Chemical fire The activated charcoal in the canister of the extinguishers containing carbon dioxide chemical protective mask adsorbs phosgene, should not be used in confined spaces to and in-service respirators afford full extinguish thermite or magnesium types of protection from this and other choking incendiaries - carbon tetrachloride in contact agents. However, only limited or temporary with flame or hot metal produces a mixture protection against toxic products of of phosgene, chlorine, carbon monoxide and combustion or smoke can be assumed, and hydrochloric acid. may be complicated in addition by the presence of oxygen-depleted air. Physical and Chemical Properties Decontamination Choking agents are usually true gases in field No decontamination is required following environments, and stored and transported as exposure to classic choking agents or other a liquid under pressure. Other less volatile lung damaging agents in gas or vapour form. 378 J R Army Med Corps: first published as 10.1136/jramc-148-04-07 on 1 December 2002. Downloaded from Following exposure to high concentrations of centrally acting irritants, sufficient agent may penetrate into the peripheral lung to cause pulmonary oedema. Similarly, high conc- entrations of peripherally-acting agents can release enough hydrochloric acid to cause significant central airway irritation and epithelial damage. Because chlorine is intermediate in its solubility and reactivity, chlorine-exposed soldiers in World War I usually exhibited both central airway damage and pulmonary oedema, even from moderate concentrations of the gas. Phosgene is only slightly soluble in water and aqueous solutions; once dissolved, it rapidly hydrolyses to form carbon dioxide and hydrochloric acid. The early-onset ocular, nasopharyngeal, and central airway irritation from high concentrations of phosgene appears to result from the release of Fig 26. Phosgene induced injury to pig lungs. hydrochloric acid during phosgene hydrolysis by water in the upper airways. Mechanism of Action Chemicals that are highly reactive and/or Toxicity highly soluble in aqueous solutions tend to The odour threshold for phosgene is about act in the conducting, or central 1.5 mg/m3, and phosgene irritates mucous compartment of the respiratory tract. membranes at 4 mg/m3. The LCt50 of Centrally-acting irritants such as sulphur phosgene is approximately 3200 mg.min.m-3, mustard, ammonia, and hydrochloric acid, which is half the LCt50 (6,000 mg.min.m-3) cause pronounced irritation of the epithelial of chlorine, the first gas used on a large scale cells lining the upper airway. Additionally, at in World War I. Phosgene is twice as toxic as low concentrations, centrally-acting chlorine; although it is less potent than compounds are essentially consumed by almost all of the subsequently developed deposition and reaction in the conducting chemical warfare agents, this should not lead airways before they reach the peripheral to an underestimation of its danger - deaths portion of the respiratory tract. have occurred after the inhalation of only a In contrast, most of the pulmonary agents, few breaths of high concentrations of http://militaryhealth.bmj.com/ such as phosgene, oxides of nitrogen, and phosgene. Perfluoroisobutylene (PFIB) is PFIB, are relatively insoluble and said to be ten times more toxic than nonreactive, readily penetrating to the level phosgene. of the respiratory bronchioles and the alveoli. There they undergo acylation reactions and are essentially consumed at that site, causing CLINICAL-PATHOLOGICAL the damage that may eventually lead to pulmonary oedema. EFFECTS Chemically induced, acute lung injury by these peripherally-acting agents involves a Pathology permeability defect in the blood-air barrier The outstanding feature of acute lung injury on September 29, 2021 by guest. Protected copyright. (the alveolar-capillary membrane); however, caused by lung damaging agents is massive the precise mechanisms of toxicity remain pulmonary oedema. This is preceded by largely unknown. Leakage of fluid from damage to the bronchiolar epithelium, capillaries into the pulmonary interstitium is development of patchy areas of emphysema, normally compensated by lymphatic partial atelectasis, and oedema of the drainage from the parenchyma, but as the perivascular connective tissue. The trachea fluid leakage increases, normal drainage and bronchi are usually normal in mechanisms become progressively over- appearance. This contrasts with the findings whelmed. After an asymptomatic or latent in chlorine and chloropicrin poisoning in period of 20 min to 24 h (depending on the which both structures may show serious exposed dose), fluid leakage into the damage to the epithelial lining with pulmonary interstitium decreases comp- desquamation. The lungs are large, liance producing a stiff lung and increasing oedematous