WHO Monographs on Selected Medicinal Plants

Total Page:16

File Type:pdf, Size:1020Kb

WHO Monographs on Selected Medicinal Plants Bulbus Allii Cepae WHO monographs on selected medicinal plants VOLUME 1 World Health Organization Geneva 1999 i WHO monographs on selected medicinal plants WHO Library Cataloguing in Publication Data WHO monographs on selected medicinal plants.—Vol. 1. 1.Plants, Medicinal 2.Herbs 3.Traditional medicine ISBN 92 4 154517 8 (NLM Classification: QV 766) The World Health Organization welcomes requests for permission to reproduce or translate its publications, in part or in full. Applications and enquiries should be addressed to the Office of Publications, World Health Organization, Geneva, Switzerland, which will be glad to provide the latest information on any changes made to the text, plans for new editions, and reprints and translations already available. © World Health Organization 1999 Publications of the World Health Organization enjoy copyright protection in accordance with the provisions of Protocol 2 of the Universal Copyright Convention. All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the World Health Organiza- tion concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. Designed by WHO Graphics Typeset in Hong Kong Printed in Malta 97/11795-Best-set/Interprint-6500 ii Bulbus Allii Cepae Contents Acknowledgements v Introduction 1 Monographs (in alphabetical order of plant name) Bulbus Allii Cepae 5 Bulbus Allii Sativi 16 Aloe 33 Aloe Vera Gel 43 Radix Astragali 50 Fructus Bruceae 59 Radix Bupleuri 67 Herba Centellae 77 Flos Chamomillae 86 Cortex Cinnamomi 95 Rhizoma Coptidis 105 Rhizoma Curcumae Longae 115 Radix Echinaceae 125 Herba Echinaceae Purpureae 136 Herba Ephedrae 145 Folium Ginkgo 154 Radix Ginseng 168 Radix Glycyrrhizae 183 Radix Paeoniae 195 Semen Plantaginis 202 Radix Platycodi 213 Radix Rauwolfiae 221 Rhizoma Rhei 231 Folium Sennae 241 Fructus Sennae 250 Herba Thymi 259 iii WHOContents monographs on selected medicinal plants Radix Valerianae 267 Rhizoma Zingiberis 277 Annex Participants in the WHO Consultation on Selected Medicinal Plants 288 iv Bulbus Allii Cepae Acknowledgements Special acknowledgement is due to Professors Norman R. Farnsworth, Harry H. S. Fong, and Gail B. Mahady of the WHO Collaborating Centre for Tradi- tional Medicine, College of Pharmacy, University of Illinois at Chicago, USA, for drafting and revising the monographs. WHO also acknowledges with thanks the members of the advisory group that met in Beijing, China, in 1994, to draw up a list of medicinal plants for which monographs should be prepared, the more than 100 experts who pro- vided comments and advice on the draft texts, and those who participated in the WHO Consultation held in Munich, Germany, in 1996 to review the monographs (see Annex). Finally, WHO would like to thank the Food and Agriculture Organization of the United Nations and the United Nations Indus- trial Development Organization for their contributions and all those who submitted comments through the World Self-Medication Industry, a nongov- ernmental organization in official relations with WHO. v WHO monographs on selected medicinal plants vi Bulbus Allii Cepae Introduction During the past decade, traditional systems of medicine have become a topic of global importance. Current estimates suggest that, in many developing coun- tries, a large proportion of the population relies heavily on traditional practi- tioners and medicinal plants to meet primary health care needs. Although modern medicine may be available in these countries, herbal medicines (phytomedicines) have often maintained popularity for historical and cultural reasons. Concurrently, many people in developed countries have begun to turn to alternative or complementary therapies, including medicinal herbs. Few plant species that provide medicinal herbs have been scientifically evaluated for their possible medical application. Safety