Math 102 -- Linear Algebra I -- Study Guide

Math 102 -- Linear Algebra I -- Study Guide

Math 102 Linear Algebra I Stefan Martynkiw These notes are adapted from lecture notes taught by Dr.Alan Thompson and from “Elementary Linear Algebra: 10th Edition” :Howard Anton. Picture above sourced from (http://i.imgur.com/RgmnA.gif) 1/52 Table of Contents Chapter 3 – Euclidean Vector Spaces.........................................................................................................7 3.1 – Vectors in 2-space, 3-space, and n-space......................................................................................7 Theorem 3.1.1 – Algebraic Vector Operations without components...........................................7 Theorem 3.1.2 .............................................................................................................................7 3.2 – Norm, Dot Product, and Distance................................................................................................7 Definition 1 – Norm of a Vector..................................................................................................7 Definition 2 – Distance in Rn......................................................................................................7 Dot Product.......................................................................................................................................8 Definition 3 – Dot Product...........................................................................................................8 Definition 4 – Dot Product, Component by component..............................................................8 Theorems 3.2.2 and 3.2.3.............................................................................................................8 Geometry in Rn.................................................................................................................................9 Theorem 3.2.5 – Triangle Inequality............................................................................................9 Theorem 3.2.6..............................................................................................................................9 Theorem 3.2.7..............................................................................................................................9 Dot Products as Matrix Multiplication.............................................................................................9 3.3 – Orthogonality.........................................................................................................................10 Point-Normal forms of lines and planes.........................................................................................10 Theorem 3.3.1 – Point-Normal Forms of Lines and Planes......................................................10 Orthogonal Projections...................................................................................................................11 Theorem 3.3.3 – Pythagorean Theorem in Rn...........................................................................11 Magnitudes of projections..........................................................................................................11 Distance Problems..........................................................................................................................12 Theorem 3.3.4............................................................................................................................12 3.4 – Geometry of Linear Systems......................................................................................................13 Vector & Parametric Equations of Lines and Planes .....................................................................13 Theorem 3.4.1............................................................................................................................13 Theorem 3.4.2............................................................................................................................13 Dot Product form of a Linear System.............................................................................................13 3.5 – Cross Product.............................................................................................................................14 Theorem 3.5.1 -- Relationships between Cross Product and Dot Product................................14 Theorem 3.5.2 – Properties of Cross Product............................................................................14 Magnitude of a Cross Product....................................................................................................14 Scalar Triple Product..................................................................................................................14 Geometric Interpretation of Determinants......................................................................................14 Theorem 3.5.4............................................................................................................................14 Chapter 4 – General Vector Spaces..........................................................................................................15 4.1 – Real Vector Spaces.....................................................................................................................15 Vector Space Axioms......................................................................................................................15 Definition 1 – Vector Space Axioms..........................................................................................15 Theorem 4.1.1............................................................................................................................15 4.2 – Subspaces...................................................................................................................................16 Definition 1................................................................................................................................16 Theorem 4.2.1............................................................................................................................16 2/52 Building Subspaces.........................................................................................................................16 Theorem 4.2.2............................................................................................................................16 Definition 2................................................................................................................................16 Theorem 4.2.3............................................................................................................................16 Definition 3................................................................................................................................17 Theorem 4.2.4............................................................................................................................17 Theorem 4.2.5............................................................................................................................17 4.3 – Linear Independence..................................................................................................................17 Definition 1................................................................................................................................17 Theorem 4.3.1............................................................................................................................17 Theorem 4.3.2............................................................................................................................18 Geometric Interpretation of Linear Independence..........................................................................18 Theorem 4.3.3............................................................................................................................18 4.4 – Co-ordinates and Basis...............................................................................................................18 Definition 1................................................................................................................................18 Theorem 4.4.1 – Uniqueness of Basis Representation..............................................................18 Definition 2................................................................................................................................19 4.5 – Dimension..................................................................................................................................19 Number of Vectors in a Basis.........................................................................................................19 Theorem 4.5.1 ...........................................................................................................................19 Theorem 4.5.2............................................................................................................................19 Definition 1................................................................................................................................19 Example 1..................................................................................................................................19 Example 2 – Dimension of a solution space..............................................................................20 Plus / Minus Theorem.....................................................................................................................20

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    52 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us