Math 102 -- Linear Algebra I -- Study Guide

Total Page:16

File Type:pdf, Size:1020Kb

Math 102 -- Linear Algebra I -- Study Guide Math 102 Linear Algebra I Stefan Martynkiw These notes are adapted from lecture notes taught by Dr.Alan Thompson and from “Elementary Linear Algebra: 10th Edition” :Howard Anton. Picture above sourced from (http://i.imgur.com/RgmnA.gif) 1/52 Table of Contents Chapter 3 – Euclidean Vector Spaces.........................................................................................................7 3.1 – Vectors in 2-space, 3-space, and n-space......................................................................................7 Theorem 3.1.1 – Algebraic Vector Operations without components...........................................7 Theorem 3.1.2 .............................................................................................................................7 3.2 – Norm, Dot Product, and Distance................................................................................................7 Definition 1 – Norm of a Vector..................................................................................................7 Definition 2 – Distance in Rn......................................................................................................7 Dot Product.......................................................................................................................................8 Definition 3 – Dot Product...........................................................................................................8 Definition 4 – Dot Product, Component by component..............................................................8 Theorems 3.2.2 and 3.2.3.............................................................................................................8 Geometry in Rn.................................................................................................................................9 Theorem 3.2.5 – Triangle Inequality............................................................................................9 Theorem 3.2.6..............................................................................................................................9 Theorem 3.2.7..............................................................................................................................9 Dot Products as Matrix Multiplication.............................................................................................9 3.3 – Orthogonality.........................................................................................................................10 Point-Normal forms of lines and planes.........................................................................................10 Theorem 3.3.1 – Point-Normal Forms of Lines and Planes......................................................10 Orthogonal Projections...................................................................................................................11 Theorem 3.3.3 – Pythagorean Theorem in Rn...........................................................................11 Magnitudes of projections..........................................................................................................11 Distance Problems..........................................................................................................................12 Theorem 3.3.4............................................................................................................................12 3.4 – Geometry of Linear Systems......................................................................................................13 Vector & Parametric Equations of Lines and Planes .....................................................................13 Theorem 3.4.1............................................................................................................................13 Theorem 3.4.2............................................................................................................................13 Dot Product form of a Linear System.............................................................................................13 3.5 – Cross Product.............................................................................................................................14 Theorem 3.5.1 -- Relationships between Cross Product and Dot Product................................14 Theorem 3.5.2 – Properties of Cross Product............................................................................14 Magnitude of a Cross Product....................................................................................................14 Scalar Triple Product..................................................................................................................14 Geometric Interpretation of Determinants......................................................................................14 Theorem 3.5.4............................................................................................................................14 Chapter 4 – General Vector Spaces..........................................................................................................15 4.1 – Real Vector Spaces.....................................................................................................................15 Vector Space Axioms......................................................................................................................15 Definition 1 – Vector Space Axioms..........................................................................................15 Theorem 4.1.1............................................................................................................................15 4.2 – Subspaces...................................................................................................................................16 Definition 1................................................................................................................................16 Theorem 4.2.1............................................................................................................................16 2/52 Building Subspaces.........................................................................................................................16 Theorem 4.2.2............................................................................................................................16 Definition 2................................................................................................................................16 Theorem 