MCAS Student Practice Questions UNIT 6 – Electromagnetic Radiation Answers with Explanations

Total Page:16

File Type:pdf, Size:1020Kb

MCAS Student Practice Questions UNIT 6 – Electromagnetic Radiation Answers with Explanations MCAS Student Practice Questions UNIT 6 – Electromagnetic Radiation Answers with Explanations STANDARD 6.1 6.1. Recognize that electromagnetic waves are transverse waves and travel at the speed of light through a vacuum. 8 BASIC CONCEPT: All Electromagnetic Waves travel at 3.0 x 10 m/s in a vacuum or air. 11-21 6.1 8-9 6.1X-ray waves and infrared waves are both The table below lists the speed of light in four different electromagnetic waves. Which of the following situations. describes another property x-ray waves and infrared Situation Speed of Light (m/s) waves share? A 8 3.0 x 10 A. Both waves are longitudinal. B 2.2 x 108 B. Both waves have the same frequency. C 1.9 x 108 C. Both waves have the same D 1.7 x 108 wavelength. D. Both waves travel at the same speed In which situation is light traveling through a vacuum? in a vacuum. A. Light travels at 3.0 x 108 in a vacuum. D. Light travels at 3.0 x 108 in a vacuum. 9-30 6.1 In an electromagnetic wave, an electric field 10-4 6.1 exists perpendicular to a magnetic field, and both fields are Which of the following properties is the same for all perpendicular to the direction of travel of the wave. These electromagnetic waves in a vacuum? characteristics indicate that an electromagnetic wave is A. amplitude which of the following wave types? A. gravitational B. frequency B. longitudinal C. speed C. mechanical D. wavelength D. transverse C. The speed is 3.0 x 108 for all EM waves. D. Perpendicular movement in a wave means it is a transverse. 7-38 6.1 Which of the following waves can travel at a speed of 3 × 108 m/s? A. microwaves B. seismic waves C. ultrasonic waves D. water waves The speed is 3.0 x 108 for all EM waves. 15-36 STD 6.1 Which of the following statements 15-28 STD 6.1 When astronauts landed on the Moon, describes electromagnetic waves? radio signals helped them communicate with people on A. They have mass. B. They are transverse waves. Earth. It took 1.3 s for a signal to travel from the Moon to C. They require a medium to propagate. Earth. Which of the following is the best estimate of the D. They travel at varying speeds through a vacuum. distance between Earth and the Moon? A. 115,000,000 m B. 231,000,000 m C. 390,000,000 m D. 780,000,000 m D = R T, R = 3 x 10 8 m/s T = 1.3 s D = 3 x 10 8 m/s x 1.3 s Notice that 3 x 1.3 = 3.9, there is only one answer that has 39 in it. That is the answer. STANDARD 6.2 6.2. Describe the electromagnetic spectrum in terms of frequency and wavelength and identify the location of radio waves, microwaves, infrared radiation, visible light (red, orange, yellow, green, blue, indigo, and violet), ultraviolet rays, x-rays, and gamma rays on the spectrum. 11-28 6.2 The figure below shows regions of the electromagnetic spectrum. Which of the following devices is designed to produce electromagnetic radiation with the longest wavelength in order to operate? A. Light bulb B. microwave oven C. x-ray microscope D. FM radio transmitter. Large wavelengths are at the Left end of the Spectrum. 10-13 6.2 8-1 6.2 Which of the following properties determines a color Radio waves, visible light, and x-rays are examples of in the visible light region of the electromagnetic electromagnetic waves that always differ from each spectrum? other in A. amplitude. A. acceleration B. intensity. B. amplitude C. temperature. C. frequency D. wavelength. D. speed EM waves differ in Wavelength and Frequency. 