Vector Spaces), Completed

Total Page:16

File Type:pdf, Size:1020Kb

Vector Spaces), Completed Section 3.1: Definition and Examples (Vector Spaces), Completed 1. Examples n Euclidean Vector Spaces: The set of n-length vectors that we denoted by R is a vector space. For simplicity, let's consider n = 2. T 2 A vector x = x1 x2 in R can be represented by a directed line segment from the origin to the point (x1; x2) or from any point (a; b) (same magnitude and direction). We scale vectors by any scalar α, multiplying each component by α. We add and subtract vectors via components, with a nice geometrical interpretation. n The space of all m × n matrices: Just as R can be viewed as n × 1 matrices, we can generalize m×n n to R , the set of all m × n matrices. As we've seen, matrices behave similarly to vectors in R with addition/subtraction and scalar multiplication. n m×n Both of these vector spaces R and R possess desirable operations that we can perform on their elements. These algebraic rules form the axioms used to define a general vector space. Intuitively, a vector space is a set that has the essential operations of addition and scalar multiplication defined, with some other well-desired properties satisfied. This concept, generalizing to defining abstract objects possessing certain properties, is one of the most powerful in all of mathematics. M309 Notes ©, R.G. Lynch, Texas A&M Section 3.1: Definition and Examples (Vector Spaces), Completed Page 2 of 9 Definition. An essential component of the definition are the closure properties: C1. If x 2 V and α is a scalar, then αx 2 V . C2. If x; y 2 V , then x + y 2 V . A vector space is closed under addition and scalar multiplication. Theorem. If V is a vector space and x is any element of V , then (i)0 x = 0 (ii) x + y = 0 implies that y = −x (that is, the additive inverse is unique) (iii)( −1)x = −x Note. This is terrible notation and it is a shame that many authors introduce vector spaces as such. n Addition and scalar multiplication are NOT(!!!) necessarily what you are used to in R and this makes it look like it is. Usually, I will denote addition by ⊕ and scalar multiplication by ◦. While n most vector spaces we will deal with seem to behave very similarly to R , there are some weird ones (the last example). If I write + or ·, this will mean the usual addition and scalar multiplication. m×n Example. When m and n are fixed, you can check that the R is a vector space. Is the set of all matrices (possibly different sizes) with the same addition and scalar multiplication a vector space? Solution. No, we cannot add two different sized matrices together. For example a 3 × 4 cannot be added to a 3 × 5, which we would need the operation to satisfy for it to make sense. M309 Notes ©, R.G. Lynch, Texas A&M Section 3.1: Definition and Examples (Vector Spaces), Completed Page 3 of 9 2 Example (Lines in R ). Let U := f(x; 1) : x 2 Rg, the set of all points lying on the horizontal line y = 1. Is U a vector space with usual addition and scalar multiplication? Solution. This set has a very undesired property. We can add any two vectors in the set together, say (3; 1) and (5; 1) to get (8; 2), which is no longer in U since it lies on the line y = 2! Thus, + is not really an operation on U. Similarly, neither is scalar multiplication because α(x; 1) = (αx; α) is only in U when α = 1. For example, 2(3; 1) = (6; 2) 2= W . Since it fails the closure properties, U is not a vector space. Example. What about V := f(x; 0) : x 2 Rg with the same operations? Solution. This set no longer poses the problem we saw with U above. Adding (x1; 0) and (x2; 0) gives (x1 +x2; 0) which is still in V . Scalar multiplication also works because α(x; 0) = (αx; 0) 2 V . It turns out that the axioms also hold for V and so it is a vector space. However, I won't prove the axioms for V but instead prove them for W in the next example, since taking m = 0 will give V . Example. What about W := f(x; mx): x 2 Rg with the same operations? Solution. Here we assume