Chemical Warfare Agents

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Warfare Agents Agent Reference Common Name Looks/State Dispersion Odour Symptoms GA TABUN Colourless or Brown Liquid Liquid/Gas Fruity Pinpoint pupils, runny nose, drooling, coughing, GB SARIN Colourless Liquid Liquid/Gas Odourless tightness in chest, muscle twitching, nausea GD SOMAN Colourless Liquid Liquid/Gas Camphor (Mothballs) convulsions, coma, death. V Series Nerve Agents GF CYCLOSARIN Colourless Liquid Liquid/Gas Sweet & Musty `Novichok Series´ Nerve Substance 33, A230, A232, VX VX Colourless Liquid Liquid/Gas Odourless A234 etc., agents that were designed NOT to be VE (VX) Colourless Liquid Liquid/Gas Odourless detected by conventional Detection, Identification VG AMITON or TETRAM Colourless Liquid Liquid/Gas Odourless and Monitoring (DIM) equipment. VM EDEMO Colourless Liquid Liquid/Gas Odourless CG PHOSGENE Colourless Gas Yellow Gas Strong smell of Wood/Hay Coughing, eye, nose, throat Liquid irritation shortness of breath, frothy secretions CHEMICAL DP DIPHOSGENE Colourless Liquid Vapour/Liquid Strong smell of Wood a feeling of suffocating or drowning, death CL CHLORINE Yellow/Green Gas Gas Bleach AMMONIA/AZANE Colourless Gas Liquid/Gas Strong Urine smell Choking WARFARE DISULPHUR DECAFLUORIDE Colourless Gas Liquid/Gas PERFLUOROISOBUTENE Colourless Gas Liquid/Gas ACROLEIN/PROPENAL Colourless Liquid Acrid smell of Burned Fat AGENTS DIPHENYLCYANOARSINE CX PHOSGENE OXIME Solid Aerosol Unpleasant Watery and itchy eyes, runny nose, hoarseness ED ETHYLDICLOROARSINE Liquid Liquid/Aerosol Fruity or hacking cough, initial redness of skin, followed The following descriptions include odour. HD DISTILLED MUSTARD Colourless or Yellow Liquid Liquid/Gas Mustard/Garlic by blisters. HL MUSTARD-LEWISITE Liquid Liquid Mustard/Garlic Mustard has NO immediate DO NOT and NEVER intentionally smell/sniff effect. unknown chemicals. The descriptions are HN-1 NITROGEN MUSTARD ONE Oily Colourless Liquid Liquid/Gas Fish Lewisite leads to immediate pain. Blister HN-2 NITROGEN MUSTARD TWO Oily Colourless Liquid Liquid/Gas Fish recorded in case you become aware of a similar Skin effect varies with odour in your working environment indicating a HN-3 NITROGEN MUSTARD THREE Oily Colourless Liquid Liquid/Gas Fish & Soap agent. contaminate, or if wearing PPE a breach in your L LEWISITE Colourless or Amber Liquid Liquid Flowers MD METHYL-DICHLORO- Liquid Liquid/Aerosol Fruity respirator. Move upwind and away from the ARSNINE source as quickly as possible. PD PHENYL-DICHLORO-ARSINE Liquid Liquid/Aerosol None AC HYDROGEN-CYANIDE Colourless Liquid or Gas Gas Almonds Heavy breathing or breathlessness, A description of the odour is included to provide Blood CK CYANOGEN-CHLORIDE Colourless Liquid or Gas Gas Fish or Almonds unconsciousness convulsions, headache, early indication warning only. SA ARSINE Gas Gas Garlic death. BZ BZ, BUZZ or AGENT 15 White Crystals Gas Odourless Hallucinations; agitation, Incapacitant/ dilated pupils. This is NOT a definitive list of Chemical Warfare SN PHENCYCLIDINE (PCP) White Crystals Gas Odourless Hallucinogen Agents and is created to provide a basic guide. K LSD Liquid Gas Odourless.
