Hygrophila Polysperma
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lukács-Et-Al-Exotic Aquatic Plant This Manuscript Is Contextually Identical
Lukács-et-al-Exotic aquatic plant This manuscript is contextually identical with the following published paper: Lukács B.A., Mesterházy A., Vidéki R., and G. Király (2016) Alien aquatic vascular plants in Hungary (Pannonian ecoregion): Historical aspects, data set and trends. - Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology Vol. 150 , Iss. 3 pp. 388-395. The original published pdf available in this website: http://www.tandfonline.com/doi/full/10.1080/11263504.2014.987846 SHORT COMMUNICATION Alien aquatic vascular plants in the in Hungary (Pannonian Ecoregion): historical aspects, dataset and trends Balázs András Lukács1*, Attila Mesterházy2, Róbert Vidéki3 & Gergely Király4 1MTA Centre for Ecological Research, Department of Tisza Research, H-4026 Debrecen, Bem tér 18/C, Hungary; [email protected] 2 University of West Hungary, Institute of Botany and Natural Conservation, H-9400 Sopron, Ady E. u. 5., Hungary; [email protected] 3 H-9794, Felsőcsatár, Petőfi út 13, Hungary; [email protected] 4University of West Hungary, Institute of Silviculture and Forest Protection, H-9400 Sopron, Ady E. u. 5., Hungary;[email protected] * Corresponding author: Dr. Balázs A. Lukács Email: [email protected] Telephone: 0036305459845 1 Lukács-et-al-Exotic aquatic plant Abstract Estimating the extent of biological invasions is critical in predicting the effect of exotic species. We investigated the occurrence and number of alien freshwater plants and give information on the composition of alien aquatic flora, their trend in time, invasion pathway and their invasive character. Keywords Exotic, Macrophyte, Neophyte, Non-indigenous, Hungary 2 Lukács-et-al-Exotic aquatic plant Introduction Macrophytes play a key role in maintaining functioning aquatic ecosystems as primary producers, habitat maintenance, food for aquatic animals and strong influence on the chemical and physical properties of water (Santos et al. -
Phytodiversity of Ganpur Forest, Birbhum District, West Bengal, India with Reference to Their Medicinal Properties
Int.J.Curr.Microbiol.App.Sci (2016) 5(6): 973-989 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 5 Number 6 (2016) pp. 973-989 Journal homepage: http://www.ijcmas.com Original Research Article http://dx.doi.org/10.20546/ijcmas.2016.506.104 Phytodiversity of Ganpur forest, Birbhum District, West Bengal, India with reference to their Medicinal properties Nisith Ranjan Sarkar, Subrata Mondal and Sudhendu Mandal* UGC-DRS Department of Botany, Visva-Bharati, Santiniketan- 731235, India *Corresponding author ABSTRACT K eywo rd s The present study deals with the observation on phytodiversity including its Phytodiversity, uses, distribution and occurrence to achieve the current strategic plan for conservation, biodiversity conservation. The plants are enumerated according to the biodiversity, Birbhum district, alphabetical order of the plant names along with local names and their uses. Gonpur forest During this investigation 229 plant species were collected from the forest under 81 families and 184 genera, among them 193 species belong to Article Info dicots with 70 families and 154 genera, and the 11 families 30 genera and Accepted: 36 species of monocots. Local healers and healers from neighboring state 28 May 2016 Available Online: like Jharkhand identified Gonpur forest as one of the major threats to 10 June 2016 vegetation and flora of the forest. Introduction The Birbhum district is one of the lateritic It is one of the most species rich forests in belt district of West Bengal. It is situated this district that is still unexplored. Few between 233230 to 243500 North scattered works on the flora of Birbhum latitude and 87525 to 882 East district have been published by Basak, 1968 longitude, total area of the district is about & 75; Guha, 1968; Basak and Guha Bakshi, 4550.94 sq.km (5.10% of the state area). -
27April12acquatic Plants