and efficacy data are available for even fewer plants, their extracts and active ingredients, and the preparations containing them. Furthermore, in most countries the herbal medi- cines market is poorly regulated, and herbal products are often neither regis- tered nor controlled. Assurance of the safety, quality, and efficacy of medicinal plants and herbal products has now become a key issue in industrialized and in developing countries. Both the general consumer and health-care professionals need up-to-date, authoritative information on the safety and efficacy of medici- nal plants. During the fourth International Conference of Drug Regulatory Authorities (ICDRA) held in Tokyo in 1986, WHO was requested to compile a list of medicinal plants and to establish international specifications for the most widely used medicinal plants and simple preparations. Guidelines for the as- sessment of herbal medicines were subsequently prepared by WHO and adopted by the sixth ICDRA in Ottawa, Canada, in 1991.1 As a result of ICDRA’s recommendations and in response to requests from WHO’s Member States for assistance in providing safe and effective herbal medicines for use in national health-care systems, WHO is now publishing this first volume of 28 monographs on selected medicinal plants; a second volume is in preparation. Preparation of the monographs The medicinal plants featured in this volume were selected by an advisory group in Beijing in 1994. The plants selected are widely used and important in 1 Guidelines for the assessment of herbal medicines. In: Quality assurance of pharmaceuticals: a compendium of guidelines and related materials. Volume 1. Geneva, World Health Organization, 1997:31–37. 1 WHOIntroduction monographs on selected medicinal plants all WHO regions, and for each sufficient scientific information seemed available to substantiate safety and efficacy. The monographs were drafted by the WHO Collaborating Centre for Traditional Medicine at the University of Illinois at Chicago, United States of America. The content was obtained by a systematic review of scientific literature from 1975 until the end of 1995: review articles; bibliographies in review articles; many pharmacopoeias—the International, African, British, Chinese, Dutch, European, French, German, Hungarian, Indian, and Japanese; as well as many other reference books. Draft monographs were widely distributed, and some 100 experts in more than 40 countries commented on them. Experts included members of WHO’s Expert Advisory Panels on Traditional Medicine, on the International Pharmacopoeia and Pharmaceutical Preparations, and on Drug Evaluation and National Drug Policies; and the drug regulatory authorities of 16 countries. A WHO Consultation on Selected Medicinal Plants was held in Munich, Germany, in 1996. Sixteen experts and drug regulatory authorities from Member States participated. Following extensive discussion, 28 of 31 draft monographs were approved. The monograph on one medicinal plant was re- jected because of the plant’s potential toxicity. Two others will be reconsidered when more definitive data are available. At the subsequent eighth ICDRA in Bahrain later in 1996, the 28 model monographs were further reviewed and endorsed, and Member States requested WHO to prepare additional model monographs. Purpose and content of the monographs The purpose of the monographs is to: • provide scientific information on the safety, efficacy, and quality control/ quality assurance of widely used medicinal plants, in order to facilitate their appropriate use in Member States; • provide models to assist Member States in developing their own mono- graphs or formularies for these or other herbal medicines; and • facilitate information exchange among Member States. Readers will include members of regulatory authorities, practitioners of ortho- dox and of traditional medicine, pharmacists, other health professionals, manu- facturers of