9-6 6.2 Which of the following statements best 9-21 6.2 describes the visible spectrum of light as seen by the Which of the following statements best describes an human eye? electromagnetic wave with a long wavelength? A. The lowest frequency appears red, and A. It has a low frequency and can travel in the highest frequency appears violet. a vacuum. B. The lowest frequency appears red, and the highest B. It has a high frequency and can travel in a frequency appears yellow. vacuum. C. The lowest frequency appears green, and the highest C. It has a low frequency and can only travel in a frequency appears violet. medium. D. The lowest frequency appears green, and the highest D. It has a high frequency and can only travel in a frequency appears yellow. medium. RED = Low Frequency (High Wavelength) All EM waves can travel in a vacuum. Long VIOLET = High Frequency (Low Wavelength) Wavelength = Low Frequency 8-13 6.2 7-31 4.2 Suppose a scientist detects an electromagnetic wave Which of the following waves travels fastest? with a frequency higher than those of gamma rays. A. water waves in oceans The scientist labels this wave a Z-ray. Which of the following would always be true of a Z-ray? B. seismic waves in rocks A. A Z-ray would have a lesser C. sound waves from a violin string amplitude than gamma rays. D. electromagnetic waves from the Sun B. A Z-ray would have a greater amplitude than gamma rays. C. A Z-ray would have a shorter wavelength than gamma rays. EM (including Light) are the fastest waves. D. A Z-ray would have a longer wavelength than gamma rays. Higher Frequency means a shorter wavelength. 7-29 6.2 & 4.1 Which of the following graphs best represents the relationship of the frequency of an electromagnetic wave to its wavelength? D. As wavelength becomes longer the frequency becomes shorter. 7-35 4.2 7-42 6.2 Which of the following can carry light waves but Ultraviolet light has a shorter wavelength than not sound waves? visible light. Which of the following is another A. air way ultraviolet light can be compared to visible light? B. steel A. Ultraviolet light has a lower C. water frequency than visible light. D. vacuum B. Ultraviolet light has a higher frequency than visible light. C. Ultraviolet light travels faster Remember that space is a vacuum and light from the than visible light. sun makes it to Earth. D. Ultraviolet light travels slower than visible light. Wavelength and Frequency are inversely related. When one is high the other is low. 8-13 6.2 Suppose a scientist detects an electromagnetic 7-31 4.2 Which of the following waves travels fastest? wave with a frequency higher than those of gamma rays. A. water waves in oceans The scientist labels this wave a Z-ray. Which of the B. seismic waves in rocks following would always be true of a Z-ray? C. sound waves from a violin string A. A Z-ray would have a lesser amplitude than a gamma ray. D. electromagnetic waves from the Sun B. A Z-ray would have a greater amplitude than a gamma ray. C. A Z-ray would have a shorter wavelength than gamma rays. The speed of light is the fastest speed that anything can go D. A Z-ray would have a longer wavelength than gamma rays. OPEN RESPONSE 10-32 Standard: 6.2 - Describe the electromagnetic spectrum in terms of frequency and wavelength and identify the locations of radio waves, microwaves, infrared radiation, visible light (red, orange, yellow, green, blue, indigo, and violet), ultraviolet rays, x-rays, and gamma rays on the spectrum. When some elements are put into a flame, they emit colored light. Yellow light is emitted from one element and violet light is emitted from another element. a. Describe the differences between yellow light and violet light in terms of frequency and wavelength. The diagram below represents violet light. Remember the Order of the Spectrum : Starting with High Wavelength R O Y G B I V ending with Short Wavelength. Use this information to answer the question: Yellow light has a shorter wavelength than Violet light. Yellow light has a higher frequency than violet light. b. Copy the diagram of violet light into your Student Answer Booklet. Below your diagram, draw and label a representation of yellow light that illustrates how its frequency and wavelength are different from that of violet light. Yellow has longer wavelength and lower frequency c. Yellow light and violet light are both in the visible range of the electromagnetic spectrum. Identify two other similarities between yellow light and violet light. Yellow light and Violet light both travel at the speed of light, they also travel through a vacuum. .