4.2.3............................................................................................................................16 Definition 3................................................................................................................................17 Theorem 4.2.4............................................................................................................................17 Theorem 4.2.5............................................................................................................................17 4.3 – Linear Independence..................................................................................................................17 Definition 1................................................................................................................................17 Theorem 4.3.1............................................................................................................................17 Theorem 4.3.2............................................................................................................................18 Geometric Interpretation of Linear Independence..........................................................................18 Theorem 4.3.3............................................................................................................................18 4.4 – Co-ordinates and Basis...............................................................................................................18 Definition 1................................................................................................................................18 Theorem 4.4.1 – Uniqueness of Basis Representation..............................................................18 Definition 2................................................................................................................................19 4.5 – Dimension..................................................................................................................................19 Number of Vectors in a Basis.........................................................................................................19 Theorem 4.5.1 ...........................................................................................................................19 Theorem 4.5.2............................................................................................................................19 Definition 1................................................................................................................................19 Example 1..................................................................................................................................19 Example 2 – Dimension of a solution space..............................................................................20 Plus / Minus Theorem.....................................................................................................................20
Recommended publications
  • DERIVATIONS and PROJECTIONS on JORDAN TRIPLES an Introduction to Nonassociative Algebra, Continuous Cohomology, and Quantum Functional Analysis
    DERIVATIONS AND PROJECTIONS ON JORDAN TRIPLES An introduction to nonassociative algebra, continuous cohomology, and quantum functional analysis Bernard Russo July 29, 2014 This paper is an elaborated version of the material presented by the author in a three hour minicourse at V International Course of Mathematical Analysis in Andalusia, at Almeria, Spain September 12-16, 2011. The author wishes to thank the scientific committee for the opportunity to present the course and to the organizing committee for their hospitality. The author also personally thanks Antonio Peralta for his collegiality and encouragement. The minicourse on which this paper is based had its genesis in a series of talks the author had given to undergraduates at Fullerton College in California. I thank my former student Dana Clahane for his initiative in running the remarkable undergraduate research program at Fullerton College of which the seminar series is a part. With their knowledge only of the product rule for differentiation as a starting point, these enthusiastic students were introduced to some aspects of the esoteric subject of non associative algebra, including triple systems as well as algebras. Slides of these talks and of the minicourse lectures, as well as other related material, can be found at the author's website (www.math.uci.edu/∼brusso). Conversely, these undergraduate talks were motivated by the author's past and recent joint works on derivations of Jordan triples ([116],[117],[200]), which are among the many results discussed here. Part I (Derivations) is devoted to an exposition of the properties of derivations on various algebras and triple systems in finite and infinite dimensions, the primary questions addressed being whether the derivation is automatically continuous and to what extent it is an inner derivation.
    [Show full text]
  • Triple Product Formula and the Subconvexity Bound of Triple Product L-Function in Level Aspect
    TRIPLE PRODUCT FORMULA AND THE SUBCONVEXITY BOUND OF TRIPLE PRODUCT L-FUNCTION IN LEVEL ASPECT YUEKE HU Abstract. In this paper we derived a nice general formula for the local integrals of triple product formula whenever one of the representations has sufficiently higher level than the other two. As an application we generalized Venkatesh and Woodbury’s work on the subconvexity bound of triple product L-function in level aspect, allowing joint ramifications, higher ramifications, general unitary central characters and general special values of local epsilon factors. 1. introduction 1.1. Triple product formula. Let F be a number field. Let ⇡i, i = 1, 2, 3 be three irreducible unitary cuspidal automorphic representations, such that the product of their central characters is trivial: (1.1) w⇡i = 1. Yi Let ⇧=⇡ ⇡ ⇡ . Then one can define the triple product L-function L(⇧, s) associated to them. 1 ⌦ 2 ⌦ 3 It was first studied in [6] by Garrett in classical languages, where explicit integral representation was given. In particular the triple product L-function has analytic continuation and functional equation. Later on Shapiro and Rallis in [19] reformulated his work in adelic languages. In this paper we shall study the following integral representing the special value of triple product L function (see Section 2.2 for more details): − ⇣2(2)L(⇧, 1/2) (1.2) f (g) f (g) f (g)dg 2 = F I0( f , f , f ), | 1 2 3 | ⇧, , v 1,v 2,v 3,v 8L( Ad 1) v ZAD (FZ) D (A) ⇤ \ ⇤ Y D D Here fi ⇡i for a specific quaternion algebra D, and ⇡i is the image of ⇡i under Jacquet-Langlands 2 0 correspondence.