herbal products, and research scientists. Each monograph contains two parts. The first part consists of phar- macopoeial summaries for quality assurance: botanical features, distribution, identity tests, purity requirements, chemical assays, and active or major chemi- cal constituents. The second part summarizes clinical applications, pharmacol- ogy, contraindications, warnings, precautions, potential adverse reactions, and posology. In each pharmacopoeial summary, the Definition section provides the Latin binomial pharmacopoeial name, the most important criterion in quality assur- ance. Latin pharmacopoeial synonyms and vernacular names, listed in the 2 Bulbus IntroductionAllii Cepae sections Synonyms and Selected vernacular names, are those names used in com- merce or by local consumers. The monographs place outdated botanical no- menclature in the synonyms category, based on the International Rules of Nomenclature. For example, Aloe barbadensis Mill. is actually Aloe vera (L.) Burm. Cassia acutifolia Delile and Cassia angustifolia Vahl., often treated in separate mono- graphs, are now believed to be the same species, Cassia senna L. Matricaria chamomilla L., M. recutita L., and M. suaveolens L. have been used for many years as the
Recommended publications
  • Solute–Solvent Dielectric Effects on PAM 120
    Available online a t www.derpharmachemica.com Scholars Research Library Der Pharma Chemica, 2011, 3 (4): 78-87 (http://derpharmachemica.com/archive.html) ISSN 0975-413X CODEN (USA): PCHHAX Solute–Solvent Dielectric Effects on PAM 120 Fereshteh Naderi 1,* , Maryam Hooshyari 2, Fatemeh Mollaamin 3, Majid Monajjemi 2 1Department of Chemistry, Islamic Azad University, Shahr-e Qods Branch, Tehran, Iran 2Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran 3Department of Chemistry, Qom Branch, Islamic Azad University, Qom, Iran ______________________________________________________________________________ ABSTRACT Quantum-chemical solvent effect theories describe the electronic structure of a molecular subsystem embedded in a solvent or other molecular environment. The solvation of biomolecules is important in molecular biology .In this theoretical study, we focus on a kind of dammarane sapogenins (PAM120). This molecule optimized in various solvent media such as heptan, carbontetrachloride, toluene, tetrahydrofurane, dichloroethane, ethanol, methanol, dimethylsulfoxide and water using the self-consistent reaction field model. This process depends on either the reaction potential function of the solvent or charge transfer operators that appear in solute-solvent interaction. We performed nonempirical quantum-mechanical calculations at the HF/3-21G, 6-31G , 6-31G*,6-31G** and B3LYP/6-31G** levels of theory in the gas phase and some solvents at 298K.We studied energy ,dipole moment ,charge and so on. Key words: Dammarane sapogenins, anti cancer, self-consistent reaction field (SCRF), solvent. ______________________________________________________________________________ INTRODUCTION Sapogenin (Aglycone) is a nonsugar portion of a saponin that is typically obtained by hydrolysis, has either a complex terpenoid or a steroid structure and in the latter case forms a practicable starting point in the synthesis of steroid hormones.
    [Show full text]
  • Tyler's Herbs of Choice: the Therapeutic Use of Phytomedicinals Category
    Tyler’s Herbs of Choice The Therapeutic Use of Phytomedicinals Third Edition © 2009 by Taylor & Francis Group, LLC Tyler’s Herbs of Choice The Therapeutic Use of Phytomedicinals Third Edition Dennis V.C. Awang Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business © 2009 by Taylor & Francis Group, LLC CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2009 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-13: 978-0-7890-2809-9 (Hardcover) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher can- not assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.