Recommended publications
  • Violet-Green Swallow
    Breeding Habitat Use Profile Habitats Used in Arizona Primary: Montane Riparian Secondary: Montane Forests, locally Upper Sonoran Desert Key Habitat Parameters Plant Composition Most montane forest types, often with some element of riparian, wetland, open water or 8 other moist habitat types Plant Density and Unknown Size Violet-green Swallow, photo by ©George Andrejko Microhabitat Snags, live trees, or cliffs for nesting, mesic Features areas with high insect productivity for forag- Conservation Profile ing 8; in wooded landscapes, often noted foraging and nesting near forest clearings Species Concerns and edges. Climate Change (Droughts) Increasing Fire Frequency Landscape Largely unknown, but must include some Timber Harvesting Practices old-growth forests or cliffs Conservation Status Lists Elevation Range in Arizona USFWS 1 No 3,200 – 10,500 feet, locally to 1,200 feet 9 AZGFD 2 No Density Estimate DoD 3 No Territory Size: Unknown BLM 4 No Density: Unknown, sometimes occurs in loose colonies 8 PIF Watch List 5b No PIF Regional Concern 5a No Migratory Bird Treaty Act Natural History Profile Covered Seasonal Distribution in Arizona PIF Breeding Population Size Estimates 6 Breeding April – early August, desert nesting may Arizona 710,000 ◑ begin in March 9 Global 7,200,000 ◑ Migration February – April; August – mid-October 9 9.93% Percent in Arizona Winter Rare, very small numbers 5b PIF Population Goal Nest and Nesting Habits Maintain 8 Type of Nest Cavity or crevice Trends in Arizona Nest Substrate Tree, rock, or cliff; also artificial
    [Show full text]
  • Absorption of Light Energy Light, Energy, and Electron Structure SCIENTIFIC
    Absorption of Light Energy Light, Energy, and Electron Structure SCIENTIFIC Introduction Why does the color of a copper chloride solution appear blue? As the white light hits the paint, which colors does the solution absorb and which colors does it transmit? In this activity students will observe the basic principles of absorption spectroscopy based on absorbance and transmittance of visible light. Concepts • Spectroscopy • Visible light spectrum • Absorbance and transmittance • Quantized electron energy levels Background The visible light spectrum (380−750 nm) is the light we are able to see. This spectrum is often referred to as “ROY G BIV” as a mnemonic device for the order of colors it produces. Violet has the shortest wavelength (about 400 nm) and red has the longest wavelength (about 650–700 nm). Many common chemical solutions can be used as filters to demonstrate the principles of absorption and transmittance of visible light in the electromagnetic spectrum. For example, copper(II) chloride (blue), ammonium dichromate (orange), iron(III) chloride (yellow), and potassium permanganate (red) are all different colors because they absorb different wave- lengths of visible light. In this demonstration, students will observe the principles of absorption spectroscopy using a variety of different colored solutions. Food coloring will be substituted for the orange and yellow chemical solutions mentioned above. Rare earth metal solutions, erbium and praseodymium chloride, will be used to illustrate line absorption spectra. Materials Copper(II) chloride solution, 1 M, 85 mL Diffraction grating, holographic, 14 cm × 14 cm Erbium chloride solution, 0.1 M, 50 mL Microchemistry solution bottle, 50 mL, 6 Potassium permanganate solution (KMnO4), 0.001 M, 275 mL Overhead projector and screen Praseodymium chloride solution, 0.1 M, 50 mL Red food dye Water, deionized Stir rod, glass Beaker, 250-mL Tape Black construction paper, 12 × 18, 2 sheets Yellow food dye Colored pencils Safety Precautions Copper(II) chloride solution is toxic by ingestion and inhalation.
