Electromagnetic Spectrum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Absorption of Light Energy Light, Energy, and Electron Structure SCIENTIFIC
Absorption of Light Energy Light, Energy, and Electron Structure SCIENTIFIC Introduction Why does the color of a copper chloride solution appear blue? As the white light hits the paint, which colors does the solution absorb and which colors does it transmit? In this activity students will observe the basic principles of absorption spectroscopy based on absorbance and transmittance of visible light. Concepts • Spectroscopy • Visible light spectrum • Absorbance and transmittance • Quantized electron energy levels Background The visible light spectrum (380−750 nm) is the light we are able to see. This spectrum is often referred to as “ROY G BIV” as a mnemonic device for the order of colors it produces. Violet has the shortest wavelength (about 400 nm) and red has the longest wavelength (about 650–700 nm). Many common chemical solutions can be used as filters to demonstrate the principles of absorption and transmittance of visible light in the electromagnetic spectrum. For example, copper(II) chloride (blue), ammonium dichromate (orange), iron(III) chloride (yellow), and potassium permanganate (red) are all different colors because they absorb different wave- lengths of visible light. In this demonstration, students will observe the principles of absorption spectroscopy using a variety of different colored solutions. Food coloring will be substituted for the orange and yellow chemical solutions mentioned above. Rare earth metal solutions, erbium and praseodymium chloride, will be used to illustrate line absorption spectra. Materials Copper(II) chloride solution, 1 M, 85 mL Diffraction grating, holographic, 14 cm × 14 cm Erbium chloride solution, 0.1 M, 50 mL Microchemistry solution bottle, 50 mL, 6 Potassium permanganate solution (KMnO4), 0.001 M, 275 mL Overhead projector and screen Praseodymium chloride solution, 0.1 M, 50 mL Red food dye Water, deionized Stir rod, glass Beaker, 250-mL Tape Black construction paper, 12 × 18, 2 sheets Yellow food dye Colored pencils Safety Precautions Copper(II) chloride solution is toxic by ingestion and inhalation. -
Estimating Fire Properties by Remote Sensing
Estimating Fire Properties by Remote Sensing1. Philip J. Riggan USDA Forest Service Pacific Southwest Research Station 4955 Canyon Crest Drive Riverside, CA 92507 909 680 1534 [email protected] James W. Hoffman Space Instruments, Inc. 4403 Manchester Avenue, Suite 203 Encinitas, CA 92024 760 944 7001 [email protected] James A. Brass NASA Ames Research Center Moffett Federal Airfield, CA 94035 650 604 5232 [email protected] Abstract---Contemporary knowledge of the role of fire in the TABLE OF CONTENTS global environment is limited by inadequate measurements of the extent and impact of individual fires. Observations by 1. INTRODUCTION operational polar-orbiting and geostationary satellites provide an 2. ESTIMATING FIRE PROPERTIES indication of fire occurrence but are ill-suited for estimating the 3. ESTIMATES FROM TWO CHANNELS temperature, area, or radiant emissions of active wildland and 4. MULTI-SPECTRAL FIRE IMAGING agricultural fires. Simulations here of synthetic remote sensing 5. APPLICATIONS FOR FIRE MONITORING pixels comprised of observed high resolution fire data together with ash or vegetation background demonstrate that fire properties including flame temperature, fractional area, and INTRODUCTION radiant-energy flux can best be estimated from concurrent radiance measurements at wavelengths near 1.6, 3.9, and 12 µm, More than 30,000 fire observations were recorded over central Successful observations at night may be made at scales to at Brazil during August 1999 by Advanced Very High Resolution least I km for the cluster of fire data simulated here. During the Radiometers operating aboard polarorbiting satellites of the U.S. daytime, uncertainty in the composition of the background and National Oceanic and Atmospheric Administration. -
Ground Penetrating Abilities of a New Coherent Radio Wave And
TECHNICAL pApEr Ground penetrating abilities of a new coherent radio wave and microwave imaging spectrometer G C Stove, M J Robinson, G D C Stove, and A Odell, Adrock; J McManus, Department of Earth Sciences, University of St Andrews he early use of synthetic aperture each subsurface rock layer. The aim transmitted ADR beams typically pulsed electromagnetic radio radar (SAR) and light detection of this article is to report on tests operate within the frequency range waves, microwaves, millimetric, or Tand ranging (Lidar) systems from of the subsurface Earth penetration of 1-100MHz (Stove 2005). sub-millimetric radio waves from aircraft and space shuttles revealed capabilities of a new spectrometer In recent years, the technology materials which permit the applied the ability of the signals to penetrate as well as its ability to recognize for the production of laser light energy to pass through the material. the ground surface. Atomic dielectric many sedimentary, igneous and has become widely available, and The resonant energy response resonance (ADR) technology was metamorphic rock types in real- applications of this medium to can be measured in terms of energy, developed as an improvement over world conditions. the examination of materials are frequency, and phase relationships. SAR and ground penetrating radar Although GPRs are now constantly expanding. Although the The precision with which the (GPR) to achieve deeper penetration popular as non-destructive testing earlier applications concentrated process can be measured helps of the Earth’s subsurface through the tools, their analytical capabilities on the use of visible laser light, define the unique interactive atomic creation and use of a novel type of are rather restricted and imaging the development of systems using or molecular response behaviour of coherent beam. -