that m is any real number. Note that this set represents the set of all points on the line y = mx, so any nonvertical line through the origin. Showing closure: C1. α 2 R; x = (x; mx) 2 W implies that: αx = α(x; mx) = (αx; αmx) = (αx; m(αx)) 2 W C2. x(x; mx); y = (y; my) 2 W implies that: x + y = (x; mx) + (y; my) = (x + y; mx + my) = x + y; m(x + y) 2 W Showing the axioms: Let α; β 2 R and x = (x; mx); y = (y; mx); z = (z; mz) 2 W . A1. x + y = (x; mx) + (y; mx) = (x + y; mx + my) = (y + x; my + mx) = (y; my) + (x; mx) = y + x A2. On one hand we have (x + y) + z = (x; mx) + (y; mx) + (z; mz) = (x + y; mx + my) + (z; mz) = (x + y + z; mx + my + mz) and on the other x + (y + z) = (x; mx) + (y; mx) + (z; mz) = (x; mx) + (y + z; my + mz) = (x + y + z; mx + my + mz) from which we see that (x + y) + z = x + (y + z). A3. We need to find a c = (c; mc) 2 W so that x + c = x. Note that I am using c for the Spanish \cero" since z is already being used AND this zero may not be the usual zero vector, (0; 0). We have to figure out if it is first! We have x + c = x () (x; mx) + (c; mc) = (x; mx) () (x + c; m(x + c)) = (x; mx) from which we can see we must take c = 0, so c = (0; 0). Again, we cannot technically subtract vectors yet since A4 has not been proven yet, so you can't move (x; mx) over. A4. Again, we can't be sure that −x is simply (−x; −mx) until we show that it is. So let n = (n; mn) and let's check if n = −x. We have, recalling that c is the zero vector found in A3, x + n = c () (x; mx) + (n; mn) = (0; 0) () (x + n; m(x + n)) = (0; 0) from which we see that indeed n = −x, so −x = n = (−x; −nx). M309 Notes ©, R.G. Lynch, Texas A&M Section 3.1: Definition and Examples (Vector Spaces), Completed Page 4 of 9 A5. On one hand we have α(x + y) = α(x; mx) + (y; my) = α(x + y; mx + my) = (α(x + y); α(mx + my)) = (αx + αy; αmx + αmy) and on the other αx + αy = α(x; mx) + α(y; my) = (αx; αmx) + (αy; αmy) = (αx + αy; αmx + αmy) from which we see that α(x + y) = αx + αy. A6. On one hand we have (α + β)x = (α + β)(x; mx) = (α + β)x; (α + β)mx = (αx + βx; αmx + βmx) and on the other αx + βx = α(x; mx) + β(x; mx) = (αx; αmx) + (βx; βmx) = (αx + βx; αmx; βmx) from which we see that (α + β)x = αx + βx. A7. On one hand we have (αβ)x = (αβ)(x; mx) = (αβ)x; (αβ)mx = (αβx; αβmx) and on the other α(βx) = αβ(x; mx) = α(βx; βmx) = (αβx; αβmx) from which we see that (αβ)x = α(βx). A8. In class, we wrote u instead 1 and showed it was 1. I realize now that this is incorrect. The 1 is the unit number, that is, the number that 1 · α = α for any scalar α. Since the vector space is over the reals, that is, the scalars are real numbers, we know that 1 is the unit. Thus, we really do need to just check that 1 · x = x. Checking: 1 · x = 1 · (x; mx) = (1 · x; 1 · mx) = (x; mx) = x: Note that 1 · x = x and 1 · mx = mx since x and mx are just real numbers. Try yourself. Technically we didn't show that the set of all points on a vertical line that goes through the origin is a vector space. Try showing this yourself. M309 Notes ©, R.G. Lynch, Texas A&M Section 3.1: Definition and Examples (Vector Spaces), Completed Page 5 of 9 Example (Continuous real-valued functions on [a; b]). Let C[a; b] := ff :[a; b] ! R : f is continuousg with addition and scalar multiplication defined by: (f ⊕ g)(x) = f(x) + g(x) (α ◦ f)(x) = α · f(x) Is C[a; b] a vector space? Solution. Yes, it is a vector space. Note that the vectors in this case are actually functions! This n m×n is already different than R or R . The closure properties follow because adding two continuous functions together still gives a continuous function and multiplying a continuous function by a scalar simply stretches or shrinks the function, but doesn't affect continuity. You can rigorously check the closure properties (and it would be good practice) as we did in the last example, but I'm going to cheat a little and say that because we have basically defined the operations to be real number operations, adding real numbers at each value of x and multiplying.