    [Show full text]
  • Monochromatic: Red Orange Yellow Green Blue Violet Complementary
    Monochromatic: Split Complementary: Red Red, Yellow-Green, Blue-Green Orange Red-Orange, Green, Blue Yellow Orange, Blue-Green, Blue-Violet Green Yellow-Orange, Blue, Violet Blue Yellow, Blue-Violet, Red-Violet Violet Yellow-Green, Violet, Red Green, Red-Violet, Red-Orange Complementary: Blue-Green, Red, Orange Red & Green Blue, Red-Orange, Yellow-Orange Red-Orange & Blue-Green Blue-Violet, Orange, Yellow Orange & Blue Violet, Yellow-Orange, Yellow-Green Yellow-Orange & Blue-Violet Red-Violet, Yellow, Green Yellow & Violet Yellow-Green & Red-Violet Tetradic: Red, Yellow, Green, Violet Triadic: Red, Yellow-Orange, Green, Blue-Violet Red, Yellow, Blue Red-Orange, Blue-Green, Yellow-Orange, Blue- Red-Orange, Yellow-Green, Blue-Violet Violet Orange, Green, Violet Red-Orange, Blue-Green, Yellow, Violet Yellow-Orange, Blue-Green, Red-Violet Orange, Blue, Green, Red Orange, Blue, Yellow-Green, Red-Violet Analogous: Yellow-Orange, Blue-Violet, Green, Red Red, Red Orange, Orange Yellow, Violet, Blue, Orange Red-Orange, Orange, Yellow-Orange Yellow-Green, Red-Violet, Blue-Green, Red- Orange, Yellow-Orange, Yellow Orange Yellow-Orange, Yellow, Yellow-Green Yellow, Yellow-Green, Green Yellow-Green, Green, Blue-Green Green, Blue-Green, Blue Blue-Green, Blue, Blue-Violet Blue, Blue-Violet, Violet Blue-Violet, Violet, Red-Violet Violet, Red-Violet, Red Red-Violet, Red, Red-Orange .
    [Show full text]
  • The Electromagnetic Spectrum
    The Electromagnetic Spectrum Wavelength/frequency/energy MAP TAP 2003-2004 The Electromagnetic Spectrum 1 Teacher Page • Content: Physical Science—The Electromagnetic Spectrum • Grade Level: High School • Creator: Dorothy Walk • Curriculum Objectives: SC 1; Intro Phys/Chem IV.A (waves) MAP TAP 2003-2004 The Electromagnetic Spectrum 2 MAP TAP 2003-2004 The Electromagnetic Spectrum 3 What is it? • The electromagnetic spectrum is the complete spectrum or continuum of light including radio waves, infrared, visible light, ultraviolet light, X- rays and gamma rays • An electromagnetic wave consists of electric and magnetic fields which vibrates thus making waves. MAP TAP 2003-2004 The Electromagnetic Spectrum 4 Waves • Properties of waves include speed, frequency and wavelength • Speed (s), frequency (f) and wavelength (l) are related in the formula l x f = s • All light travels at a speed of 3 s 108 m/s in a vacuum MAP TAP 2003-2004 The Electromagnetic Spectrum 5 Wavelength, Frequency and Energy • Since all light travels at the same speed, wavelength and frequency have an indirect relationship. • Light with a short wavelength will have a high frequency and light with a long wavelength will have a low frequency. • Light with short wavelengths has high energy and long wavelength has low energy MAP TAP 2003-2004 The Electromagnetic Spectrum 6 MAP TAP 2003-2004 The Electromagnetic Spectrum 7 Radio waves • Low energy waves with long wavelengths • Includes FM, AM, radar and TV waves • Wavelengths of 10-1m and longer • Low frequency • Used in many
    [Show full text]
  • Violet Red Bile Agar M049
    Violet Red Bile Agar M049 Violet Red Bile Agar is selective medium used for the isolation, detection and enumeration of coli-aerogenes bacteria in water, milk, other dairy food products and also from clinical samples. Composition** Ingredients Gms / Litre Peptic digest of animal tissue 7.000 Yeast extract 3.000 Sodium chloride 5.000 Bile salts mixture 1.500 Lactose 10.000 Neutral red 0.030 Crystal violet 0.002 Agar 15.000 Final pH ( at 25°C) 7.4±0.2 **Formula adjusted, standardized to suit performance parameters Directions Suspend 41.53 grams in 1000 ml distilled water. Heat with stirring to boiling to dissolve the medium completely. DO NOT AUTOCLAVE. Cool to 45°C and pour into sterile Petri plates containing the inoculum. If desired, the medium can be sterilized by autoclaving at 15 lbs pressure at 15lbs pressure (121°C) for 15 minutes. Principle And Interpretation The coliform group consists of several genera of bacteria belonging to the family Enterobacteriaceae . The historical definition of this group has been based on the method used for detection i.e. lactose fermentation. This group is defined as all aerobic and facultative anaerobic, gram-negative, non-spore-forming rod shaped bacteria that ferment lactose with gas and acid formation within 48 hour at 35°C (1, 2). Examination of foods, ingredients and raw materials, for the presence of marker groups such as coliforms is the one of the common tests. Violet Red Bile Agar, a modification of MacConkeys original formulation (3) is used for the enumeration of coli-aerogenes bacterial group.