    [Show full text]
  • Vectors, Matrices and Coordinate Transformations
    S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between them, physical laws can often be written in a simple form. Since we will making extensive use of vectors in Dynamics, we will summarize some of their important properties. Vectors For our purposes we will think of a vector as a mathematical representation of a physical entity which has both magnitude and direction in a 3D space. Examples of physical vectors are forces, moments, and velocities. Geometrically, a vector can be represented as arrows. The length of the arrow represents its magnitude. Unless indicated otherwise, we shall assume that parallel translation does not change a vector, and we shall call the vectors satisfying this property, free vectors. Thus, two vectors are equal if and only if they are parallel, point in the same direction, and have equal length. Vectors are usually typed in boldface and scalar quantities appear in lightface italic type, e.g. the vector quantity A has magnitude, or modulus, A = |A|. In handwritten text, vectors are often expressed using the −→ arrow, or underbar notation, e.g. A , A. Vector Algebra Here, we introduce a few useful operations which are defined for free vectors. Multiplication by a scalar If we multiply a vector A by a scalar α, the result is a vector B = αA, which has magnitude B = |α|A. The vector B, is parallel to A and points in the same direction if α > 0.
    [Show full text]
  • 1 Euclidean Vector Space and Euclidean Affi Ne Space
    Profesora: Eugenia Rosado. E.T.S. Arquitectura. Euclidean Geometry1 1 Euclidean vector space and euclidean a¢ ne space 1.1 Scalar product. Euclidean vector space. Let V be a real vector space. De…nition. A scalar product is a map (denoted by a dot ) V V R ! (~u;~v) ~u ~v 7! satisfying the following axioms: 1. commutativity ~u ~v = ~v ~u 2. distributive ~u (~v + ~w) = ~u ~v + ~u ~w 3. ( ~u) ~v = (~u ~v) 4. ~u ~u 0, for every ~u V 2 5. ~u ~u = 0 if and only if ~u = 0 De…nition. Let V be a real vector space and let be a scalar product. The pair (V; ) is said to be an euclidean vector space. Example. The map de…ned as follows V V R ! (~u;~v) ~u ~v = x1x2 + y1y2 + z1z2 7! where ~u = (x1; y1; z1), ~v = (x2; y2; z2) is a scalar product as it satis…es the …ve properties of a scalar product. This scalar product is called standard (or canonical) scalar product. The pair (V; ) where is the standard scalar product is called the standard euclidean space. 1.1.1 Norm associated to a scalar product. Let (V; ) be a real euclidean vector space. De…nition. A norm associated to the scalar product is a map de…ned as follows V kk R ! ~u ~u = p~u ~u: 7! k k Profesora: Eugenia Rosado, E.T.S. Arquitectura. Euclidean Geometry.2 1.1.2 Unitary and orthogonal vectors. Orthonormal basis. Let (V; ) be a real euclidean vector space. De…nition.
    [Show full text]
  • 18.06 Linear Algebra, Problem Set 5 Solutions
    18.06 Problem Set 5 Solution Total: points Section 4.1. Problem 7. Every system with no solution is like the one in problem 6. There are numbers y1; : : : ; ym that multiply the m equations so they add up to 0 = 1. This is called Fredholm’s Alternative: T Exactly one of these problems has a solution: Ax = b OR A y = 0 with T y b = 1. T If b is not in the column space of A it is not orthogonal to the nullspace of A . Multiply the equations x1 − x2 = 1 and x2 − x3 = 1 and x1 − x3 = 1 by numbers y1; y2; y3 chosen so that the equations add up to 0 = 1. Solution (4 points) Let y1 = 1, y2 = 1 and y3 = −1. Then the left-hand side of the sum of the equations is (x1 − x2) + (x2 − x3) − (x1 − x3) = x1 − x2 + x2 − x3 + x3 − x1 = 0 and the right-hand side is 1 + 1 − 1 = 1: Problem 9. If AT Ax = 0 then Ax = 0. Reason: Ax is inthe nullspace of AT and also in the of A and those spaces are . Conclusion: AT A has the same nullspace as A. This key fact is repeated in the next section. Solution (4 points) Ax is in the nullspace of AT and also in the column space of A and those spaces are orthogonal. Problem 31. The command N=null(A) will produce a basis for the nullspace of A. Then the command B=null(N') will produce a basis for the of A.