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • 1 Euclidean Vector Space and Euclidean Affi Ne Space
    Profesora: Eugenia Rosado. E.T.S. Arquitectura. Euclidean Geometry1 1 Euclidean vector space and euclidean a¢ ne space 1.1 Scalar product. Euclidean vector space. Let V be a real vector space. De…nition. A scalar product is a map (denoted by a dot ) V V R ! (~u;~v) ~u ~v 7! satisfying the following axioms: 1. commutativity ~u ~v = ~v ~u 2. distributive ~u (~v + ~w) = ~u ~v + ~u ~w 3. ( ~u) ~v = (~u ~v) 4. ~u ~u 0, for every ~u V 2 5. ~u ~u = 0 if and only if ~u = 0 De…nition. Let V be a real vector space and let be a scalar product. The pair (V; ) is said to be an euclidean vector space. Example. The map de…ned as follows V V R ! (~u;~v) ~u ~v = x1x2 + y1y2 + z1z2 7! where ~u = (x1; y1; z1), ~v = (x2; y2; z2) is a scalar product as it satis…es the …ve properties of a scalar product. This scalar product is called standard (or canonical) scalar product. The pair (V; ) where is the standard scalar product is called the standard euclidean space. 1.1.1 Norm associated to a scalar product. Let (V; ) be a real euclidean vector space. De…nition. A norm associated to the scalar product is a map de…ned as follows V kk R ! ~u ~u = p~u ~u: 7! k k Profesora: Eugenia Rosado, E.T.S. Arquitectura. Euclidean Geometry.2 1.1.2 Unitary and orthogonal vectors. Orthonormal basis. Let (V; ) be a real euclidean vector space. De…nition.
    [Show full text]
  • Glossary of Linear Algebra Terms
    INNER PRODUCT SPACES AND THE GRAM-SCHMIDT PROCESS A. HAVENS 1. The Dot Product and Orthogonality 1.1. Review of the Dot Product. We first recall the notion of the dot product, which gives us a familiar example of an inner product structure on the real vector spaces Rn. This product is connected to the Euclidean geometry of Rn, via lengths and angles measured in Rn. Later, we will introduce inner product spaces in general, and use their structure to define general notions of length and angle on other vector spaces. Definition 1.1. The dot product of real n-vectors in the Euclidean vector space Rn is the scalar product · : Rn × Rn ! R given by the rule n n ! n X X X (u; v) = uiei; viei 7! uivi : i=1 i=1 i n Here BS := (e1;:::; en) is the standard basis of R . With respect to our conventions on basis and matrix multiplication, we may also express the dot product as the matrix-vector product 2 3 v1 6 7 t î ó 6 . 7 u v = u1 : : : un 6 . 7 : 4 5 vn It is a good exercise to verify the following proposition. Proposition 1.1. Let u; v; w 2 Rn be any real n-vectors, and s; t 2 R be any scalars. The Euclidean dot product (u; v) 7! u · v satisfies the following properties. (i:) The dot product is symmetric: u · v = v · u. (ii:) The dot product is bilinear: • (su) · v = s(u · v) = u · (sv), • (u + v) · w = u · w + v · w.