International Plant Protection Convention Protecting the world’s plant resources from pests 01 2012 ENG Aquatic plants their uses and risks Implementation Review and Support System Support and Review Implementation A review of the global status of aquatic plants Aquatic plants their uses and risks A review of the global status of aquatic plants Ryan M. Wersal, Ph.D. & John D. Madsen, Ph.D. i The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of speciic companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.All rights reserved. FAO encourages reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to [email protected] or to the Chief, Publishing Policy and Support Branch, Ofice of Knowledge Exchange, -
Low Risk Aquarium and Pond Plants
Plant Identification Guide Low-risk aquarium and pond plants Planting these in your pond or aquarium is environmentally-friendly. Glossostigma elatinoides, image © Sonia Frimmel. One of the biggest threats to New Zealand’s waterbodies is the establishment and proliferation of weeds. The majority of New Zealand’s current aquatic weeds started out as aquarium and pond plants. To reduce the occurrence of new weeds becoming established in waterbodies this guide has been prepared to encourage the use of aquarium and pond plants that pose minimal risk to waterbodies. Guide prepared by Dr John Clayton, Paula Reeves, Paul Champion and Tracey Edwards, National Centre of Aquatic Biodiversity and Biosecurity, NIWA with funding from the Department of Conservation. The guides will be updated on a regular basis and will be available on the NIWA website: www.niwa.co.nz/ncabb/tools. Key to plant life-forms Sprawling marginal plants. Grow across the ground and out over water. Pond plants Short turf-like plants. Grow in shallow water on the edges of ponds and foreground of aquariums. Includes very small plants (up to 2-3 cm in height). Most species can grow both submerged (usually more erect) and emergent. Pond and aquarium plants Tall emergent plants. Can grow in water depths up to 2 m deep depending on the species. Usually tall reed-like plants but sometimes with broad leaves. Ideal for deeper ponds. Pond plants Free floating plants. These plants grow on the water surface and are not anchored to banks or bottom substrates. Pond and aquarium plants Floating-leaved plants. Water lily-type plants. -
Limnophila Sessiliflora Animal and Plant Health (Plantaginaceae) – Ambulia Inspection Service
United States Department of Weed Risk Assessment Agriculture for Limnophila sessiliflora Animal and Plant Health (Plantaginaceae) – Ambulia Inspection Service June 16, 2020 Version 1 Left: Emergent Limnophila sessiliflora plants (Garg, 2008); right: submerged L sessiliflora plants (Shaun Winterton, Aquarium and Pond Plants of the World, Edition 3, USDA APHIS PPQ, Bugwood.org) AGENCY CONTACT Plant Epidemiology and Risk Analysis Laboratory Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 2760 Weed Risk Assessment for Limnophila sessiliflora (Ambulia) Executive Summary The result of the weed risk assessment for Limnophila sessiliflora is High Risk of becoming weedy or invasive in the United States. Limnophila sessiliflora is a submerged to emergent perennial aquatic herb that is primarily a weed of shallow water in natural areas. It is invasive in Florida, Georgia, and Texas. It can reproduce both vegetatively and by seed, has cleistogamous flowers, and forms dense stands and mats. In natural areas, it can overshade and outcompete other aquatic species. If it covers the surface of the water, the resulting oxygen depletion can kill fish. We estimate that 11 to 25 percent of the United States is suitable for this species to establish. It could spread further on machinery that is used in waterways and in trade as an aquarium plant. Ver. 1 June 16, 2020 1 Weed Risk Assessment for Limnophila sessiliflora (Ambulia) Plant Information and Background PLANT SPECIES: Limnophila sessiliflora Blume (Plantaginaceae) (NPGS, 2020). SYNONYMS: Basionym Hottonia sessiliflora Vahl (NPGS, 2020). COMMON NAMES: Ambulia (NPGS, 2020), Asian marshweed (Kartesz, 2015; NRCS, 2020). -
2014 Hydrilla Integrated Management