    [Show full text]
  • Electromagnetic Spectrum
    Electromagnetic Spectrum Why do some things have colors? What makes color? Why do fast food restaurants use red lights to keep food warm? Why don’t they use green or blue light? Why do X-rays pass through the body and let us see through the body? What has the radio to do with radiation? What are the night vision devices that the army uses in night time fighting? To find the answers to these questions we have to examine the electromagnetic spectrum. FASTER THAN A SPEEDING BULLET MORE POWERFUL THAN A LOCOMOTIVE These words were used to introduce a fictional superhero named Superman. These same words can be used to help describe Electromagnetic Radiation. Electromagnetic Radiation is like a two member team racing together at incredible speeds across the vast regions of space or flying from the clutches of a tiny atom. They travel together in packages called photons. Moving along as a wave with frequency and wavelength they travel at the velocity of 186,000 miles per second (300,000,000 meters per second) in a vacuum. The photons are so tiny they cannot be seen even with powerful microscopes. If the photon encounters any charged particles along its journey it pushes and pulls them at the same frequency that the wave had when it started. The waves can circle the earth more than seven times in one second! If the waves are arranged in order of their wavelength and frequency the waves form the Electromagnetic Spectrum. They are described as electromagnetic because they are both electric and magnetic in nature.
    [Show full text]
  • W Aves SCIENCE: Electromagnetic Spectrum
    Keyword Definition Key facts to remember: electromagneti A group of waves that all travel at the same speed in All EM (electromagnetic) waves are transverse waves. c waves a vacuum, and are all transverse. frequency The number of vibrations (or the number of waves) Al l EM waves travel at the same speed (velocity) through a vacuum per second. One hertz (Hz) is one wave per second. (space) at 300 million m/s. infrared (IR) EM radiation that has a longer wavelength than EM waves are grouped based on their wavelengths and frequency. visible. We can feel infrared radiation as warmth. There are 7 basic EM waves. Radio waves, microwaves, infrared, visible light, UV, Xrays , gamma waves. SCIENCE: Waves interface The boundary between two materials. KS4 : AutumnKS4 Term KS4 : AutumnKS4 Term Our eyes can only detect a small part of this spectrum –visible light. refraction The change in direction when a wave goes from one medium to another. Different colours of light have different wavelengths from longest to transverse A wave in which the vibrations are at right angles to shortest: red, orange, yellow, green, blue, indigo, violet. (ROYGBIV) wave the direction the wave is travelling. or pneumonic; Richard Of York Gave Battle In Vain) ultraviolet (UV) EM radiation that has a shorter wavelength than visible light. Used to detect forged bank notes. vacuum A place where there is no matter at all. visible light Electromagnetic waves that can be detected by the human eye. gamma rays Electromagnetic radiation with the shortest SCIENCE: Electromagnetic Spectrum Electromagnetic SCIENCE: wavelengths and highest frequencies.