Recommended publications
  • Chemical Threat Agents Call Poison Control 24/7 for Treatment Information 1.800.222.1222 Blood Nerve Blister Pulmonary Metals Toxins
    CHEMICAL THREAT AGENTS CALL POISON CONTROL 24/7 FOR TREATMENT INFORMATION 1.800.222.1222 BLOOD NERVE BLISTER PULMONARY METALS TOXINS SYMPTOMS SYMPTOMS SYMPTOMS SYMPTOMS SYMPTOMS SYMPTOMS • Vertigo • Diarrhea, diaphoresis • Itching • Upper respiratory tract • Cough • Shock • Tachycardia • Urination • Erythema irritation • Metallic taste • Organ failure • Tachypnea • Miosis • Yellowish blisters • Rhinitis • CNS effects • Cyanosis • Bradycardia, bronchospasm • Flu-like symptoms • Coughing • Shortness of breath • Flu-like symptoms • Emesis • Delayed eye irritation • Choking • Flu-like symptoms • Nonspecific neurological • Lacrimation • Delayed pulmonary edema • Visual disturbances symptoms • Salivation, sweating INDICATIVE LAB TESTS INDICATIVE LAB TESTS INDICATIVE LAB TEST INDICATIVE LAB TESTS INDICATIVE LAB TESTS INDICATIVE LAB TESTS • Increased anion gap • Decreased cholinesterase • Thiodiglycol present in urine • Decreased pO2 • Proteinuria None Available • Metabolic acidosis • Increased anion gap • Decreased pCO2 • Renal assessment • Narrow pO2 difference • Metabolic acidosis • Arterial blood gas between arterial and venous • Chest radiography samples DEFINITIVE TEST DEFINITIVE TEST DEFINITIVE TEST DEFINITIVE TESTS DEFINITIVE TESTS • Blood cyanide levels • Urine nerve agent • Urine blister agent No definitive tests available • Blood metals panel • Urine ricinine metabolites metabolites • Urine metals panel • Urine abrine POTENTIAL AGENTS POTENTIAL AGENTS POTENTIAL AGENTS POTENTIAL AGENTS POTENTIAL AGENTS POTENTIAL AGENTS • Hydrogen Cyanide
    [Show full text]
  • Physical Study by Surface Characteriza4ons of Sarin Sensor on the Basis of Chem
    Physical Study by Surface Characterizaons of Sarin Sensor on the Basis of Chemically Func4onalized Silicon Nanoribbon Field Effect Transistor K. Smaali1,§, D. Guérin1, V. Passi1, L. Ordronneau2, A. Carella2, T. Mélin1, E. Dubois1, D. Vuillaume1, J.P. Simonato2 and S. Lenfant1,* 1 IEMN, CNRS, Avenue Poincaré, Villeneuve d'Ascq, F-59652 cedex, France. 2. CEA, LITEN/DTNM/SEN/LSIN, Univ. Grenoble Alpes, MINATEC Campus, F-38054 Grenoble, France. ABSTRACT : Surface characteriZa[ons of an organophosphorus (OP) gas detector based on chemically func[onaliZed silicon nanoribbon field-effect transistor (SiNR-FET) were performed by Kelvin Probe Force Microscopy (KPFM) and ToF-SIMS, and correlated with changes in the current-voltage characteris[cs of the devices. KPFM measurements on FETs allow (i) to inves[gate the contact poten[al difference (CPD) distribu[on of the polariZed device as func[on of the gate voltage and the exposure to OP traces and; (ii) to analyZe the CPD hysteresis associated to the presence of mobile ions on the surface. The CPD measured by KPFM on the silicon nanoribbon was corrected due to side capacitance effects in order to determine the real quan[ta[ve surface poten[al. Comparison with macroscopic Kelvin probe (KP) experiments on larger surfaces was carried out. These two approaches were quan[ta[vely consistent. An important increase of the CPD values (between + 399 mV and + 302 mV) was observed aeer the OP sensor graeing, corresponding to a decrease of the work func[on, and a weaker varia[on aeer exposure to OP (between - 14 mV and - 61 mV) was measured.
    [Show full text]
  • Copyrighted Material
    1 Historical Milieu 1.1 Organophosphorus Nerve Agents 2 1.2 Blister Agents 5 1.3 Sternutator Agents 11 1.4 Chemical Weapons Convention (CWC) 13 1.4.1 Schedule of Chemicals 14 1.4.2 Destruction of Chemical Weapons 14 References 16 COPYRIGHTED MATERIAL Analysis of Chemical Warfare Degradation Products, First Edition. Karolin K. Kroening, Renee N. Easter, Douglas D. Richardson, Stuart A. Willison and Joseph A. Caruso. © 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd. 2 ANALYSIS OF CHEMICAL WARFARE DEGRADATION PRODUCTS 1.1 ORGANOPHOSPHORUS NERVE AGENTS Organophosphorus (OP) type compounds, that is, deriva- tives containing the P=O moiety, were first discovered in the 1800s when researchers were investigating useful applica- tions for insecticides/rodenticides. There are many derivatives of organophosphorus compounds, however, the OP deriva- tives that are typically known as ‘nerve agents’ were discov- ered accidentally in Germany in 1936 by a research team led by Dr. Gerhard Schrader at IG Farben [1–4]. Schrader had noticed the effects and lethality of these organophosphorus compounds towards insects and began developing a new class of insecticides. While working towards the goal of an improved insecticide, Schrader experimented with numerous phosphorus-containing compounds, leading to the discovery of the first nerve agent, Tabun (or GA) (Figure 1.1). The potency of these insecticides towards humans was not realized until there was yet another accident, which involved a Tabun spill. Schrader and coworkers began experiencing symptoms, such as miosis (constriction of the pupils of the eyes), dizziness and severe shortness of breath, with numerous effects lasting several weeks [1, 4, 5].