    [Show full text]
  • Vector Differential Calculus
    KAMIWAAI – INTERACTIVE 3D SKETCHING WITH JAVA BASED ON Cl(4,1) CONFORMAL MODEL OF EUCLIDEAN SPACE Submitted to (Feb. 28,2003): Advances in Applied Clifford Algebras, http://redquimica.pquim.unam.mx/clifford_algebras/ Eckhard M. S. Hitzer Dept. of Mech. Engineering, Fukui Univ. Bunkyo 3-9-, 910-8507 Fukui, Japan. Email: [email protected], homepage: http://sinai.mech.fukui-u.ac.jp/ Abstract. This paper introduces the new interactive Java sketching software KamiWaAi, recently developed at the University of Fukui. Its graphical user interface enables the user without any knowledge of both mathematics or computer science, to do full three dimensional “drawings” on the screen. The resulting constructions can be reshaped interactively by dragging its points over the screen. The programming approach is new. KamiWaAi implements geometric objects like points, lines, circles, spheres, etc. directly as software objects (Java classes) of the same name. These software objects are geometric entities mathematically defined and manipulated in a conformal geometric algebra, combining the five dimensions of origin, three space and infinity. Simple geometric products in this algebra represent geometric unions, intersections, arbitrary rotations and translations, projections, distance, etc. To ease the coordinate free and matrix free implementation of this fundamental geometric product, a new algebraic three level approach is presented. Finally details about the Java classes of the new GeometricAlgebra software package and their associated methods are given. KamiWaAi is available for free internet download. Key Words: Geometric Algebra, Conformal Geometric Algebra, Geometric Calculus Software, GeometricAlgebra Java Package, Interactive 3D Software, Geometric Objects 1. Introduction The name “KamiWaAi” of this new software is the Romanized form of the expression in verse sixteen of chapter four, as found in the Japanese translation of the first Letter of the Apostle John, which is part of the New Testament, i.e.
    [Show full text]
  • Chapter 5 ANGULAR MOMENTUM and ROTATIONS
    Chapter 5 ANGULAR MOMENTUM AND ROTATIONS In classical mechanics the total angular momentum L~ of an isolated system about any …xed point is conserved. The existence of a conserved vector L~ associated with such a system is itself a consequence of the fact that the associated Hamiltonian (or Lagrangian) is invariant under rotations, i.e., if the coordinates and momenta of the entire system are rotated “rigidly” about some point, the energy of the system is unchanged and, more importantly, is the same function of the dynamical variables as it was before the rotation. Such a circumstance would not apply, e.g., to a system lying in an externally imposed gravitational …eld pointing in some speci…c direction. Thus, the invariance of an isolated system under rotations ultimately arises from the fact that, in the absence of external …elds of this sort, space is isotropic; it behaves the same way in all directions. Not surprisingly, therefore, in quantum mechanics the individual Cartesian com- ponents Li of the total angular momentum operator L~ of an isolated system are also constants of the motion. The di¤erent components of L~ are not, however, compatible quantum observables. Indeed, as we will see the operators representing the components of angular momentum along di¤erent directions do not generally commute with one an- other. Thus, the vector operator L~ is not, strictly speaking, an observable, since it does not have a complete basis of eigenstates (which would have to be simultaneous eigenstates of all of its non-commuting components). This lack of commutivity often seems, at …rst encounter, as somewhat of a nuisance but, in fact, it intimately re‡ects the underlying structure of the three dimensional space in which we are immersed, and has its source in the fact that rotations in three dimensions about di¤erent axes do not commute with one another.
    [Show full text]
  • Scalar-Tensor Theories of Gravity: Some Personal History
    history-st-cuba-slides 8:31 May 27, 2008 1 SCALAR-TENSOR THEORIES OF GRAVITY: SOME PERSONAL HISTORY Cuba meeting in Mexico 2008 Remembering Johnny Wheeler (JAW), 1911-2008 and Bob Dicke, 1916-1997 We all recall Johnny as one of the most prominent and productive leaders of relativ- ity research in the United States starting from the late 1950’s. I recall him as the man in relativity when I entered Princeton as a graduate student in 1957. One of his most recent students on the staff there at that time was Charlie Misner, who taught a really new, interesting, and, to me, exciting type of relativity class based on then “modern mathematical techniques involving topology, bundle theory, differential forms, etc. Cer- tainly Misner had been influenced by Wheeler to pursue these then cutting-edge topics and begin the re-write of relativity texts that ultimately led to the massive Gravitation or simply “Misner, Thorne, and Wheeler. As I recall (from long! ago) Wheeler was the type to encourage and mentor young people to investigate new ideas, especially mathe- matical, to develop and probe new insights into the physical universe. Wheeler himself remained, I believe, more of a “generalist, relying on experts to provide details and rigorous arguments. Certainly some of the world’s leading mathematical work was being done only a brief hallway walk away from Palmer Physical Laboratory to Fine Hall. Perhaps many are unaware that Bob Dicke had been an undergraduate student of Wheeler’s a few years earlier. It was Wheeler himself who apparently got Bob thinking about the foundations of Einstein’s gravitational theory, in particular, the ever present mysteries of inertia.
