High-Resolution Reconstructions Of

Total Page:16

File Type:pdf, Size:1020Kb

High-Resolution Reconstructions Of A Tale of Two Theses: High-Resolution Reconstructions of Atmospheric CO2 in Deep Time Using Plant Stomata Garland Upchurch, Texas State University M.S. Students: Jonathan Richey and Joseph Milligan Thesis advisers: Garland Upchurch and Dana Royer Co-authors on papers listed later Introduction • Paleobotany provides important information on paleoclimate. – Physical climate – Past CO2 • Deep time studies typically have coarse stratigraphic resolution – Macrofossils – Sporadic occurrence – Long-term trends • Today—plant fossils can provide data on CO2 in deep time with high stratigraphic resolution – Carbon cycle perturbations and extinctions of the deep geologic past. Plants and CO2 • Leaf function is an adaptive compromise. – Maximize carbon gain – Minimizing water loss • Diffusion, CO2 and H2O – Stomata – Open and close • Today’s atmosphere Cross section of a leaf showing the – 100 moles H2O: 1 mole CO2 movement of CO2, H2O & O2 – More favorable ratio under high CO2 • Reduce conductanceReduce water loss yet gain carbon • Long term: Changing number and dimensions of stomata Stomatal Methods for Paleo-CO2 • Stomatal Index – Woodward (1987) – Reduction in stomatal number on leaf with elevated CO2 – Species specific • Living fossils – Levels out at high CO2 • Mechanistic stomatal model – Franks et al. (2014) – Applicable to all fossil species – Measure structural and chemical features on fossil – Calculate physiological parameters Stomatal Index for Ginkgo biloba. Solid – Estimate paleo-CO2 circles are historic records, open circles are plants grown under elevated CO2. The Franks et al. Mechanistic Model • Based on photosynthesis model of Farquhar, von Caemmerer, and co-workers • Measure stomatal size, density, fraction of leaf surface – Calculate gc(tot) • Measure δ13C – Calculate Δleaf – Calculate Ci/Ca • Calculate Ca – Assumptions • Assimilation rate: An • Temperature of photosynthesis – 19–26°C • Mean error ~28% – Extant plants – Royer et al. (2019, Clim. Past. 15: 795– 809) The Two Theses • M.S. Thesis 1: Jonathan Richey, Texas State University – Supervisor: Garland Upchurch – Cretaceous: Albian-Cenomanian boundary • Ocean Anoxic Event 1d • CO2 levels during major carbon cycle perturbation • Both Stomatal Index and Mechanistic Stomatal Model – Richey et al., 2018, Earth and Planetary Science Letters 491: 172–182. • M.S. Thesis 2: Joseph Milligan, Wesleyan University – Supervisor: Dana Royer – Cretaceous-Paleogene boundary • Evaluate evidence for major CO2 increase following Chicxulub Impact • Mechanistic Stomatal Model (vs. earlier Stomatal Index estimates) – Milligan et al., 2019, Geophysical Research Letters 46: 3462–3472. Thesis 1: Richey et al. (2018) Rose Creek Pit: Albian-Cenomanian Boundary • Near Fairbury, NE • Leaf macroflora – Fine venation – Anatomy of epidermis • Cuticle • Leaf debris – Identified by cuticular anatomy – 15-cm intervals • High-resolution stratigraphy – Palynology – Carbon isotope stratigraphy – Sequence stratigraphy • Methods – Stomatal Index • Published calibrations • Extant Lauraceae – Mechanistic Stomatal Model Pandemophyllum: Lauraceae • Venation HB • Oil cells • Epidermis – Hair base structure • (HB) – Stomata (gas-exchange HB pores) • Scale-shaped thickenings (arrows)— SC look like hard taco shells turned to side SC • Paired specialized cells (SC) Hiatus in section: Paleosol horizon: 300–500 kyr Correlates with eustatic drop in sea level at the Albian- Cenomanian boundary Marine Terrestrial: Rose Creek Positive phase of isotopic excursion missing: 300–500 kyr Rose Creek: Important Results • Both Stomatal Index and Mechanistic Stomatal Model indicate increased CO2 during the early part of OAE1d, followed by a decrease. – Mechanistic model gives higher CO2 estimates than Stomatal Index. – Stomatal index: 326–602 ppm, rising to 512–752 ppm • Calibration dependent – Mechanistic model: 464–805 ppm, rising to 1032–1598 ppm • Dependent on input parameters • CO2 increases after the onset of the negative phase of carbon isotopic excursion and during return to pre-excursion values. • Similarity between OAE1d, OAE 1a, and Toarcian Ocean Anoxic Event – Common underlying cause Thesis 2: Milligan et al. (2019) Plants used in this study. Living Ginkgo (top left) Fossil Ginkgo stomata (bottom left) Fossil fern leaflet (right) and its stomata (far right) Cretaceous-Paleogene Boundary: The Problem • Previous Stomatal Index work – Beerling et al. (2002) – Major increase in CO2 immediately after K-Pg event • 350–500 ppm before • >2300 ppm immediately after – Two taxa • Ginkgo for long-term CO2 trends • Fossil fern for CO2 shortly after bolide impact • Fossil fern had two issues. – Relationship with living ferns not close • Aff. Stenochlaena = affinity with, but not the living genus • Living Stenochlaena used to develop Stomatal Index curve – Fossil fern had Stomatal Index outside the calibration curve • High pulse of CO2 • Earliest Paleocene values poorly constrained • Recent modeling of impact indicates much lower CO2 input to atmosphere than earlier impact models. Study Design • Reinvestigate taxa using the Mechanistic Stomatal Model – Leaf conductance estimated from existing slides of cuticle – Measurements of carbon isotopic composition of leaf materials – Growth chamber work, extant Stenochlaena (and other species) – Different assumptions 13 regarding An and δ C of atmosphere • Isotopic excursion just above K-Pg boundary Aff. Stenochlaena leaflet (left) and stomata (right) Results: Mechanistic Model • Higher CO2 before and after K- Pg boundary event – ~625 ppm – Congruent with published study, Castle Rock Rainforest • Kowalczyk et al. (2018, Paleoceanography and Paleoclimatology 33: 1427– 1438.) • Significantly lower CO2 increase due to the K-Pg impact – ~875 ppm: ~ 250 ppm increase – Significantly lower estimate of CO2 released by bolide impact – In line with recent impact modeling Summary and Conclusions • Terrestrial plants can provide reconstructions of paleo-CO2 in deep time with high temporal resolution. – Macrofossils – Dispersed leaf cuticles • Orders of magnitude more common than leaf macrofossils – High-resolution collecting and stratigraphic data • Mechanistic stomatal model of Franks et al. (2014) is applicable to a wide variety of plants. – Eliminates problem of changes in communities – Microstratigraphic sampling • Plant fossils and stomatal studies should be an integral part of future studies of carbon cycle perturbations and extinction boundaries..