and darkly congested. Oedema complaint of tight chest, shortness of breath, fluid, usually frothy, pours from the bronchi and dyspnoea. Fluid eventually invades the and may be seen escaping from the mouth alveoli and produces clinically evident and nostrils (Figure 26). With exposure to pulmonary oedema. very high concentrations, death may occur The distinction between centrally and within several hours; in most fatal cases peripherally acting agents is not strict. pulmonary oedema reaches a maximum in 379 J R Army Med Corps: first published as 10.1136/jramc-148-04-07 on 1 December 2002. Downloaded from 12h, followed by death in 24 to 48h. If the support, such patients are at high risk of casualty survives, resolution commences death. Complications include infection of within 48h and, in the absence of comp- damaged lungs and delayed deaths following licating infection, there may be little or no such respiratory infections. residual damage. Condition of Exposed Tissues Clinical Effects Pre-existing airway damage (such as that Exposure to high concentrations of lung caused by prior exposure to a lung damaging damaging agent may
Recommended publications
  • Chemical Threat Agents Call Poison Control 24/7 for Treatment Information 1.800.222.1222 Blood Nerve Blister Pulmonary Metals Toxins
    CHEMICAL THREAT AGENTS CALL POISON CONTROL 24/7 FOR TREATMENT INFORMATION 1.800.222.1222 BLOOD NERVE BLISTER PULMONARY METALS TOXINS SYMPTOMS SYMPTOMS SYMPTOMS SYMPTOMS SYMPTOMS SYMPTOMS • Vertigo • Diarrhea, diaphoresis • Itching • Upper respiratory tract • Cough • Shock • Tachycardia • Urination • Erythema irritation • Metallic taste • Organ failure • Tachypnea • Miosis • Yellowish blisters • Rhinitis • CNS effects • Cyanosis • Bradycardia, bronchospasm • Flu-like symptoms • Coughing • Shortness of breath • Flu-like symptoms • Emesis • Delayed eye irritation • Choking • Flu-like symptoms • Nonspecific neurological • Lacrimation • Delayed pulmonary edema • Visual disturbances symptoms • Salivation, sweating INDICATIVE LAB TESTS INDICATIVE LAB TESTS INDICATIVE LAB TEST INDICATIVE LAB TESTS INDICATIVE LAB TESTS INDICATIVE LAB TESTS • Increased anion gap • Decreased cholinesterase • Thiodiglycol present in urine • Decreased pO2 • Proteinuria None Available • Metabolic acidosis • Increased anion gap • Decreased pCO2 • Renal assessment • Narrow pO2 difference • Metabolic acidosis • Arterial blood gas between arterial and venous • Chest radiography samples DEFINITIVE TEST DEFINITIVE TEST DEFINITIVE TEST DEFINITIVE TESTS DEFINITIVE TESTS • Blood cyanide levels • Urine nerve agent • Urine blister agent No definitive tests available • Blood metals panel • Urine ricinine metabolites metabolites • Urine metals panel • Urine abrine POTENTIAL AGENTS POTENTIAL AGENTS POTENTIAL AGENTS POTENTIAL AGENTS POTENTIAL AGENTS POTENTIAL AGENTS • Hydrogen Cyanide
    [Show full text]
  • Nerve Agent - Lntellipedia Page 1 Of9 Doc ID : 6637155 (U) Nerve Agent
    This document is made available through the declassification efforts and research of John Greenewald, Jr., creator of: The Black Vault The Black Vault is the largest online Freedom of Information Act (FOIA) document clearinghouse in the world. The research efforts here are responsible for the declassification of MILLIONS of pages released by the U.S. Government & Military. Discover the Truth at: http://www.theblackvault.com Nerve Agent - lntellipedia Page 1 of9 Doc ID : 6637155 (U) Nerve Agent UNCLASSIFIED From lntellipedia Nerve Agents (also known as nerve gases, though these chemicals are liquid at room temperature) are a class of phosphorus-containing organic chemicals (organophosphates) that disrupt the mechanism by which nerves transfer messages to organs. The disruption is caused by blocking acetylcholinesterase, an enzyme that normally relaxes the activity of acetylcholine, a neurotransmitter. ...--------- --- -·---- - --- -·-- --- --- Contents • 1 Overview • 2 Biological Effects • 2.1 Mechanism of Action • 2.2 Antidotes • 3 Classes • 3.1 G-Series • 3.2 V-Series • 3.3 Novichok Agents • 3.4 Insecticides • 4 History • 4.1 The Discovery ofNerve Agents • 4.2 The Nazi Mass Production ofTabun • 4.3 Nerve Agents in Nazi Germany • 4.4 The Secret Gets Out • 4.5 Since World War II • 4.6 Ocean Disposal of Chemical Weapons • 5 Popular Culture • 6 References and External Links --------------- ----·-- - Overview As chemical weapons, they are classified as weapons of mass destruction by the United Nations according to UN Resolution 687, and their production and stockpiling was outlawed by the Chemical Weapons Convention of 1993; the Chemical Weapons Convention officially took effect on April 291997. Poisoning by a nerve agent leads to contraction of pupils, profuse salivation, convulsions, involuntary urination and defecation, and eventual death by asphyxiation as control is lost over respiratory muscles.