Reviewed January 2017 Publishing Information The University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) is an Equal Opportunity Institution. UF/IFAS is committed to diversity of people, thought and opinion, to inclusiveness and to equal opportunity. The use of trade names in this publication is solely for the purpose of providing specific information. UF/IFAS does not guarantee or warranty the products named, and references to them in this publication do not signify our approval to the exclusion of other products of suitable composition. All chemicals should be used in accordance with directions on the manufacturer’s label. Use pesticides and herbicides safely. Read and follow directions on the manufacturer’s label. For questions about using pesticides, please contact your local county Extension office. Visit http://solutionsforyourlife.ufl.edu/map to find an office near you. Copyright 2014, The University of Florida Editors Jennifer L. Gillett-Kaufman (UF/IFAS) Verena-Ulrike Lietze (UF/IFAS) Emma N.I. Weeks (UF/IFAS) Contributing Authors Julie Baniszewski (UF/IFAS) Ted D. Center (USDA/ARS, retired) Byron R. Coon (Argosy University) James P. Cuda (UF/IFAS) Amy L. Giannotti (City of Winter Park) Judy L. Gillmore (UF/IFAS) Michael J. Grodowitz (U.S. Army Engineer Research and Development Center) Dale H. Habeck, deceased (UF/IFAS) Nathan E. Harms (U.S. Army Engineer Research and Development Center) Jeffrey E. Hill (UF/IFAS) Verena-Ulrike Lietze (UF/IFAS) Jennifer Russell (UF/IFAS) Emma N.I. Weeks (UF/IFAS) Marissa L. Williams (City of Maitland) External Reviewers Nancy L. Dunn (Florida LAKEWATCH volunteer) Stephen D. -
A DETAILS STUDY on HYGROPHILA DIFFORMIS Samanta Krishanu* Pharmacy College, Azamgarh, Uttar Pradesh, India
IJPCBS 2012, 2(4), 494-499 samanta Krishanu ISSN: 2249-9504 INTERNATIONAL JOURNAL OF PHARMACEUTICAL, CHEMICAL AND BIOLOGICAL SCIENCES Available online at www.ijpcbs.com Review Article A DETAILS STUDY ON HYGROPHILA DIFFORMIS Samanta Krishanu* Pharmacy College, Azamgarh, Uttar Pradesh, India. ABSTRACT The knowledge of medicinal plants must have been accumulated in the course of many centuries but it is our misfortune that proper chemical and pharmacological evaluation of most of these plants have not done till now. Keeping this view, a details study on Hygrophila difformis Blume (Family-Acanthaceae) along with phytochemical study have done. It is commonly known as water wisteria. It is a tropical aquarium plant used as environmental ornaments. It rapid growth helps prevention of algae. The plant grows to a height of 20-50 cm with a width of 15-25 cm, & slender lacy leaves and upright growth. It is found in marshy habitats on the Indian subcontinent including Bangladesh, Bhutan and Nepal. Hygrophiloside was found in the aerial parts of Hygrophila difformis. It is an iridoid glucoside having hepatoprotective activity. On preliminary phytochemical analysis Cardiac glycosides, tannins, steroids, flavonoids & saponins were found. It is used as coagulant by tribal people. The aerial parts of the plant showed good antioxidant property and also shows anthelmintic activity, Ethanolic extracts of aerial parts of the plant shows CNS depressant activity along with analgesic activity in mice. Keywords: Hygrophila difformis, Antioxidant activity, Analgesic activity, Anthelmintic activity. INTRODUCTION algae because the plants absorbs a great Under the family Acanthaceae, Hygrophila number of nutrients from the water. The difformis is commonly known as water storage of micro nutrients leads to pale leaves wisteria. -
Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY
Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY BIBLIOGRAPHY Ackerfield, J., and J. Wen. 2002. A morphometric analysis of Hedera L. (the ivy genus, Araliaceae) and its taxonomic implications. Adansonia 24: 197-212. Adams, P. 1961. Observations on the Sagittaria subulata complex. Rhodora 63: 247-265. Adams, R.M. II, and W.J. Dress. 1982. Nodding Lilium species of eastern North America (Liliaceae). Baileya 21: 165-188. Adams, R.P. 1986. Geographic variation in Juniperus silicicola and J. virginiana of the Southeastern United States: multivariant analyses of morphology and terpenoids. Taxon 35: 31-75. ------. 1995. Revisionary study of Caribbean species of Juniperus (Cupressaceae). Phytologia 78: 134-150. ------, and T. Demeke. 