    [Show full text]
  • ADVISORY BOARDS Each Issue of Herbaigram Is Peer Reviewed by Various Members of Our Advisory Boards Prior to Publication
    ADVISORY BOARDS Each issue of HerbaiGram is peer reviewed by various members of our Advisory Boards prior to publication . American Botanical Council Herb Research Dennis V. C. Awang, Ph.D., F.C.I.C., MediPiont Natural Gail B. Mahadr, Ph.D., Research Assistant Professor, Products Consul~ng Services, Ottowa, Ontario, Conodo Deportment o Medical Chemistry &Pharmacognosy, College of Foundation Pharmacy, University of Illinois, Chicago, Illinois Manuel F. Balandrin, R.Ph., Ph.D., Research Scien~st, NPS Rob McCaleb, President Pharmaceuticals, Salt LakeCity , Utah Robin J. Maries, Ph.D., Associate Professor of Botany, Brandon University, Brandon, Manitoba, Conodo Mi(hael J. Balidt, Ph.D., Director of the lns~tute of Econom ic Glenn Appelt, Ph.D., R.Ph., Author and Profess or Botany, the New York Botanical Gorden, Bronx, New York Dennis J. M(Kenna, Ph.D., Consulting Ethnophormocologist, Emeritus, University of Colorado, and with Boulder Beach Joseph M. Betz, Ph.D., Research Chemist, Center for Food Minneapolis, Minnesota Consulting Group Safety and Applied Nutri~on, Division of Natural Products, Food Daniel E. Moerman, Ph.D., William E. Stirton Professor of John A. Beutler, Ph.D., Natural Products Chemist, and Drug Administro~on , Washington, D.C. Anthropology, University of Michigon/ Deorbom, Dearborn, Michigan Notional Cancer Institute Donald J. Brown, N.D., Director, Natural Products Research Consultants; Faculty, Bastyr University, Seattle, Washington Samuel W. Page, Ph.D., Director, Division of Natural Products, Robert A. Bye, Jr., Ph.D., Professor of Ethnobotony, Notional University of Mexico Thomas J. Carlson, M.S., M.D., Senior Director, Center for Food Safety and Applied Nutri~on , Food and Drug Administro~on , Washington, D.C.
    [Show full text]
  • “The Scholarly Monograph's Descendants,” Mary M. Case, Ed., T
    Association of Research Libraries (ARL®) Clifford A. Lynch, “The Scholarly Monograph’s Descendants,” Mary M. Case, ed., The Specialized Scholarly Monograph in Crisis, or How Can I Get Tenure if You Won’t Publish My Book? (Washington, DC: Association of Research Libraries, 1999), pp. 137‐148. The Scholarly Monograph's Descendants Clifford Lynch, Executive Director, Coalition for Networked Information Introduction This paper looks at the possible evolutionary paths that the current printed scholarly monograph may take, paying particular attention to the ways in which technical, economic, and cultural factors may shape this evolution. It does not predict the demise of today's printed scholarly monograph, but suggests that it will coexist with a series of successors that will offer new points of balance among technical and economic constraints and opportunities and that will provide authors with new ways in which to communicate their research. For some works and purposes, the new forms will be superior; in other cases, the traditional printed monograph will likely remain the preferred form. I begin with a brief examination of the current state of the scholarly journal in its transition to electronic formats–or at least to electronic distribution. This transition is arguably more advanced and taking place on a broader scale than is the evolution of the monograph, and thus it may offer insights into what we can expect for the monograph. At the same time, I will argue that much of the experience with the journal may be misleading when extrapolated directly to the future of the monograph. I have chosen words carefully: I believe that what is happening to the journal is best described as a transition or migration, while what we will see with the monograph is the evolution of digitally based successor genres that will coexist with the current print monograph.