    [Show full text]
  • Warfare Agents for Modeling Airborne Dispersion in and Around Buildings
    LBNL-45475 ERNEST ORLANDO LAWRENCE BERKELEY NATIn NAL LABORATORY Databaseof Physical,Chemicaland ToxicologicalPropertiesof Chemical and Biological(CB)WarfitreAgentsfor ModelingAirborneDispersionIn and AroundBuildings TracyThatcher,RichSextro,andDonErmak Environmental Energy Technologies Division DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of Catifomia, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of anY information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommend at i on, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced
    [Show full text]
  • Nerve Agent - Lntellipedia Page 1 Of9 Doc ID : 6637155 (U) Nerve Agent
    This document is made available through the declassification efforts and research of John Greenewald, Jr., creator of: The Black Vault The Black Vault is the largest online Freedom of Information Act (FOIA) document clearinghouse in the world. The research efforts here are responsible for the declassification of MILLIONS of pages released by the U.S. Government & Military. Discover the Truth at: http://www.theblackvault.com Nerve Agent - lntellipedia Page 1 of9 Doc ID : 6637155 (U) Nerve Agent UNCLASSIFIED From lntellipedia Nerve Agents (also known as nerve gases, though these chemicals are liquid at room temperature) are a class of phosphorus-containing organic chemicals (organophosphates) that disrupt the mechanism by which nerves transfer messages to organs. The disruption is caused by blocking acetylcholinesterase, an enzyme that normally relaxes the activity of acetylcholine, a neurotransmitter. ...--------- --- -·---- - --- -·-- --- --- Contents • 1 Overview • 2 Biological Effects • 2.1 Mechanism of Action • 2.2 Antidotes • 3 Classes • 3.1 G-Series • 3.2 V-Series • 3.3 Novichok Agents • 3.4 Insecticides • 4 History • 4.1 The Discovery ofNerve Agents • 4.2 The Nazi Mass Production ofTabun • 4.3 Nerve Agents in Nazi Germany • 4.4 The Secret Gets Out • 4.5 Since World War II • 4.6 Ocean Disposal of Chemical Weapons • 5 Popular Culture • 6 References and External Links --------------- ----·-- - Overview As chemical weapons, they are classified as weapons of mass destruction by the United Nations according to UN Resolution 687, and their production and stockpiling was outlawed by the Chemical Weapons Convention of 1993; the Chemical Weapons Convention officially took effect on April 291997. Poisoning by a nerve agent leads to contraction of pupils, profuse salivation, convulsions, involuntary urination and defecation, and eventual death by asphyxiation as control is lost over respiratory muscles.
    [Show full text]
  • Warning: the Following Lecture Contains Graphic Images
    What the новичок (Novichok)? Why Chemical Warfare Agents Are More Relevant Than Ever Matt Sztajnkrycer, MD PHD Professor of Emergency Medicine, Mayo Clinic Medical Toxicologist, Minnesota Poison Control System Medical Director, RFD Chemical Assessment Team @NoobieMatt #ITLS2018 Disclosures In accordance with the Accreditation Council for Continuing Medical Education (ACCME) Standards, the American Nurses Credentialing Center’s Commission (ANCC) and the Commission on Accreditation for Pre-Hospital Continuing Education (CAPCE), states presenters must disclose the existence of significant financial interests in or relationships with manufacturers or commercial products that may have a direct interest in the subject matter of the presentation, and relationships with the commercial supporter of this CME activity. The presenter does not consider that it will influence their presentation. Dr. Sztajnkrycer does not have a significant financial relationship to report. Dr. Sztajnkrycer is on the Editorial Board of International Trauma Life Support. Specific CW Agents Classes of Chemical Agents: The Big 5 The “A” List Pulmonary Agents Phosgene Oxime, Chlorine Vesicants Mustard, Phosgene Blood Agents CN Nerve Agents G, V, Novel, T Incapacitating Agents Thinking Outside the Box - An Abbreviated List Ammonia Fluorine Chlorine Acrylonitrile Hydrogen Sulfide Phosphine Methyl Isocyanate Dibotane Hydrogen Selenide Allyl Alcohol Sulfur Dioxide TDI Acrolein Nitric Acid Arsine Hydrazine Compound 1080/1081 Nitrogen Dioxide Tetramine (TETS) Ethylene Oxide Chlorine Leaks Phosphine Chlorine Common Toxic Industrial Chemical (“TIC”). Why use it in war/terror? Chlorine Density of 3.21 g/L. Heavier than air (1.28 g/L) sinks. Concentrates in low-lying areas. Like basements and underground bunkers. Reacts with water: Hypochlorous acid (HClO) Hydrochloric acid (HCl).