    [Show full text]
  • Color Chart Colorchart
    Color Chart AMERICANA ACRYLICS Snow (Titanium) White White Wash Cool White Warm White Light Buttermilk Buttermilk Oyster Beige Antique White Desert Sand Bleached Sand Eggshell Pink Chiffon Baby Blush Cotton Candy Electric Pink Poodleskirt Pink Baby Pink Petal Pink Bubblegum Pink Carousel Pink Royal Fuchsia Wild Berry Peony Pink Boysenberry Pink Dragon Fruit Joyful Pink Razzle Berry Berry Cobbler French Mauve Vintage Pink Terra Coral Blush Pink Coral Scarlet Watermelon Slice Cadmium Red Red Alert Cinnamon Drop True Red Calico Red Cherry Red Tuscan Red Berry Red Santa Red Brilliant Red Primary Red Country Red Tomato Red Naphthol Red Oxblood Burgundy Wine Heritage Brick Alizarin Crimson Deep Burgundy Napa Red Rookwood Red Antique Maroon Mulberry Cranberry Wine Natural Buff Sugared Peach White Peach Warm Beige Coral Cloud Cactus Flower Melon Coral Blush Bright Salmon Peaches 'n Cream Coral Shell Tangerine Bright Orange Jack-O'-Lantern Orange Spiced Pumpkin Tangelo Orange Orange Flame Canyon Orange Warm Sunset Cadmium Orange Dried Clay Persimmon Burnt Orange Georgia Clay Banana Cream Sand Pineapple Sunny Day Lemon Yellow Summer Squash Bright Yellow Cadmium Yellow Yellow Light Golden Yellow Primary Yellow Saffron Yellow Moon Yellow Marigold Golden Straw Yellow Ochre Camel True Ochre Antique Gold Antique Gold Deep Citron Green Margarita Chartreuse Yellow Olive Green Yellow Green Matcha Green Wasabi Green Celery Shoot Antique Green Light Sage Light Lime Pistachio Mint Irish Moss Sweet Mint Sage Mint Mint Julep Green Jadeite Glass Green Tree Jade
    [Show full text]
  • BWSR Featured Plant: Downy Yellow Violet
    2019 June Plant of the Month BWSR Featured Plant Name: Downy yellow violet (Viola pubescens) Plant family: Violet (Violaceae) Downy yellow Downy yellow violet, AKA hairy yellow violets are an important early violet or smooth yellow violet, is food source for a short (4- to 12-inch-tall), native, pollinators. Fine hairs along the herbaceous perennial that blooms in rounded teeth woodlands, gardens edge of the leaf are a distinguishing and shady areas Plant Stats feature. Brown lines starting in April. It STATEWIDE on the flower petals provides an early lead pollinators to WETLAND nectar and pollen. splash of color and INDICATOR Photo Credits: important early STATUS: FACU Heather Holm season nectar and PRIMARY USES: pollen. Like other Ground cover, shade/pollinator Viola species, this gardens, edibles, plant produces both woodland showy, open cross- restorations pollinating flowers at the top of the plant, and fully closed, self-pollinating flowers that may be found aboveground or underground. The showy flowers bloom before trees leaf out. The closed flowers bloom once the tree canopy leafs out. Planting Recommendations Range Downy yellow violets and can be used as Downy yellow violet is found may not be as an alternative to turf throughout Minnesota. Records aggressive as some grass, along paths and exist in all but a handful of other violets in a woodland borders, counties. It is mostly found east garden, but will spread and can be mixed with of the Missouri River, with a few over time in ideal other short woodland records west of the Missouri. conditions — part plants such as sedges, Its range stretches into New shade and medium to anemones and wild England and north into central dry soils.