    [Show full text]
  • Attention Plus
    ATTENTION PLUS - arnica montana, brain suis, carduus marianus, cinchona officinalis, ginkgo biloba, lecithin, millefolium, phosphoricum acidum, spray Liddell Laboratories Disclaimer: This homeopathic product has not been evaluated by the Food and Drug Administration for safety or efficacy. FDA is not aware of scientific evidence to support homeopathy as effective. ---------- Attention Plus ACTIVE INGREDIENTS: Arnica montana 3X, Brain suis 6X, Carduus marianus 3X, Cinchona officinalis 6X, Ginkgo biloba 6X, Lecithin 12X, Millefolium 3X, Phosphoricum acidum 30C. INDICATIONS: Helps relieve symptoms associated with attention disorders: distractibility, lack of attention, poor concentration, emotional fluctuations. WARNINGS: If symptoms persist, consult a doctor. If pregnant or breast feeding, ask a doctor before use. Keep out of reach of children. In case of overdose, get medical help or call a Poison Control Center right away. Do not use if TAMPER EVIDENT seal around neck of bottle is missing or broken. DIRECTIONS:Adults and children over 12: Spray twice under the tongue 3 times per day Children 12 and under: Consult a doctor prior to use. INACTIVE INGREDIENTS: Organic alcohol 20% v/v, Purified water. KEEP OUT OF REACH OF CHILDREN. In case of overdose, get medical help or contact a Poison Control Center right away. INDICATIONS: Helps relieve symptoms associated with attention disorders: distractibility, lack of attention, poor concentration, emotional fluctuations. LIDDELL LABORATORIES WOODBINE, IA 51579 WWW.LIDDELL.NET 1-800-460-7733 ORAL
    [Show full text]
  • Desiderata June 2021
    Desiderata June 2021 Desiderata are plants that National Collection Holders are searching for to add to their collections. Many of these plants have been in cultivation in the UK at some point, but they are not currently obtainable through the trade. Others may appear available in the trade, but doubts exist as to whether the material currently sold is correctly named. If you know where some of these plants may be growing, whether it is in the UK or abroad,please contact us at [email protected] 01483 447540, or write to us at : Plant Heritage, 12 Home Farm, Loseley Park, Guildford GU3 1HS, UK. Abutilon ‘Apricot Belle’ Artemisia villarsii Abutilon ‘Benarys Giant’ Arum italicum subsp. italicum ‘Cyclops’ Abutilon ‘Golden Ashford Red’ Arum italicum subsp. italicum ‘Sparkler’ Abutilon ‘Heather Bennington’ Arum maculatum ‘Variegatum’ Abutilon ‘Henry Makepeace’ Aster amellus ‘Kobold’ Abutilon ‘Kreutzberger’ Aster diplostephoides Abutilon ‘Orange Glow (v) AGM’ Astilbe ‘Amber Moon’ Abutilon ‘pictum Variegatum (v)’ Astilbe ‘Beauty of Codsall’ Abutilon ‘Pink Blush’ Astilbe ‘Colettes Charm’ Abutilon ‘Savitzii (v) AGM’ Astilbe ‘Darwins Surprise’ Abutilon ‘Wakehurst’ Astilbe ‘Rise and Shine’ Acanthus montanus ‘Frielings Sensation’ Astilbe subsp. x arendsii ‘Obergartner Jurgens’ Achillea millefolium ‘Chamois’ Astilbe subsp. chinensis hybrid ‘Thunder and Lightning’ Achillea millefolium ‘Cherry King’ Astrantia major subsp. subsp. involucrata ‘Shaggy’ Achillea millefolium ‘Old Brocade’ Azara celastrina Achillea millefolium ‘Peggy Sue’ Azara integrifolia ‘Uarie’ Achillea millefolium ‘Ruby Port’ Azara salicifolia Anemone ‘Couronne Virginale’ Azara serrata ‘Andes Gold’ Anemone hupehensis ‘Superba’ Azara serrata ‘Aztec Gold’ Anemone x hybrida ‘Elegantissima’ Begonia acutiloba Anemone ‘Pink Pearl’ Begonia almedana Anemone vitifolia Begonia barkeri Anthemis cretica Begonia bettinae Anthemis cretica subsp.