    [Show full text]
  • Section 2. Hazards Identification OSHA/HCS Status : This Material Is Considered Hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200)
    SAFETY DATA SHEET Nonflammable Gas Mixture: Arsine / Helium / Phosgene Section 1. Identification GHS product identifier : Nonflammable Gas Mixture: Arsine / Helium / Phosgene Other means of : Not available. identification Product use : Synthetic/Analytical chemistry. SDS # : 006605 Supplier's details : Airgas USA, LLC and its affiliates 259 North Radnor-Chester Road Suite 100 Radnor, PA 19087-5283 1-610-687-5253 24-hour telephone : 1-866-734-3438 Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : GASES UNDER PRESSURE - Compressed gas substance or mixture ACUTE TOXICITY (inhalation) - Category 4 GHS label elements Hazard pictograms : Signal word : Warning Hazard statements : Contains gas under pressure; may explode if heated. May displace oxygen and cause rapid suffocation. Harmful if inhaled. Precautionary statements General : Read and follow all Safety Data Sheets (SDS’S) before use. Read label before use. Keep out of reach of children. If medical advice is needed, have product container or label at hand. Close valve after each use and when empty. Use equipment rated for cylinder pressure. Do not open valve until connected to equipment prepared for use. Use a back flow preventative device in the piping. Use only equipment of compatible materials of construction. Prevention : Use only outdoors or in a well-ventilated area. Avoid breathing gas. Response : IF INHALED: Remove person to fresh air and keep comfortable for breathing. Call a POISON CENTER or physician if you feel unwell. Storage : Protect from sunlight when ambient temperature exceeds 52°C/125°F. Store in a well- ventilated place.
    [Show full text]
  • A Toxicological Review of the Products of Combustion
    HPA-CHaPD-004 A Toxicological Review of the Products of Combustion J C Wakefield ABSTRACT The Chemical Hazards and Poisons Division (CHaPD) is frequently required to advise on the health effects arising from incidents due to fires. The purpose of this review is to consider the toxicity of combustion products. Following smoke inhalation, toxicity may result either from thermal injury, or from the toxic effects of substances present. This review considers only the latter, and not thermal injury, and aims to identify generalisations which may be made regarding the toxicity of common products present in fire smoke, with respect to the combustion conditions (temperature, oxygen availability, etc.), focusing largely on the adverse health effects to humans following acute exposure to these chemicals in smoke. The prediction of toxic combustion products is a complex area and there is the potential for generation of a huge range of pyrolysis products depending on the nature of the fire and the conditions of burning. Although each fire will have individual characteristics and will ultimately need to be considered on a case by case basis there are commonalities, particularly with regard to the most important components relating to toxicity. © Health Protection Agency Approval: February 2010 Centre for Radiation, Chemical and Environmental Hazards Publication: February 2010 Chemical Hazards and Poisons Division £15.00 Chilton, Didcot, Oxfordshire OX11 0RQ ISBN 978-0-85951- 663-1 This report from HPA Chemical Hazards and Poisons Division reflects understanding and evaluation of the current scientific evidence as presented and referenced in this document. EXECUTIVE SUMMARY The Chemical Hazards and Poisons Division (CHaPD) is frequently required to advise on the health effects arising from incidents due to fires.