    [Show full text]
  • Toxic Industrial Chemicals
    J R Army Med Corps 2002; 148: 371-381 J R Army Med Corps: first published as 10.1136/jramc-148-04-06 on 1 December 2002. Downloaded from Toxic Industrial Chemicals Introduction location to another. Depending on the The first chemical warfare agent of the available routes of movement, and quantity modern era, chlorine, was released with of chemical to be moved, transport can occur devastating effect on 22 April 1915 at Ypres, by truck or rail tank cars, over water by barge Belgium. Along a 4 mile front, German or boat, over land through above- or below- soldiers opened the valves of 1,600 large and ground pipelines and by air. 4,130 small cylinders containing 168 tons of Toxic chemicals may be produced by the chlorine.The gas formed a thick white cloud burning of materials (e.g., the burning of that crossed the first allied trenches in less Teflon produces perfluoroisobutylene) or by than a minute.The allied line broke, allowing their reaction if spilled into water (e.g. silanes the Germans to advance deep into allied produce hydrogen chloride and cyanides, territory. If the Germans had been fully hydrogen cyanide). prepared to exploit this breakthrough, the course and possibly the outcome of WWI Toxic Industrial Chemicals may have been very different. (TICs) Chlorine is a commodity industrial A Toxic Industrial Chemical (TIC) is defined chemical with hundreds of legitimate uses; it as: is not a "purpose designed" chemical warfare an industrial chemical which has a LCt50 agent. Phosgene, another commodity value of less than 100,000 mg.min/m3 in industrial chemical, accounted for 80% of any mammalian species and is produced in the chemical fatalities during WWI.
    [Show full text]
  • Piratox Sheet N5 Suffocating Agents and Phosphine
    Edition of October 2011 Piratox sheet #5: "Suffocating agents and phosphine Indicative list of concerned agents: Toxic compounds with suffocating action - Phosgene (CAS number: 75-44-5) - Chlorine (CAS number: 7782-50-5) - Methyl isocyanate (CAS number: 624-83-9) - But also: o Ammonia (CAS number: 7664-41-7) o Diphosgene or surpalite (CAS number: 503-38-8) o Chloropicrin (CAS number: 76-06-2) o Fluorine (CAS number: 7782-41-4) o Perfluoroisobutylene (CAS number: 382-21-8) o Fumigants o Marketed industrial and domestic products - Phosphine or PH3 or Hydrogen Phosphide (CAS number: 7803-51-2). ! Key points not to forget The 1st emergency step is the extraction of victims from the hazard area: rescuers must possess suitable breathing and eye protection. At ambient temperature (20°C) most suffocating agents are gases that penetrate the body via the respiratory route. They are thus poorly or non-persistent, frequently limiting victim decontamination needs to simple undressing. Most suffocating agents are heavier than air. They affect the respiratory system: glottis, bronchi, alveoli and cause eye damage. In pre-hospital settings, avoid any physical exertion that could promote the onset of pulmonary oedema. In general, the shorter the symptom onset time, the more serious the intoxication and the more severe the symptoms. Treatment is symptomatic only. All symptomatic choking gas victims must encouraged to rest, in a sitting position, under oxygen. The duration of surveillance for symptomatic subjects is of at least 12 to 24 hours. For Phosphine (PH3): o victims must be undressed and showered; o toxicity is respiratory, cardiac, renal and neurological; o subjects having inhaled PH3 and presenting with significant initial manifestations shall be monitored in the hospital for 48 to 72 hours, due to the risk of delayed acute pulmonary oedema.