    [Show full text]
  • Light and the Electromagnetic Spectrum
    © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © JonesLight & Bartlett and Learning, LLCthe © Jones & Bartlett Learning, LLC NOTElectromagnetic FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION4 Spectrum © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALEJ AMESOR DISTRIBUTIONCLERK MAXWELL WAS BORN IN EDINBURGH, SCOTLANDNOT FOR IN 1831. SALE His ORgenius DISTRIBUTION was ap- The Milky Way seen parent early in his life, for at the age of 14 years, he published a paper in the at 10 wavelengths of Proceedings of the Royal Society of Edinburgh. One of his first major achievements the electromagnetic was the explanation for the rings of Saturn, in which he showed that they con- spectrum. Courtesy of Astrophysics Data Facility sist of small particles in orbit around the planet. In the 1860s, Maxwell began at the NASA Goddard a study of electricity© Jones and & magnetismBartlett Learning, and discovered LLC that it should be possible© Jones Space & Bartlett Flight Center. Learning, LLC to produce aNOT wave FORthat combines SALE OR electrical DISTRIBUTION and magnetic effects, a so-calledNOT FOR SALE OR DISTRIBUTION electromagnetic wave.
    [Show full text]
  • Critical Thinking Activity: the Electromagnetic Spectrum
    Student Sheet 1 CRITICAL THINKING ACTIVITY: THE ELECTROMAGNETIC SPECTRUM There are many kinds of energy in the universe. The energy given off from the sun is radiant energy, scientifically called electromagnetic radiation. Produced by nuclear reactions at the core of the sun, this energy streams from the surface of the sun in waves of different lengths. The shortest and longest wavelengths are invisible to our eyes, but the medium wavelengths are the visible radiation we call sunlight. Most of the sun’s energy is released in these visible wavelengths. All substances have kinetic energy that is expressed by vibrations of their atoms or molecules. The vibrations result in radiation. The electromagnetic (EM) spectrum is a name given to all of the different types of radiation. Electromagnetic radiation is energy that spreads out as it travels. Visible light radiation that comes from a lamp in someone’s house or radio wave radiation that comes from a radio station are two types of electromagnetic radiation. Other examples of EM radiation are microwaves, infrared and ultraviolet radiation, X- rays and gamma rays. Hotter, more energetic objects and events create higher energy radiation than cool objects. Only extremely hot objects or particles moving at very high speeds can create high-energy radiation like X-rays and gamma rays. 1 Student Sheet 2 A common assumption is that radio waves are completely different than X-rays and gamma rays. They are produced in very different ways, and we detect them in different ways. However, radio waves, visible light, X-rays, and all the other parts of the electromagnetic spectrum are fundamentally the same.
    [Show full text]
  • Which Regions of the Electromagnetic Spectrum Do Plants Use to Drive Photosynthesis?
    Which regions of the electromagnetic spectrum do plants use to drive photosynthesis? Green Light: The Forgotten Region of the Spectrum. In the past, plant physiologists used green light as a safe light during experiments that required darkness. It was assumed that plants reflected most of the green light and that it did not induce photosynthesis. Yes, plants do reflect green light but human vision sensitivity peaks in the green region at about 560 nm, which allows us to preferentially see green. Plants do not reflect all of the green light that falls on them but they reflect enough for us to detect it. Read on to find out what the role of green light is in photosynthesis. The electromagnetic spectrum: Light Visible light ranges from low blue to far-red light and is described as the wavelengths between 380 nm and 750 nm, although this varies between individuals. The region between 400 nm and 700 nm is what plants use to drive photosynthesis and is typically referred to as Photosynthetically Active Radiation (PAR). There is an inverse relationship between wavelength and quantum energy, the higher the wavelength the lower quantum energy and vice versa. Plants use wavelengths outside of PAR for the phenomenon known as photomorphogenesis, which is light regulated changes in development, morphology, biochemistry and cell structure and function. The effects of different wavelengths on plant function and form are complex and are proving to be an interesting area of study for many plant scientists. The use of specific and adjustable LEDs allows us to tease apart the roles of specific areas of the spectrum in photosynthesis.
    [Show full text]