1993. Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon 42: 553-571. Adams, W.P. 1957. A revision of the genus Ascyrum (Hypericaceae). Rhodora 59: 73-95. ------. 1962. Studies in the Guttiferae. I. A synopsis of Hypericum section Myriandra. Contr. Gray Herbarium Harv. 182: 1-51. ------, and N.K.B. Robson. 1961. A re-evaluation of the generic status of Ascyrum and Crookea (Guttiferae). Rhodora 63: 10-16. Adams, W.P. 1973. Clusiaceae of the southeastern United States. J. Elisha Mitchell Sci. Soc. 89: 62-71. Adler, L. 1999. Polygonum perfoliatum (mile-a-minute weed). Chinquapin 7: 4. Aedo, C., J.J. Aldasoro, and C. Navarro. 1998. Taxonomic revision of Geranium sections Batrachioidea and Divaricata (Geraniaceae). Ann. Missouri Bot. Gard. 85: 594-630. Affolter, J.M. 1985. A monograph of the genus Lilaeopsis (Umbelliferae). Systematic Bot. Monographs 6. Ahles, H.E., and A.E. -
Hygrophila Pinnatifida Plant (Source: Ševčík, 2012)
Weed Risk Assessment for Hygrophila United States pinnatifida (Dalzell) Sreem Department of (Acanthaceae) – Fern hygrophila Agriculture Animal and Plant Health Inspection Service January 28, 2015 Version 1 Left: Submerged Hygrophila pinnatifida plant (source: Ševčík, 2012). Right: Emerged H. pinnatifida specimen (© Kew Royal Botanic Gardens, 1878). Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Weed Risk Assessment for Hygrophila pinnatifida Introduction Plant Protection and Quarantine (PPQ) regulates noxious weeds under the authority of the Plant Protection Act (7 U.S.C. § 7701-7786, 2000) and the Federal Seed Act (7 U.S.C. § 1581-1610, 1939). A noxious weed is defined as “any plant or plant product that can directly or indirectly injure or cause damage to crops (including nursery stock or plant products), livestock, poultry, or other interests of agriculture, irrigation, navigation, the natural resources of the United States, the public health, or the environment” (7 U.S.C. § 7701-7786, 2000). We use weed risk assessment (WRA)— specifically, the PPQ WRA model (Koop et al., 2012)—to evaluate the risk potential of plants, including those newly detected in the United States, those proposed for import, and those emerging as weeds elsewhere in the world. Because the PPQ WRA model is geographically and climatically neutral, it can be used to evaluate the baseline invasive/weed potential of any plant species for the entire United States or for any area within it. -
An Abstract of the Thesis Of
AN ABSTRACT OF THE THESIS OF Kathryn Wellons for the degree of Master of Science in Horticulture presented on June 7, 2018. Title: Ecophenology and Control of European Frogbit in a Hybrid Cattail Marsh of the St. Marys River, Michigan. Abstract approved: _____________________________________________________________________ Dennis Albert Great Lakes coastal wetland communities are threatened by the impacts of invasive plants on ecosystem function and biodiversity. What allows invasive plants to become dominant in invaded communities can be hard to define and context-dependent. Traits associated with invasion success in wetland systems – rapid vegetative growth, competitive superiority in resource acquisition, and tolerance for high nutrient levels – are shared by two co-occurring invasive plants, hybrid cattail (Typha × glauca) and European frogbit (Hydrocharis morsus- ranae). European frogbit is a free-floating weed causing substantial negative impacts to native ecosystems in the Great Lakes region. It is thought to be facilitated by the presence of emergent plants like hybrid cattail, but the nature of this relationship has not been empirically demonstrated or utilized in management strategies. The purpose of this thesis was to advance understanding of the phenology, ecology, and control of European frogbit within an invaded hybrid cattail marsh along the St. Marys River, a connecting channel between Lakes Huron and Superior. This marsh was a valuable site both for investigating the relationship between hybrid cattail and European frogbit and for assessing the role of deep water in the development and control of European frogbit. In an observational study, measures of the phenological development of European frogbit were accompanied by measures of environmental variables and estimates of plant community abundances to explore associations between European frogbit development and environmental conditions during a high-water period in the Great Lakes. -