    [Show full text]
  • Matrices and Tensors
    APPENDIX MATRICES AND TENSORS A.1. INTRODUCTION AND RATIONALE The purpose of this appendix is to present the notation and most of the mathematical tech- niques that are used in the body of the text. The audience is assumed to have been through sev- eral years of college-level mathematics, which included the differential and integral calculus, differential equations, functions of several variables, partial derivatives, and an introduction to linear algebra. Matrices are reviewed briefly, and determinants, vectors, and tensors of order two are described. The application of this linear algebra to material that appears in under- graduate engineering courses on mechanics is illustrated by discussions of concepts like the area and mass moments of inertia, Mohr’s circles, and the vector cross and triple scalar prod- ucts. The notation, as far as possible, will be a matrix notation that is easily entered into exist- ing symbolic computational programs like Maple, Mathematica, Matlab, and Mathcad. The desire to represent the components of three-dimensional fourth-order tensors that appear in anisotropic elasticity as the components of six-dimensional second-order tensors and thus rep- resent these components in matrices of tensor components in six dimensions leads to the non- traditional part of this appendix. This is also one of the nontraditional aspects in the text of the book, but a minor one. This is described in §A.11, along with the rationale for this approach. A.2. DEFINITION OF SQUARE, COLUMN, AND ROW MATRICES An r-by-c matrix, M, is a rectangular array of numbers consisting of r rows and c columns: ¯MM..
    [Show full text]
  • Glossary of Linear Algebra Terms
    INNER PRODUCT SPACES AND THE GRAM-SCHMIDT PROCESS A. HAVENS 1. The Dot Product and Orthogonality 1.1. Review of the Dot Product. We first recall the notion of the dot product, which gives us a familiar example of an inner product structure on the real vector spaces Rn. This product is connected to the Euclidean geometry of Rn, via lengths and angles measured in Rn. Later, we will introduce inner product spaces in general, and use their structure to define general notions of length and angle on other vector spaces. Definition 1.1. The dot product of real n-vectors in the Euclidean vector space Rn is the scalar product · : Rn × Rn ! R given by the rule n n ! n X X X (u; v) = uiei; viei 7! uivi : i=1 i=1 i n Here BS := (e1;:::; en) is the standard basis of R . With respect to our conventions on basis and matrix multiplication, we may also express the dot product as the matrix-vector product 2 3 v1 6 7 t î ó 6 . 7 u v = u1 : : : un 6 . 7 : 4 5 vn It is a good exercise to verify the following proposition. Proposition 1.1. Let u; v; w 2 Rn be any real n-vectors, and s; t 2 R be any scalars. The Euclidean dot product (u; v) 7! u · v satisfies the following properties. (i:) The dot product is symmetric: u · v = v · u. (ii:) The dot product is bilinear: • (su) · v = s(u · v) = u · (sv), • (u + v) · w = u · w + v · w.