    [Show full text]
  • Treatment Protocol Copyright © 2018 Kostoff Et Al
    Prevention and reversal of Alzheimer's disease: treatment protocol Copyright © 2018 Kostoff et al PREVENTION AND REVERSAL OF ALZHEIMER'S DISEASE: TREATMENT PROTOCOL by Ronald N. Kostoffa, Alan L. Porterb, Henry. A. Buchtelc (a) Research Affiliate, School of Public Policy, Georgia Institute of Technology, USA (b) Professor Emeritus, School of Public Policy, Georgia Institute of Technology, USA (c) Associate Professor, Department of Psychiatry, University of Michigan, USA KEYWORDS Alzheimer's Disease; Dementia; Text Mining; Literature-Based Discovery; Information Technology; Treatments Prevention and reversal of Alzheimer's disease: treatment protocol Copyright © 2018 Kostoff et al CITATION TO MONOGRAPH Kostoff RN, Porter AL, Buchtel HA. Prevention and reversal of Alzheimer's disease: treatment protocol. Georgia Institute of Technology. 2018. PDF. https://smartech.gatech.edu/handle/1853/59311 COPYRIGHT AND CREATIVE COMMONS LICENSE COPYRIGHT Copyright © 2018 by Ronald N. Kostoff, Alan L. Porter, Henry A. Buchtel Printed in the United States of America; First Printing, 2018 CREATIVE COMMONS LICENSE This work can be copied and redistributed in any medium or format provided that credit is given to the original author. For more details on the CC BY license, see: http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License<http://creativecommons.org/licenses/by/4.0/>. DISCLAIMERS The views in this monograph are solely those of the authors, and do not represent the views of the Georgia Institute of Technology or the University of Michigan. This monograph is not intended as a substitute for the medical advice of physicians. The reader should regularly consult a physician in matters relating to his/her health and particularly with respect to any symptoms that may require diagnosis or medical attention.
    [Show full text]
  • Medicinal Plants & Their Importance
    Фомина Т.Н. MEDICINAL PLANTS & THEIR IMPORTANCE РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ – МСХА имени К.А. ТИМИРЯЗЕВА [Введите название организации] Фомина Т.Н. 0 МОСКВА 2014 Т.Н. Фомина Английский язык в области производства и переработки лекарственных и эфиромасличных культур учебное пособие Рекомендовано к изданию учебно-методической комиссией факультета садоводства и ландшафтной архитектуры (протокол № 2 от 06 октября 2014 г.) ФГБОУ ВПО РГАУ-МСХА имени К.А. Тимирязева Издательство РГАУ-МСХА имени К.А. Тимирязева Москва 2014 1 УДК 802.0[663.8+665.52/.54](075.8) ББК 81.432.1:42.14я73 Ф 76 Фомина Т.Н. Английский язык в области производства и переработки лекарственных и эфиромасличных культур – Medicinal plants & their importance. Professional English for cultivation and processing technology of medicinal and essential-oil plants: учебное пособие/ Т.Н. Фомина. – М.: Изд-во РГАУ-МСХА имени К.А. Тимирязева, 2014. 138 с. Настоящее учебное пособие предназначено магистрам и аспирантам аграрного вуза, обучающихся по программе подготовки "Технологии производства продукции овощных и лекарственных растений" для направления 35.04.05 "Садоводство", а также студентам и аспирантам всех форм обучения агрономических специальностей и пограничных дисциплин сельскохозяйственных вузов и слушателям дополнительной образовательной программы «Переводчик в сфере профессиональной коммуникации». Рецензенты: Попченко М.И., к.б.н., доцент кафедры ботаники - РГАУ-МСХА имени К.А. Тимирязева Буковский С.Л., к. пед. н., ст. преподаватель кафедры иностранных языков - РГАУ-МСХА имени К.А. Тимирязева © Фомина Т.Н. © ФГБОУ ВПО РГАУ-МСХА имени К.А. Тимирязева, 2014 2 CONTENTS PAGE Introduction 4 Part I: Plants and people 6 Part II: Plants & their importance as alternative medicine 13 Part III: Classification of medicinal plants 25 Part IV: Plants list 37 Part V: Cultivation and management 53 Part VI: Obtaining raw material 62 Part VII: Industrial use 77 Part VIII: Essencial oils 89 Part IX: Standards and quality control.