Folivory and Disease Occurrence on Ludwigia Hexapetala in Guntersville Reservoir, Alabama
J. Aquat. Plant Manage. 55: 19–25 Folivory and disease occurrence on Ludwigia hexapetala in Guntersville Reservoir, Alabama NATHAN E. HARMS, JUDY F. SHEARER, AND MICHAEL J. GRODOWITZ* ABSTRACT southeastern United States, with disjunct populations in California and Oregon (Grewell et al. 2016). Invasive We report leaf feeding, disease occurrence, and associ- populations also exist outside the United States in France, ated indigenous herbivore/fungal pathogen communities Belgium, Italy, Spain, Greece, the United Kingdom, and The on the introduced wetland species Ludwigia hexapetala at Netherlands (Dandelot et al. 2005, Thouvenot et al. 2013). Guntersville Reservoir, AL. Plant populations were sam- Closely related Ludwigia are difficult to distinguish mor- pled on three dates from May to September 2014. A phologically, and conflicting diagnostic characters have complex of indigenous herbivore and fungal taxa, mostly been presented by various authors (Nesom and Kartesz known from other Ludwigia spp., resulted in peak feeding 2000). Ludwigia hexapetala is decaploid (2n ¼ 80; Zardini et al. and disease occurrence on 88% and 92% of sampled 1991), a characteristic that may contribute to relative leaves, respectively. Herbivore damage declined over the invasiveness over other Ludwigia spp. (Pandit et al. 2011, growing season from 78 to 21% of sampled leaves, and Grewell et al. 2016). disease symptom occurrence increased from 0 to 80%. Management of L. hexapetala in the United States is a Total leaf damage (percent leaf area) from both herbivory concern as the number and distribution of infestations and disease was determined by software image analyses of increase. Ludwigia hexapetala causes economic damage floating and aerial leaves and reached 14% total reduction through disruption of flood control, irrigation water in photosynthetic tissues by September 2014. -
Aquatic Plant East Indian Hygrophila; Indian Swampweed I
Aquatic Plant East Indian Hygrophila; Indian Swampweed I. Current Status and Distribution Hygrophila polysperma a. Range Global/Continental Wisconsin Native Range Tropical Asia1 Not recorded in Wisconsin Figure 1: U.S and Canada Distribution Map2 Abundance/Range Widespread: Florida, south central Texas3, Not applicable Locally Abundant: Recently reported in Europe21 Not applicable Sparse: Current status unknown in Virginia4,5 Not applicable Range Expansion Date Introduced: Brought to US in 1945; first population Not applicable found in Tampa, Florida, 19653 Rate of Spread: Fast growing and spreading3; spread from Not applicable 0.1 acre to 10 acres in one year (Florida)6 Density Risk of Monoculture: High Unknown Facilitated By: Flowing waters7 Unknown b. Habitat Lakes, ponds, rivers, streams Tolerance Chart of tolerances: Increasingly dark color indicates increasingly optimal range3,8,,9 10 Preferences Warmer climates; deeper moving water or along banks3 Page 1 of 5 Wisconsin Department of Natural Resources – Aquatic Invasive Species Literature Review c. Regulation Noxious/Regulated2: Federal Noxious Weed List; AL, CA, FL, MA, NC, OR, SC, VT Minnesota Regulations: Prohibited; One may not possess, import, purchase, propagate, or transport Michigan Regulations: Not regulated Washington Regulations: Not regulated II. Establishment Potential and Life History Traits a. Life History Herbaceous, amphibious, perennial, mostly submersed, partly emersed, rarely terrestrial3 Fecundity High Reproduction Sexual; Asexual Importance of Seeds: Uncertain4; no viable seeds found in U.S.12 Vegetative: Very important; stem fragments and possibly even free-floating leaves can form new plants3 Hybridization Undocumented Overwintering Winter Tolerance: Does not form turions or tubers; minimum survival temperature is 4°C3 Phenology: In Florida, grows years round, flowers from October to March4 b.