    [Show full text]
  • Combustion and Pyrolysis Kinetics of Chloropicrin J.-C
    Combustion and Pyrolysis Kinetics of Chloropicrin J.-C. Lizardo-Huerta, B. Sirjean, L. Verdier, R. Fournet, Pierre-Alexandre Glaude To cite this version: J.-C. Lizardo-Huerta, B. Sirjean, L. Verdier, R. Fournet, Pierre-Alexandre Glaude. Combustion and Pyrolysis Kinetics of Chloropicrin. Journal of Physical Chemistry A, American Chemical Society, 2018, 122 (26), pp.5735 - 5741. 10.1021/acs.jpca.8b04007. hal-01921757 HAL Id: hal-01921757 https://hal.univ-lorraine.fr/hal-01921757 Submitted on 14 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Combustion and Pyrolysis Kinetics of Chloropicrin J.-C. Lizardo-Huerta1, B. Sirjean1, L. Verdier2, R. Fournet1, P.-A. Glaude1* 1 Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine 1 rue Grandville BP 20451 54001 Nancy Cedex, France 2 DGA Maîtrise NRBC, Site du Bouchet, 5 rue Lavoisier, BP n°3, 91710 Vert le Petit, France Corresponding author : Pierre-Alexandre Glaude Laboratoire Réactions et Génie des Procédés 1 rue Grandville BP 20451 54001 Nancy Cedex, France Email:[email protected] 1 Abstract Chloropicrin (CCl3NO2) is widely used in agriculture as a pesticide, weed-killer, fungicide or nematicide.
    [Show full text]
  • Process for the Synthesis of N-Methyl-N-Phenylaminoacrolein
    Europäisches Patentamt *EP001477474A1* (19) European Patent Office Office européen des brevets (11) EP 1 477 474 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: C07C 221/00, C07C 223/02 17.11.2004 Bulletin 2004/47 (21) Application number: 03425306.2 (22) Date of filing: 13.05.2003 (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • Banfi, Aldo HU IE IT LI LU MC NL PT RO SE SI SK TR 20131 Milano (IT) Designated Extension States: • Mancini, Alfredo AL LT LV MK 26020 Spinadesco (Cremona) (IT) (71) Applicant: Clariant Life Science Molecules (Italia) (74) Representative: Pistolesi, Roberto et al SpA Dragotti & Associati SRL 21040 Origgio (Varese) (IT) Galleria San Babila 4/c 20122 Milano (IT) (54) Process for the synthesis of N-methyl-N-phenylaminoacrolein (57) A process is disclosed for manufacturing N-me- thyl-N-phenylaminoacrolein of formula (I) wherein R is a C3-C4 alkyl, said process being charac- terized in that the reaction between N-methylformanilide and said alkyl vinyl ether of formula (III) is carried out in the presence of phosgene, diphosgene or triphosgene which comprises reacting N-methylformanilide and an in a solvent selected from dioxane, acetonitrile and/or alkyl vinyl ether of formula (III) chlorobenzene. EP 1 477 474 A1 Printed by Jouve, 75001 PARIS (FR) 1 EP 1 477 474 A1 2 Description [0003] More in details, compound (I) can be converted into Fenal, by reaction with compound (IV) [0001] This invention relates to the synthesis of N-me- thyl-N-phenylaminoacrolein of formula (I) 5 10 15 and its use for the preparation of 3-[3-(4-Fluorophenyl)- 1-(1-Methylethyl)-1H-Indol-2-yl]-2-Propenal (II), herein- after referred to as "Fenal", 20 in acetonitrile in the presence of POCl3, as disclosed in WO 84/82131 and US-4739073.
    [Show full text]
  • Toxic Exposures Kathy L
    8 MODULE 8 Toxic Exposures Kathy L. Leham-Huskamp / William J. Keenan / Anthony J. Scalzo / Shan Yin 8 Toxic Exposures Kathy L. Lehman-Huskamp, MD William J. Keenan, MD Anthony J. Scalzo, MD Shan Yin, MD InTrODUcTIOn The first large-scale production of chemical and biological weapons occurred during the 20th century. World War I introduced the use of toxic gases such as chlorine, cyanide, an arsine as a means of chemical warfare. With recent events, such as the airplane attacks on the World Trade Center in New York City, people have become increasingly fearful of potential large-scale terrorist attacks. Consequently, there has been a heightened interest in disaster preparedness especially involving chemical and biological agents. The U.S. Federal Emergency Management Agency (FEMA) recommends an "all-hazards" approach to emergency planning. This means creating a simultaneous plan for intentional terrorist events as well as for the more likely unintentional public health emergencies, such as earthquakes, floods, hazardous chemical spills, and infectious outbreaks. Most large-scale hazardous exposures are determined by the type of major industries that exist and/or the susceptibility to different types of natural disasters in a given area. For example, in 1984 one of the greatest man-made disasters of all times occurred in Bhopal, India, when a Union Carbide pesticide plant released tons of methylisocyanate gas over a populated area, killing scores of thousands and injuring well over 250,000 individuals. The 2011 earthquake and tsunami in Japan demonstrated the vulnerability of nuclear power stations to natural disasters and the need to prepare for possible widespread nuclear contamination and radiation exposure.