    [Show full text]
  • Vector Differential Calculus
    KAMIWAAI – INTERACTIVE 3D SKETCHING WITH JAVA BASED ON Cl(4,1) CONFORMAL MODEL OF EUCLIDEAN SPACE Submitted to (Feb. 28,2003): Advances in Applied Clifford Algebras, http://redquimica.pquim.unam.mx/clifford_algebras/ Eckhard M. S. Hitzer Dept. of Mech. Engineering, Fukui Univ. Bunkyo 3-9-, 910-8507 Fukui, Japan. Email: [email protected], homepage: http://sinai.mech.fukui-u.ac.jp/ Abstract. This paper introduces the new interactive Java sketching software KamiWaAi, recently developed at the University of Fukui. Its graphical user interface enables the user without any knowledge of both mathematics or computer science, to do full three dimensional “drawings” on the screen. The resulting constructions can be reshaped interactively by dragging its points over the screen. The programming approach is new. KamiWaAi implements geometric objects like points, lines, circles, spheres, etc. directly as software objects (Java classes) of the same name. These software objects are geometric entities mathematically defined and manipulated in a conformal geometric algebra, combining the five dimensions of origin, three space and infinity. Simple geometric products in this algebra represent geometric unions, intersections, arbitrary rotations and translations, projections, distance, etc. To ease the coordinate free and matrix free implementation of this fundamental geometric product, a new algebraic three level approach is presented. Finally details about the Java classes of the new GeometricAlgebra software package and their associated methods are given. KamiWaAi is available for free internet download. Key Words: Geometric Algebra, Conformal Geometric Algebra, Geometric Calculus Software, GeometricAlgebra Java Package, Interactive 3D Software, Geometric Objects 1. Introduction The name “KamiWaAi” of this new software is the Romanized form of the expression in verse sixteen of chapter four, as found in the Japanese translation of the first Letter of the Apostle John, which is part of the New Testament, i.e.
    [Show full text]
  • Final Exam Outline 1.1, 1.2 Scalars and Vectors in R N. the Magnitude
    Final Exam Outline 1.1, 1.2 Scalars and vectors in Rn. The magnitude of a vector. Row and column vectors. Vector addition. Scalar multiplication. The zero vector. Vector subtraction. Distance in Rn. Unit vectors. Linear combinations. The dot product. The angle between two vectors. Orthogonality. The CBS and triangle inequalities. Theorem 1.5. 2.1, 2.2 Systems of linear equations. Consistent and inconsistent systems. The coefficient and augmented matrices. Elementary row operations. The echelon form of a matrix. Gaussian elimination. Equivalent matrices. The reduced row echelon form. Gauss-Jordan elimination. Leading and free variables. The rank of a matrix. The rank theorem. Homogeneous systems. Theorem 2.2. 2.3 The span of a set of vectors. Linear dependence. Linear dependence and independence. Determining n whether a set {~v1, . ,~vk} of vectors in R is linearly dependent or independent. 3.1, 3.2 Matrix operations. Scalar multiplication, matrix addition, matrix multiplication. The zero and identity matrices. Partitioned matrices. The outer product form. The standard unit vectors. The transpose of a matrix. A system of linear equations in matrix form. Algebraic properties of the transpose. 3.3 The inverse of a matrix. Invertible (nonsingular) matrices. The uniqueness of the solution to Ax = b when A is invertible. The inverse of a nonsingular 2 × 2 matrix. Elementary matrices and EROs. Equivalent conditions for invertibility. Using Gauss-Jordan elimination to invert a nonsingular matrix. Theorems 3.7, 3.9. n n n 3.5 Subspaces of R . {0} and R as subspaces of R . The subspace span(v1,..., vk). The the row, column and null spaces of a matrix.
    [Show full text]
  • Span, Linear Independence and Basis Rank and Nullity
    Remarks for Exam 2 in Linear Algebra Span, linear independence and basis The span of a set of vectors is the set of all linear combinations of the vectors. A set of vectors is linearly independent if the only solution to c1v1 + ::: + ckvk = 0 is ci = 0 for all i. Given a set of vectors, you can determine if they are linearly independent by writing the vectors as the columns of the matrix A, and solving Ax = 0. If there are any non-zero solutions, then the vectors are linearly dependent. If the only solution is x = 0, then they are linearly independent. A basis for a subspace S of Rn is a set of vectors that spans S and is linearly independent. There are many bases, but every basis must have exactly k = dim(S) vectors. A spanning set in S must contain at least k vectors, and a linearly independent set in S can contain at most k vectors. A spanning set in S with exactly k vectors is a basis. A linearly independent set in S with exactly k vectors is a basis. Rank and nullity The span of the rows of matrix A is the row space of A. The span of the columns of A is the column space C(A). The row and column spaces always have the same dimension, called the rank of A. Let r = rank(A). Then r is the maximal number of linearly independent row vectors, and the maximal number of linearly independent column vectors. So if r < n then the columns are linearly dependent; if r < m then the rows are linearly dependent.