    [Show full text]
  • Integrating Electrical Machines and Antennas Via Scalar and Vector Magnetic Potentials; an Approach for Enhancing Undergraduate EM Education
    Integrating Electrical Machines and Antennas via Scalar and Vector Magnetic Potentials; an Approach for Enhancing Undergraduate EM Education Seemein Shayesteh Maryam Rahmani Lauren Christopher Maher Rizkalla Department of Electrical and Department of Electrical and Department of Electrical and Department of Electrical and Computer Engineering Computer Engineering Computer Engineering Computer Engineering Indiana University Purdue Indiana University Purdue Indiana University Purdue Indiana University Purdue University Indianapolis University Indianapolis University Indianapolis University Indianapolis Indianapolis, IN Indianapolis, IN Indianapolis, IN Indianapolis, IN [email protected] [email protected] [email protected] [email protected] Abstract—This Innovative Practice Work In Progress paper undergraduate course. In one offering the course was attached presents an approach for enhancing undergraduate with a project using COMSOL software that assisted students Electromagnetic education. with better understanding of the differential EM equations within the course. Keywords— Electromagnetic, antennas, electrical machines, undergraduate, potentials, projects, ECE II. COURSE OUTLINE I. INTRODUCTION A. Typical EM Course within an ECE Curriculum Often times, the subject of using two potential functions in A typical EM undergraduate course requires Physics magnetism, the scalar magnetic potential function, ܸ௠, and the (electricity and magnetism) and Differential equations as pre- vector magnetic potential function, ܣ (with zero current requisite
    [Show full text]
  • Basic Four-Momentum Kinematics As
    L4:1 Basic four-momentum kinematics Rindler: Ch5: sec. 25-30, 32 Last time we intruduced the contravariant 4-vector HUB, (II.6-)II.7, p142-146 +part of I.9-1.10, 154-162 vector The world is inconsistent! and the covariant 4-vector component as implicit sum over We also introduced the scalar product For a 4-vector square we have thus spacelike timelike lightlike Today we will introduce some useful 4-vectors, but rst we introduce the proper time, which is simply the time percieved in an intertial frame (i.e. time by a clock moving with observer) If the observer is at rest, then only the time component changes but all observers agree on ✁S, therefore we have for an observer at constant speed L4:2 For a general world line, corresponding to an accelerating observer, we have Using this it makes sense to de ne the 4-velocity As transforms as a contravariant 4-vector and as a scalar indeed transforms as a contravariant 4-vector, so the notation makes sense! We also introduce the 4-acceleration Let's calculate the 4-velocity: and the 4-velocity square Multiplying the 4-velocity with the mass we get the 4-momentum Note: In Rindler m is called m and Rindler's I will always mean with . which transforms as, i.e. is, a contravariant 4-vector. Remark: in some (old) literature the factor is referred to as the relativistic mass or relativistic inertial mass. L4:3 The spatial components of the 4-momentum is the relativistic 3-momentum or simply relativistic momentum and the 0-component turns out to give the energy: Remark: Taylor expanding for small v we get: rest energy nonrelativistic kinetic energy for v=0 nonrelativistic momentum For the 4-momentum square we have: As you may expect we have conservation of 4-momentum, i.e.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Quantum Theory of Scalar Field in De Sitter Space-Time
    ANNALES DE L’I. H. P., SECTION A N. A. CHERNIKOV E. A. TAGIROV Quantum theory of scalar field in de Sitter space-time Annales de l’I. H. P., section A, tome 9, no 2 (1968), p. 109-141 <http://www.numdam.org/item?id=AIHPA_1968__9_2_109_0> © Gauthier-Villars, 1968, tous droits réservés. L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique l’accord avec les conditions générales d’utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Henri Poincaré, Section A : Vol. IX, n° 2, 1968, 109 Physique théorique. Quantum theory of scalar field in de Sitter space-time N. A. CHERNIKOV E. A. TAGIROV Joint Institute for Nuclear Research, Dubna, USSR. ABSTRACT. - The quantum theory of scalar field is constructed in the de Sitter spherical world. The field equation in a Riemannian space- time is chosen in the = 0 owing to its confor- . mal invariance for m = 0. In the de Sitter world the conserved quantities are obtained which correspond to isometric and conformal transformations. The Fock representations with the cyclic vector which is invariant under isometries are shown to form an one-parametric family. They are inequi- valent for different values of the parameter. However, its single value is picked out by the requirement for motion to be quasiclassis for large values of square of space momentum.