    [Show full text]
  • Mixed Antagonistic Effects of the Ginkgolides at Recombinant Human R1 GABAC Receptors
    Neuropharmacology 63 (2012) 1127e1139 Contents lists available at SciVerse ScienceDirect Neuropharmacology journal homepage: www.elsevier.com/locate/neuropharm Mixed antagonistic effects of the ginkgolides at recombinant human r1 GABAC receptors Shelley H. Huang a, Trevor M. Lewis b, Sarah C.R. Lummis c, Andrew J. Thompson c, Mary Chebib d, Graham A.R. Johnston a, Rujee K. Duke a,* a Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of Sydney, Australia b School of Medical Sciences, University of New South Wales, Australia c Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom d Faculty of Pharmacy, University of Sydney, Australia article info abstract Article history: The diterpene lactones of Ginkgo biloba, ginkgolides A, B and C are antagonists at a range of Cys-loop Received 11 July 2011 receptors. This study examined the effects of the ginkgolides at recombinant human r1 GABAC recep- Received in revised form tors expressed in Xenopus oocytes using two-electrode voltage clamp. The ginkgolides were moderately 18 June 2012 potent antagonists with IC sinthemM range. At 10 mM, 30 mM and 100 mM, the ginkgolides caused Accepted 24 June 2012 50 rightward shifts of GABA doseeresponse curves and reduced maximal GABA responses, characteristic of noncompetitive antagonists, while the potencies showed a clear dependence on GABA concentration, Keywords: indicating apparent competitive antagonism. This suggests that the ginkgolides exert a mixed-type Ginkgolide Bilobalide antagonism at the r1 GABAC receptors. The ginkgolides did not exhibit any obvious use-dependent Mixed-antagonism inhibition. Fitting of the data to a number of kinetic schemes suggests an allosteric inhibition as Use-dependent a possible mechanism of action of the ginkgolides which accounts for their inhibition of the responses GABAr receptor without channel block or use-dependent inhibition.
    [Show full text]
  • Chinese Rhubarb)
    IJAS_39192 Vol 8, Issue 6, 2020 ISSN- 2321-6832 Review Article GENERAL OVERVIEW OF PHYTOCHEMISTRY AND PHARMACOLOGICAL POTENTIAL OF RHEUM PALMATUM (CHINESE RHUBARB) AAMIR KHAN KHATTAK, SYEDA MONA HASSAN, SHAHZAD SHARIF MUGHAL* Department of Chemistry, Lahore Garrison University, Lahore, Pakistan, Email: [email protected] Received: 21 July 2020 , Revised and Accepted: 11 October 2020 ABSTRACT Recent probe of medicinal plants incorporated in traditional systems for curing infection and sustaining holistic health, has exposed good sum of therapeutic efficiency against deleterious infections and chronic illnesses. Rheum palmatum (Chinese Rhubarb, family Polygonaceae) is a significant medicinal herb, which finds an extensive use in Unani (Traditional) system of medicine. It has been traditionally employed as antiseptic, liver stimulant, diuretic, diabetes, stomachic, purgative/cathartic, anticholesterolemic, antitumor, Alzheimer’s, Parkinson’s, tonic, antidiabetic, and wound healer. The most vital components from Rheum palmatum are the phenolics, flavonoids, terpenoids, saponins, and anthraquinone derivatives such as aloe- emodin, chrysophanol, physcion, rhein, emodin and its glucorhein, and glycoside. Rhubarb also contains tannins which include hydrolysable-tannins, containing glycosidic or ester bonds composed of glucose, gallic acid, and other monosaccharide’s and condensed tannins, resulting principally from the flavone derivatives leukocyanidin and catechin. In recent years, new components such asrevandchinone-1, revandchinone-2, revandchinone-3, revandchinone-4, sulfemodin8-O-b-Dglucoside, and 6-methyl-rhein and aloe-emodin have been reported from the same class. It also encompasses some macro and micro mineral elements such as Ca, K, Mn, Fe, Co, Zn, Na, Cu, and Li. Anthraquinone derivatives demonstrate evidence of anti- microbial, antifungal, anti-proliferative, anti-Parkinson’s, immune enhancing, anticancer, antiulcer, antioxidant, and antiviral activities.