The Electromagnetic Spectrum
The Electromagnetic Spectrum Wavelength/frequency/energy MAP TAP 2003-2004 The Electromagnetic Spectrum 1 Teacher Page • Content: Physical Science—The Electromagnetic Spectrum • Grade Level: High School • Creator: Dorothy Walk • Curriculum Objectives: SC 1; Intro Phys/Chem IV.A (waves) MAP TAP 2003-2004 The Electromagnetic Spectrum 2 MAP TAP 2003-2004 The Electromagnetic Spectrum 3 What is it? • The electromagnetic spectrum is the complete spectrum or continuum of light including radio waves, infrared, visible light, ultraviolet light, X- rays and gamma rays • An electromagnetic wave consists of electric and magnetic fields which vibrates thus making waves. MAP TAP 2003-2004 The Electromagnetic Spectrum 4 Waves • Properties of waves include speed, frequency and wavelength • Speed (s), frequency (f) and wavelength (l) are related in the formula l x f = s • All light travels at a speed of 3 s 108 m/s in a vacuum MAP TAP 2003-2004 The Electromagnetic Spectrum 5 Wavelength, Frequency and Energy • Since all light travels at the same speed, wavelength and frequency have an indirect relationship. • Light with a short wavelength will have a high frequency and light with a long wavelength will have a low frequency. • Light with short wavelengths has high energy and long wavelength has low energy MAP TAP 2003-2004 The Electromagnetic Spectrum 6 MAP TAP 2003-2004 The Electromagnetic Spectrum 7 Radio waves • Low energy waves with long wavelengths • Includes FM, AM, radar and TV waves • Wavelengths of 10-1m and longer • Low frequency • Used in many -
Hydraulics Manual Glossary G - 3
Glossary G - 1 GLOSSARY OF HIGHWAY-RELATED DRAINAGE TERMS (Reprinted from the 1999 edition of the American Association of State Highway and Transportation Officials Model Drainage Manual) G.1 Introduction This Glossary is divided into three parts: · Introduction, · Glossary, and · References. It is not intended that all the terms in this Glossary be rigorously accurate or complete. Realistically, this is impossible. Depending on the circumstance, a particular term may have several meanings; this can never change. The primary purpose of this Glossary is to define the terms found in the Highway Drainage Guidelines and Model Drainage Manual in a manner that makes them easier to interpret and understand. A lesser purpose is to provide a compendium of terms that will be useful for both the novice as well as the more experienced hydraulics engineer. This Glossary may also help those who are unfamiliar with highway drainage design to become more understanding and appreciative of this complex science as well as facilitate communication between the highway hydraulics engineer and others. Where readily available, the source of a definition has been referenced. For clarity or format purposes, cited definitions may have some additional verbiage contained in double brackets [ ]. Conversely, three “dots” (...) are used to indicate where some parts of a cited definition were eliminated. Also, as might be expected, different sources were found to use different hyphenation and terminology practices for the same words. Insignificant changes in this regard were made to some cited references and elsewhere to gain uniformity for the terms contained in this Glossary: as an example, “groundwater” vice “ground-water” or “ground water,” and “cross section area” vice “cross-sectional area.” Cited definitions were taken primarily from two sources: W.B. -
Including Far Red in an LED Lighting Spectrum
technically speaking BY ERIK RUNKLE Including Far Red in an LED Lighting Spectrum Far red (FR) is a one of the radiation (or light) wavebands larger leaves can be desired for other crops. that regulates plant growth and development. Many people We have learned that blue light (and to a smaller extent, consider FR as radiation with wavelengths between 700 and total light intensity) can influence the effects of FR. When the 800 nm, although 700 to 750 nm is, by far, the most active. intensity of blue light is high, adding FR only slightly increases By definition, FR is just outside the photosynthetically active extension growth. Therefore, the utility of including FR in an radiation (PAR) waveband, but it can directly and indirectly indoor lighting spectrum is greater under lower intensities increase growth. In addition, it can accelerate of blue light. One compelling reason to deliver at least some flowering of some crops, especially long-day plants, FR light indoors is to induce early flowering of young plants, which are those that flower when the nights are short. especially long-day plants. As we learn more about the effects of FR on plants, growers sometimes wonder, is it beneficial to include FR in a light-emitting diode (LED) spectrum? "As the DLI increases, Not surprisingly, the answer is, it depends on the application and crop. In the May 2016 issue of GPN, I wrote about the the utility of FR in effects of FR on plant growth and flowering (https:// bit.ly/2YkxHCO). Briefly, leaf size and stem length photoperiodic lighting increase as the intensity of FR increases, although the magnitude depends on the crop and other characteristics of the light environment. -