    [Show full text]
  • Scalar Wave Transponder
    Konstantin Meyl Scalar wave transponder Field-physical basis for electrically coupled bi- directional far range transponder With the current RFID -Technology the transfer of energy takes place on a chip card by means of longitudinal wave components in close range of the transmitting antenna. Those are scalar waves, which spread towards the electrical or the magnetic field pointer. In the wave equation with reference to the Maxwell field equations, these wave components are set to zero, why only postulated model computations exist, after which the range is limited to the sixth part of the wavelength. A goal of this paper is to create, by consideration of the scalar wave components in the wave equation, the physical conditions for the development of scalar wave transponders which are operable beyond the close range. The energy is transferred with the same carrier wave as the information and not over two separated ways as with RFID systems. Besides the bi-directional signal transmission, the energy transfer in both directions is additionally possible because of the resonant coupling between transmitter and receiver. First far range transponders developed on the basis of the extended field equations are already functional as prototypes. Scalar wave transponder 3 Preface Before the introduction into the topic, the title of the book should be first explained more in detail. A "scalar wave" spreads like every wave directed, but it consists of physical particles or formations, which represent for their part scalar sizes. Therefore the name, which is avoided by some critics or is even disparaged, because of the apparent contradiction in the designation, which makes believe the wave is not directional, which does not apply however.
    [Show full text]
  • The Velocity and Momentum Four-Vectors
    Physics 171 Fall 2015 The velocity and momentum four-vectors 1. The four-velocity vector The velocity four-vector of a particle is defined by: dxµ U µ = =(γc ; γ~v ) , (1) dτ where xµ = (ct ; ~x) is the four-position vector and dτ is the differential proper time. To derive eq. (1), we must express dτ in terms of dt, where t is the time coordinate. Consider the infinitesimal invariant spacetime separation, 2 2 2 µ ν ds = −c dτ = ηµν dx dx , (2) in a convention where ηµν = diag(−1 , 1 , 1 , 1) . In eq. (2), there is an implicit sum over the repeated indices as dictated by the Einstein summation convention. Dividing by −c2 yields 3 1 c2 − v2 v2 dτ 2 = c2dt2 − dxidxi = dt2 = 1 − dt2 = γ−2dt2 , c2 c2 c2 i=1 ! X i i 2 i i where we have employed the three-velocity v = dx /dt and v ≡ i v v . In the last step we have introduced γ ≡ (1 − v2/c2)−1/2. It follows that P dτ = γ−1 dt . (3) Using eq. (3) and the definition of the three-velocity, ~v = d~x/dt, we easily obtain eq. (1). Note that the squared magnitude of the four-velocity vector, 2 µ ν 2 U ≡ ηµνU U = −c (4) is a Lorentz invariant, which is most easily evaluated in the rest frame of the particle where ~v = 0, in which case U µ = c (1 ; ~0). 2. The relativistic law of addition of velocities Let us now consider the following question.
    [Show full text]