    [Show full text]
  • Things to Be Done
    DRAFT MAY 2003 ANNEX 1: CHEMICAL AGENTS 1. Introduction The large-scale use of toxic chemicals as weapons first became possible during the First World War (1914–1918) thanks to the growth of the chemical industry. More than 110 000 tonnes were disseminated over the battlefields, the greater part on the western front. Initially, the chemicals were used, not to cause casualties in the sense of putting enemy combatants out of action, but rather to harass. Though the sensory irritants used were powerful enough to disable those who were exposed to them, they served mainly to drive enemy combatants out of the trenches or other cover that protected them from conventional fire, or to disrupt enemy artillery or supplies. About 10% of the total tonnage of chemical warfare agents used during the war were chemicals of this type, namely lacrimators (tear gases), sternutators and vomiting agents. However, use of more lethal chemicals soon followed the introduction of disabling chemicals. In all, chemical agents caused some 1.3 million casualties, including 90 000 deaths. During the First World War, almost every known noxious chemical was screened for its potential as a weapon, and this process was repeated during the Second World War (1939–1945), when substantial stocks of chemical weapons were accumulated, although rarely used in military operations. Between the two world wars, a high proportion of all the new compounds that had been synthesized, or isolated from natural materials, were examined to determine their utility as lethal or disabling chemical weapons. After 1945, these systematic surveys continued, together with a search for novel agents based on advances in biochemistry, toxicology and pharmacology.
    [Show full text]
  • Sab-15-01 E .Pdf
    OPCW Scientific Advisory Board Fifteenth Session SAB-15/1 12 – 14 April 2010 14 April 2010 Original: ENGLISH REPORT OF THE FIFTEENTH SESSION OF THE SCIENTIFIC ADVISORY BOARD 1. AGENDA ITEM ONE – Opening of the session The Scientific Advisory Board (SAB) met for its Fifteenth Session from 12 to 14 April 2010 at the OPCW Headquarters in The Hague, the Netherlands. The session was opened by the Chairperson of the SAB, Philip Coleman of South Africa. Mahdi Balali-Mood of the Islamic Republic of Iran served as Vice-Chairperson. A list of participants appears as Annex 1 to this report. 2. AGENDA ITEM TWO – Election of the Chairperson and Vice-Chairperson of the Scientific Advisory Board1 In an informal meeting chaired by Herbert De Bisschop prior to the commencement of the formal session, the SAB members re-elected, by consensus, Philip Coleman as the Chairperson of the SAB and Mahdi Balali-Mood as Vice-Chairperson, each for a term of one year. 3. AGENDA ITEM THREE – Adoption of the agenda The SAB adopted the following agenda for its Fifteenth Session: 1. Opening of the session 2. Election of the Chairperson and Vice-Chairperson of the Scientific Advisory Board 3. Adoption of the agenda 4. Tour de table to introduce Scientific Advisory Board Members 5. Welcome address by the Deputy Director-General 1 In accordance with paragraph 1.1 of the rules of procedure for the SAB and the temporary working groups of scientific experts (EC-XIII/DG.2, dated 20 October 1998). CS-6359-2010(E) distributed 18/05/2010 *CS-6359-2010.E* SAB-15/1 page 2 6.