    [Show full text]
  • Jordan Triple Systems with Completely Reducible Derivation Or Structure Algebras
    Pacific Journal of Mathematics JORDAN TRIPLE SYSTEMS WITH COMPLETELY REDUCIBLE DERIVATION OR STRUCTURE ALGEBRAS E. NEHER Vol. 113, No. 1 March 1984 PACIFIC JOURNAL OF MATHEMATICS Vol. 113, No. 1,1984 JORDAN TRIPLE SYSTEMS WITH COMPLETELY REDUCIBLE DERIVATION OR STRUCTURE ALGEBRAS ERHARD NEHER We prove that a finite-dimensional Jordan triple system over a field k of characteristic zero has a completely reducible structure algebra iff it is a direct sum of a trivial and a semisimple ideal. This theorem depends on a classification of Jordan triple systems with completely reducible derivation algebra in the case where k is algebraically closed. As another application we characterize real Jordan triple systems with compact automorphism group. The main topic of this paper is finite-dimensional Jordan triple systems over a field of characteristic zero which have a completely reducible derivation algebra. The history of the subject begins with [7] where G. Hochschild proved, among other results, that for an associative algebra & the deriva- tion algebra is semisimple iff & itself is semisimple. Later on R. D. Schafer considered in [18] the case of a Jordan algebra £. His result was that Der f is semisimple if and only if $ is semisimple with each simple component of dimension not equal to 3 over its center. This theorem was extended by K.-H. Helwig, who proved in [6]: Let f be a Jordan algebra which is finite-dimensional over a field of characteristic zero. Then the following are equivlent: (1) Der % is completely reducible and every derivation of % has trace zero, (2) £ is semisimple, (3) the bilinear form on Der f> given by (Dl9 D2) -> trace(Z>!Z>2) is non-degenerate and every derivation of % is inner.
    [Show full text]
  • Basics of Linear Algebra
    Basics of Linear Algebra Jos and Sophia Vectors ● Linear Algebra Definition: A list of numbers with a magnitude and a direction. ○ Magnitude: a = [4,3] |a| =sqrt(4^2+3^2)= 5 ○ Direction: angle vector points ● Computer Science Definition: A list of numbers. ○ Example: Heights = [60, 68, 72, 67] Dot Product of Vectors Formula: a · b = |a| × |b| × cos(θ) ● Definition: Multiplication of two vectors which results in a scalar value ● In the diagram: ○ |a| is the magnitude (length) of vector a ○ |b| is the magnitude of vector b ○ Θ is the angle between a and b Matrix ● Definition: ● Matrix elements: ● a)Matrix is an arrangement of numbers into rows and columns. ● b) A matrix is an m × n array of scalars from a given field F. The individual values in the matrix are called entries. ● Matrix dimensions: the number of rows and columns of the matrix, in that order. Multiplication of Matrices ● The multiplication of two matrices ● Result matrix dimensions ○ Notation: (Row, Column) ○ Columns of the 1st matrix must equal the rows of the 2nd matrix ○ Result matrix is equal to the number of (1, 2, 3) • (7, 9, 11) = 1×7 +2×9 + 3×11 rows in 1st matrix and the number of = 58 columns in the 2nd matrix ○ Ex. 3 x 4 ॱ 5 x 3 ■ Dot product does not work ○ Ex. 5 x 3 ॱ 3 x 4 ■ Dot product does work ■ Result: 5 x 4 Dot Product Application ● Application: Ray tracing program ○ Quickly create an image with lower quality ○ “Refinement rendering pass” occurs ■ Removes the jagged edges ○ Dot product used to calculate ■ Intersection between a ray and a sphere ■ Measure the length to the intersection points ● Application: Forward Propagation ○ Input matrix * weighted matrix = prediction matrix http://immersivemath.com/ila/ch03_dotprodu ct/ch03.html#fig_dp_ray_tracer Projections One important use of dot products is in projections.
    [Show full text]