X-Ray Production Compton Scattering Pair Production
Welcome back to PHY 3305 Today’s Lecture: X-ray Production Compton Scattering Pair Production Arthur Compton 1892 - 1962 Physics 3305 - Modern Physics Professor Jodi Cooley Meeting of the Texas Section of the American Physical Society When: Fri-Sat Oct 20-21 Where: UT Dallas ñ Physics majors are expected to attend, and present any research project if applicable. ñ See the email from Dr. Dalley about registration (deadline Sept 27). ñ See Michele Hill (Physics office) well before the meeting to get set up for registration and banquet fee reimbursement. Physics 3305 - Modern Physics Professor Jodi Cooley Anouncements • Reading Assignment: Chapter 3.6; 4.1 - 4.2 • Problem set 5 is due Tuesday, Sept. 26th at 12:30 pm. • Regrade for problem set 4 is due Tuesday, Sept 26th at 12:30 pm. • Midterm exam 1 covering chapters 1-2 and related material will be in class on Thursday, Sept 21st. There will be a seating chart. Physics 3305 - Modern Physics Professor Jodi Cooley Review Question 1 In a photoelectric effect experiment, if the intensity of the incident light is doubled the stopping potential will: a) Double b) Double, but only of if the light’s frequency is above the cut-off Current between the electrodes c) Half stops when the opposing potential energy difference equals the d) Remain unchanged maximum KE of the photoelectrons. KE = hf φ max − Physics 3305 - Modern Physics Professor Jodi Cooley Electrons are accelerated in television tubes through a potential difference of 10.0 kV. Find the lowest wavelength of the electromagnetic waves emitted when these electrons strike the screen. -
Resonance Enhancement of Raman Spectroscopy: Friend Or Foe?
www.spectroscopyonline.com ® Electronically reprinted from June 2013 Volume 28 Number 6 Molecular Spectroscopy Workbench Resonance Enhancement of Raman Spectroscopy: Friend or Foe? The presence of electronic transitions in the visible part of the spectrum can provide enor- mous enhancement of the Raman signals, if these electronic states are not luminescent. In some cases, the signals can increase by as much as six orders of magnitude. How much of an enhancement is possible depends on several factors, such as the width of the excited state, the proximity of the laser to that state, and the enhancement mechanism. The good part of this phenomenon is the increased sensitivity, but the downside is the nonlinearity of the signal, making it difficult to exploit for analytical purposes. Several systems exhibiting enhancement, such as carotenoids and hemeproteins, are discussed here. Fran Adar he physical basis for the Raman effect is the vibra- bound will be more easily modulated. So, because tional modulation of the electronic polarizability. electrons are more loosely bound than electrons, the T In a given molecule, the electronic distribution is polarizability of any unsaturated chemical functional determined by the atoms of the molecule and the electrons group will be larger than that of a chemically saturated that bind them together. When the molecule is exposed to group. Figure 1 shows the spectra of stearic acid (18:0) and electromagnetic radiation in the visible part of the spec- oleic acid (18:1). These two free fatty acids are both con- trum (in our case, the laser photons), its electronic dis- structed from a chain of 18 carbon atoms, in one case fully tribution will respond to the electric field of the photons. -
W Aves SCIENCE: Electromagnetic Spectrum
Keyword Definition Key facts to remember: electromagneti A group of waves that all travel at the same speed in All EM (electromagnetic) waves are transverse waves. c waves a vacuum, and are all transverse. frequency The number of vibrations (or the number of waves) Al l EM waves travel at the same speed (velocity) through a vacuum per second. One hertz (Hz) is one wave per second. (space) at 300 million m/s. infrared (IR) EM radiation that has a longer wavelength than EM waves are grouped based on their wavelengths and frequency. visible. We can feel infrared radiation as warmth. There are 7 basic EM waves. Radio waves, microwaves, infrared, visible light, UV, Xrays , gamma waves. SCIENCE: Waves interface The boundary between two materials. KS4 : AutumnKS4 Term KS4 : AutumnKS4 Term Our eyes can only detect a small part of this spectrum –visible light. refraction The change in direction when a wave goes from one medium to another. Different colours of light have different wavelengths from longest to transverse A wave in which the vibrations are at right angles to shortest: red, orange, yellow, green, blue, indigo, violet. (ROYGBIV) wave the direction the wave is travelling. or pneumonic; Richard Of York Gave Battle In Vain) ultraviolet (UV) EM radiation that has a shorter wavelength than visible light. Used to detect forged bank notes. vacuum A place where there is no matter at all. visible light Electromagnetic waves that can be detected by the human eye. gamma rays Electromagnetic radiation with the shortest SCIENCE: Electromagnetic Spectrum Electromagnetic SCIENCE: wavelengths and highest frequencies. -