    [Show full text]
  • Argonne Report.Pdf
    CONTENTS NOTATION ........................................................................................................................... xi ABSTRACT ........................................................................................................................... 1 1 INTRODUCTION ........................................................................................................... 5 1.1 Overview of the Emergency Response Guidebook ................................................ 5 1.2 Organization of this Report ..................................................................................... 7 2 GENERAL METHODOLOGY ....................................................................................... 9 2.1 TIH List ................................................................................................................... 10 2.1.1 Background ................................................................................................. 10 2.1.2 Changes in the TIH List for the ERG2012 ................................................. 11 2.2 Shipment and Release Scenarios ............................................................................ 11 2.2.1 Shipment Profiles ........................................................................................ 12 2.2.2 Treatment of Chemical Agents ................................................................... 14 2.3 Generics, Mixtures, and Solutions .......................................................................... 17 2.4 Analysis of Water-Reactive
    [Show full text]
  • Technical Note 159 Chemical Warfare Agent Measurements By
    Technical Note TN-159 03/06/WH CHEMICAL WARFARE AGENT MEASUREMENTS BY PID INTRODUCTION nerve agents at these levels. However, it can locate sources and Many chemical warfare agents, including nerve agents and related detect the agents at levels well below levels that are lethal in one compounds, can be detected by PID. Table 1 lists some common minute (see LCy 50 in table 1). Compounds with low vapor pressures agents and several of their physical properties and PID Correction tend to respond more slowly on the PID, in some cases requiring Factors (CF). The CF is used by calibrating the instrument with several minutes. In the case of VX, the lethal dose is above its vapor isobutylene, and then multiplying the reading by the CF to obtain the pressure at room temperature. There fore, the lethal one-minute true concentration. (See Technical Note TN-106 for full details.) dose can be attained only if the air is hot or the chemical is sprayed as an aerosol. At the maximum concentration, more than one- DISCUSSION AND CONCLUSIONS minute exposure is required for lethal effects. All the warfare agents listed in Table 1 can be detected with a 10.6 Table 2 shows that many of the common decomposition products eV lamp, except phosgene, which requires an 11.7 eV lamp, and of aged warfare agents can also bedetected by PID. These are HCN and ClCN, which cannot be detected by PID. often more volatile than the agent itself (especially for VX) and thus VX has inherent sensitivity, but it is too heavy a compound to get the products serve as a more easily detectable surrogate than the to the PID sensor and thus cannot be reliably measured.
    [Show full text]
  • SAFETY DATA SHEET Nonflammable Gas Mixture: Cyanogen Chloride 1-999Ppm / Nitrogen 99%
    SAFETY DATA SHEET Nonflammable Gas Mixture: Cyanogen Chloride 1-999ppm / Nitrogen 99% Section 1. Identification GHS product identifier : Nonflammable Gas Mixture: Cyanogen Chloride 1-999ppm / Nitrogen 99% Other means of : Not available. identification Product use : Synthetic/Analytical chemistry. SDS # : 012226 Supplier's details : Airgas USA, LLC and its affiliates 259 North Radnor-Chester Road Suite 100 Radnor, PA 19087-5283 1-610-687-5253 24-hour telephone : 1-866-734-3438 Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : GASES UNDER PRESSURE - Compressed gas substance or mixture GHS label elements Hazard pictograms : Signal word : Warning Hazard statements : Contains gas under pressure; may explode if heated. May displace oxygen and cause rapid suffocation. Precautionary statements General : Read and follow all Safety Data Sheets (SDS’S) before use. Read label before use. Keep out of reach of children. If medical advice is needed, have product container or label at hand. Close valve after each use and when empty. Use equipment rated for cylinder pressure. Do not open valve until connected to equipment prepared for use. Use a back flow preventative device in the piping. Use only equipment of compatible materials of construction. Prevention : Not applicable. Response : Not applicable. Storage : Protect from sunlight when ambient temperature exceeds 52°C/125°F. Store in a well- ventilated place. Disposal : Not applicable. Hazards not otherwise : In addition to any other important health or physical hazards, this product may displace classified oxygen and cause rapid suffocation. Section 3. Composition/information on ingredients Substance/mixture : Mixture Other means of : Not available.
    [Show full text]
  • Health Aspects of Biological and Chemical Weapons
    [cover] WHO guidance SECOND EDITION WORLD HEALTH ORGANIZATION GENEVA DRAFT MAY 2003 [inside cover] PUBLIC HEALTH RESPONSE TO BIOLOGICAL AND CHEMICAL WEAPONS DRAFT MAY 2003 [Title page] WHO guidance SECOND EDITION Second edition of Health aspects of chemical and biological weapons: report of a WHO Group of Consultants, Geneva, World Health Organization, 1970 WORLD HEALTH ORGANIZATION GENEVA 2003 DRAFT MAY 2003 [Copyright, CIP data and ISBN/verso] WHO Library Cataloguing-in-Publication Data ISBN xxxxx First edition, 1970 Second edition, 2003 © World Health Organization 1970, 2003 All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. The World Health Organization does not warrant that the information contained in this publication is complete and correct and shall not be liable for any damages incurred as a result of its use. Publications of the World Health Organization can be obtained from Marketing and Dissemination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]).
    [Show full text]