    [Show full text]
  • Comparative Pharmacokinetic Study of Luteolin After Oral Administration Of
    Vol. 8(16), pp. 422-428, 29 April, 2014 DOI 10.5897/AJPP2013.3835 ISSN 1996-0816 African Journal of Pharmacy and Copyright © 2014 Author(s) retain the copyright of this article Pharmacology http://www.academicjournals.org/AJPP Full Length Research Paper Comparative pharmacokinetic study of luteolin after oral administration of Chinese herb compound prescription JiMaiTong in spontaneous hypertensive rats (SHR) and Sprague Dawley (SD) rats Zhao-Huan Lou1, Su-Hong Chen2, Gui-Yuan Lv1*,Bo-Hou Xia1, Mei-Qiu Yan1, Zhi-Ru Zhang1 and Jian-Li Gao1 1Institute of Material Medica, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, China. 2Academy of Tradition Chinese Medicine, Wenzhou Medical University, Wenzhou 325035, China. Received 7 August, 2013; Accepted 15 April, 2014 JiMaiTong (JMT), a Chinese herb compound prescription consisted of Flos chrysanthemi Indici, Spica prunellae and Semen cassiae for anti-hypertension. Luteolin is one of the major bioactivity compositions in F. chrysanthemi Indici in JMT. There are some reports about pharmacokinetics of luteolin in extract of F. chrysanthemi and husks of peanut in normal rats, but it lacked pharmacokinetic information of luteolin residing in a Chinese herb compound prescription in hypertensive animal models. The present study aimed to develop a high-performance liquid chromatography with photodiode array detection (HPLC-DAD) method for determination of luteolin in rat plasma and for pharmacokinetic study after oral administration of JMT to spontaneous hypertensive rats (SHR) and normal Sprague Dawley (SD) rats. After oral administration of JMT to SHR and SD rats, respectively the content of luteolin in blood samples at different time points were determined by a reversed-phase high- performance liquid chromatography (RP-HPLC) coupled with liquid-liquid phase extraction.
    [Show full text]
  • Antimicrobial Effect of Medicinal Plants on Microbiological Quality of Grape Juice
    ADVANCED RESEARCH IN LIFE SCIENCES 5, 2021, 28-35 www.degruyter.com/view/j/arls DOI:10.2478/arls-2021-0026 Research Article Antimicrobial Effect of Medicinal Plants on Microbiological Quality of Grape Juice Miroslava Kačániová1,2, Jakub Mankovecký1, Lucia Galovičová1, Petra Borotová3,4, Simona Kunová3, Tatsiana Savitskaya5, Dmitrij Grinshpan5 1Slovak University of Agriculture, Faculty of Horticulture and Landscape Engineering, Nitra 949 76, Tr. A. Hlinku 2, Slovakia 2University of Rzeszow, Institute of Food Technology and Nutrition, 35-601 Rzeszow, Cwiklinskiej 1, Poland 3Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Nitra 949 76, Tr. A. Hlinku 2, Slovakia 4Slovak University of Agriculture, AgroBioTech Research Centre, Tr. A. Hlinku 2, 94976 Nitra, Slovakia 5Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya str. 14, 220030 Minsk, Belarus Received May, 2021; Revised June, 2021; Accepted June, 2021 Abstract The safety of plant-based food of plant origin is a priority for producers and consumers. The biological value of food products enriched with herbal ingredients is getting more popular among consumers. The present study was aimed to evaluate microbiological quality of grape juice enriched with medicinal plants. There were two varieties of grapes - Welschriesling and Cabernet Sauvignon and six species of medicinal plants used for the experiment: Calendula officinalis L., Ginkgo biloba, Thymus serpyllum, Matricaria recutita, Salvia officinalis L., and Mentha aquatica var. citrata. A total of 14 samples of juice were prepared and two of them were used as controls and 12 samples were treated with medicinal plants. Total microbial count, coliforms, lactic acid bacteria and yeasts and microscopic fungi for testing the microbiological quality were detected.
    [Show full text]