UNIT -1 Microwave Spectrum and Bands-Characteristics Of
UNIT -1 Microwave spectrum and bands-characteristics of microwaves-a typical microwave system. Traditional, industrial and biomedical applications of microwaves. Microwave hazards.S-matrix – significance, formulation and properties.S-matrix representation of a multi port network, S-matrix of a two port network with mismatched load. 1.1 INTRODUCTION Microwaves are electromagnetic waves (EM) with wavelengths ranging from 10cm to 1mm. The corresponding frequency range is 30Ghz (=109 Hz) to 300Ghz (=1011 Hz) . This means microwave frequencies are upto infrared and visible-light regions. The microwaves frequencies span the following three major bands at the highest end of RF spectrum. i) Ultra high frequency (UHF) 0.3 to 3 Ghz ii) Super high frequency (SHF) 3 to 30 Ghz iii) Extra high frequency (EHF) 30 to 300 Ghz Most application of microwave technology make use of frequencies in the 1 to 40 Ghz range. During world war II , microwave engineering became a very essential consideration for the development of high resolution radars capable of detecting and locating enemy planes and ships through a Narrow beam of EM energy. The common characteristics of microwave device are the negative resistance that can be used for microwave oscillation and amplification. Fig 1.1 Electromagnetic spectrum 1.2 MICROWAVE SYSTEM A microwave system normally consists of a transmitter subsystems, including a microwave oscillator, wave guides and a transmitting antenna, and a receiver subsystem that includes a receiving antenna, transmission line or wave guide, a microwave amplifier, and a receiver. Reflex Klystron, gunn diode, Traveling wave tube, and magnetron are used as a microwave sources. -
Measure the Speed of Light with Chocolate and a Microwave
Measuring the Speed of Light With Chocolate This lesson can be used as a lab or demonstration to teach students about the speed of light and it relationship to frequency and wavelength. It discusses the equation c = fλ. The idea for this lesson came from the 2004 NSTA meeting in Atlanta. Primary Learning Outcome: After the lesson has been taught students should fully understand the equation c = fλ and relate it to things that they use. Georgia Performance Standards: SPS7. Students will relate transformations and flow of energy within a system SPS9. Students will investigate the properties of waves Total Duration: 20 minutes Materials and Equipment: 1. Microwave 2. Chocolate chips 3. Paper plate 4. Ruler Procedures: Remove turntable from microwave Scatter chocolate chips over paper plate Place in microwave Microwave for a few seconds until chocolate starts to melt Measure the distance between hotspots Assessment: The lesson will be assessed using students answers to questions and how closely students got to the right answer. Accommodation: This lesson can be taught as a laboratory or as a demonstration for students who have problems with laboratories. Measuring the Speed of Light with Chocolate Anyone can measure the speed of light (c) - with chocolate and a microwave oven! The only equipment you need for this experiment is a microwave, a ruler and chocolate. The speed of light is equal to the wavelength (λ) multiplied by the frequency (f) of an electromagnetic wave (microwaves and visible light are both examples of electromagnetic waves). c=λ*f When you turn on your microwave oven, electrical circuits inside start generating microwaves – electromagnetic waves with frequencies around 2.5 gigahertz – 2500000000 Hz. -
Light and the Electromagnetic Spectrum
© Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © JonesLight & Bartlett and Learning, LLCthe © Jones & Bartlett Learning, LLC NOTElectromagnetic FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION4 Spectrum © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALEJ AMESOR DISTRIBUTIONCLERK MAXWELL WAS BORN IN EDINBURGH, SCOTLANDNOT FOR IN 1831. SALE His ORgenius DISTRIBUTION was ap- The Milky Way seen parent early in his life, for at the age of 14 years, he published a paper in the at 10 wavelengths of Proceedings of the Royal Society of Edinburgh. One of his first major achievements the electromagnetic was the explanation for the rings of Saturn, in which he showed that they con- spectrum. Courtesy of Astrophysics Data Facility sist of small particles in orbit around the planet. In the 1860s, Maxwell began at the NASA Goddard a study of electricity© Jones and & magnetismBartlett Learning, and discovered LLC that it should be possible© Jones Space & Bartlett Flight Center. Learning, LLC to produce aNOT wave FORthat combines SALE OR electrical DISTRIBUTION and magnetic effects, a so-calledNOT FOR SALE OR DISTRIBUTION electromagnetic wave.