    [Show full text]
  • Chemical Warfare Agents
    Agent Reference Common Name Looks/State Dispersion Odour Symptoms GA TABUN Colourless or Brown Liquid Liquid/Gas Fruity Pinpoint pupils, runny nose, drooling, coughing, GB SARIN Colourless Liquid Liquid/Gas Odourless tightness in chest, muscle twitching, nausea GD SOMAN Colourless Liquid Liquid/Gas Camphor (Mothballs) convulsions, coma, death. V Series Nerve Agents GF CYCLOSARIN Colourless Liquid Liquid/Gas Sweet & Musty `Novichok Series´ Nerve Substance 33, A230, A232, VX VX Colourless Liquid Liquid/Gas Odourless A234 etc., agents that were designed NOT to be VE (VX) Colourless Liquid Liquid/Gas Odourless detected by conventional Detection, Identification VG AMITON or TETRAM Colourless Liquid Liquid/Gas Odourless and Monitoring (DIM) equipment. VM EDEMO Colourless Liquid Liquid/Gas Odourless CG PHOSGENE Colourless Gas Yellow Gas Strong smell of Wood/Hay Coughing, eye, nose, throat Liquid irritation shortness of breath, frothy secretions CHEMICAL DP DIPHOSGENE Colourless Liquid Vapour/Liquid Strong smell of Wood a feeling of suffocating or drowning, death CL CHLORINE Yellow/Green Gas Gas Bleach AMMONIA/AZANE Colourless Gas Liquid/Gas Strong Urine smell Choking WARFARE DISULPHUR DECAFLUORIDE Colourless Gas Liquid/Gas PERFLUOROISOBUTENE Colourless Gas Liquid/Gas ACROLEIN/PROPENAL Colourless Liquid Acrid smell of Burned Fat AGENTS DIPHENYLCYANOARSINE CX PHOSGENE OXIME Solid Aerosol Unpleasant Watery and itchy eyes, runny nose, hoarseness ED ETHYLDICLOROARSINE Liquid Liquid/Aerosol Fruity or hacking cough, initial redness of skin, followed The following descriptions include odour. HD DISTILLED MUSTARD Colourless or Yellow Liquid Liquid/Gas Mustard/Garlic by blisters. HL MUSTARD-LEWISITE Liquid Liquid Mustard/Garlic Mustard has NO immediate DO NOT and NEVER intentionally smell/sniff effect. unknown chemicals.
    [Show full text]
  • Chemistry World Puzzles April 2018
    PUZZLES April 2018 wordoku April 2018 crossword 1 2 3 4 5 6 7 8 E T R C 9 C N T D 10 11 T M E C E M E N M 12 13 14 D S T O N N T R O 15 16 17 T R D E R 18 19 20 21 O T S S 22 D E O T 23 24 25 Solve this wordoku in the same way as a sudoku with letters instead of numbers (each of the nine letters in each row, column and nine-square cell). Once solved, one of the overall diagonals can be rearranged into the name of a Swedish chemist and mineralogist. 26 27 28 April 2018 word grid Prize entry: Using each element 29 30 symbol in the grid only once, combine them together to make a Ti N C single word of 13 letters. April 2018 molecule search Word................................................. Er Ta N Just for fun: Construct as many other words as you can using a minimum of three symbols, and each symbol only once. 6 words: OK U Es I 9 words: Good 12+ words: Excellent Entry form There are four prize puzzles on this page: crossword (cryptic answers only); wordoku; molecule search; and word grid. For each puzzle, a winner will be selected from all the correct entries received and awarded a £25 book voucher. You can enter any or all of the prize draws, but each entrant is only eligible to win one of the individual puzzle prizes each month.
    [Show full text]
  • ABSTRACT ZOU, YAN. Applications of [2+2+2] Cyclotrimerization
    ABSTRACT ZOU, YAN. Applications of [2+2+2] Cyclotrimerization Reactions and Light-Cleavable Groups in the Generation of Biologically Active Molecules. (Under the direction of Dr. Alexander Deiters). [2+2+2] Cyclotrimerization reactions are a versatile tool for constructing the poly- substituted carbo- and hetero- cyclic ring systems. A number of transition metal catalysts, such as Co, Ru, Rh, Ni and Pd complexes, have been applied. However, there are still regio- and chemo- selectivity issues present in [2+2+2] cyclotrimerization reactions, and only few applications of cyclotrimerization reactions in the synthesis of natural products have been reported. We aimed to develop cyclotrimerization reactions for the assembly of benzene and pyridine core structures found in natural products and for applications in the synthesis of fluorophores. Microwave irradiation, a more recent method used to assist organic reactions, was employed in various cyclotrimerization reactions. In order to obtain greater control over the chemoselectivity of these reactions, we developed a solid-supported method of cyclotrimerization reactions through the immobilization of an alkyne or diyne onto a polymer backbone. This methodology was applied to the assembly of poly-substituted pyridines. Furthermore, the microwave mediated cyclotrimerization methodology was utilized to synthesize various anthracene and azaanthracene fluorophores. Additionally, a cyclotrimerization reaction was used in key steps of the total synthesis of the natural products cryptoacetalide and the pyridine core of cyclothiazomycin. Currently, the cyclotrimerization reaction is being utilized in the ongoing synthesis of petrosasponglide L. Photolabile protecting groups (caging groups) have attracted considerable attention in the field of chemical biology. These caging groups are installed on biomolecules of interest to control their function with light.
    [Show full text]