Recommended publications
  • Attention Plus
    ATTENTION PLUS - arnica montana, brain suis, carduus marianus, cinchona officinalis, ginkgo biloba, lecithin, millefolium, phosphoricum acidum, spray Liddell Laboratories Disclaimer: This homeopathic product has not been evaluated by the Food and Drug Administration for safety or efficacy. FDA is not aware of scientific evidence to support homeopathy as effective. ---------- Attention Plus ACTIVE INGREDIENTS: Arnica montana 3X, Brain suis 6X, Carduus marianus 3X, Cinchona officinalis 6X, Ginkgo biloba 6X, Lecithin 12X, Millefolium 3X, Phosphoricum acidum 30C. INDICATIONS: Helps relieve symptoms associated with attention disorders: distractibility, lack of attention, poor concentration, emotional fluctuations. WARNINGS: If symptoms persist, consult a doctor. If pregnant or breast feeding, ask a doctor before use. Keep out of reach of children. In case of overdose, get medical help or call a Poison Control Center right away. Do not use if TAMPER EVIDENT seal around neck of bottle is missing or broken. DIRECTIONS:Adults and children over 12: Spray twice under the tongue 3 times per day Children 12 and under: Consult a doctor prior to use. INACTIVE INGREDIENTS: Organic alcohol 20% v/v, Purified water. KEEP OUT OF REACH OF CHILDREN. In case of overdose, get medical help or contact a Poison Control Center right away. INDICATIONS: Helps relieve symptoms associated with attention disorders: distractibility, lack of attention, poor concentration, emotional fluctuations. LIDDELL LABORATORIES WOODBINE, IA 51579 WWW.LIDDELL.NET 1-800-460-7733 ORAL
    [Show full text]
  • Desiderata June 2021
    Desiderata June 2021 Desiderata are plants that National Collection Holders are searching for to add to their collections. Many of these plants have been in cultivation in the UK at some point, but they are not currently obtainable through the trade. Others may appear available in the trade, but doubts exist as to whether the material currently sold is correctly named. If you know where some of these plants may be growing, whether it is in the UK or abroad,please contact us at [email protected] 01483 447540, or write to us at : Plant Heritage, 12 Home Farm, Loseley Park, Guildford GU3 1HS, UK. Abutilon ‘Apricot Belle’ Artemisia villarsii Abutilon ‘Benarys Giant’ Arum italicum subsp. italicum ‘Cyclops’ Abutilon ‘Golden Ashford Red’ Arum italicum subsp. italicum ‘Sparkler’ Abutilon ‘Heather Bennington’ Arum maculatum ‘Variegatum’ Abutilon ‘Henry Makepeace’ Aster amellus ‘Kobold’ Abutilon ‘Kreutzberger’ Aster diplostephoides Abutilon ‘Orange Glow (v) AGM’ Astilbe ‘Amber Moon’ Abutilon ‘pictum Variegatum (v)’ Astilbe ‘Beauty of Codsall’ Abutilon ‘Pink Blush’ Astilbe ‘Colettes Charm’ Abutilon ‘Savitzii (v) AGM’ Astilbe ‘Darwins Surprise’ Abutilon ‘Wakehurst’ Astilbe ‘Rise and Shine’ Acanthus montanus ‘Frielings Sensation’ Astilbe subsp. x arendsii ‘Obergartner Jurgens’ Achillea millefolium ‘Chamois’ Astilbe subsp. chinensis hybrid ‘Thunder and Lightning’ Achillea millefolium ‘Cherry King’ Astrantia major subsp. subsp. involucrata ‘Shaggy’ Achillea millefolium ‘Old Brocade’ Azara celastrina Achillea millefolium ‘Peggy Sue’ Azara integrifolia ‘Uarie’ Achillea millefolium ‘Ruby Port’ Azara salicifolia Anemone ‘Couronne Virginale’ Azara serrata ‘Andes Gold’ Anemone hupehensis ‘Superba’ Azara serrata ‘Aztec Gold’ Anemone x hybrida ‘Elegantissima’ Begonia acutiloba Anemone ‘Pink Pearl’ Begonia almedana Anemone vitifolia Begonia barkeri Anthemis cretica Begonia bettinae Anthemis cretica subsp.
    [Show full text]
  • Antimicrobial Effect of Medicinal Plants on Microbiological Quality of Grape Juice
    ADVANCED RESEARCH IN LIFE SCIENCES 5, 2021, 28-35 www.degruyter.com/view/j/arls DOI:10.2478/arls-2021-0026 Research Article Antimicrobial Effect of Medicinal Plants on Microbiological Quality of Grape Juice Miroslava Kačániová1,2, Jakub Mankovecký1, Lucia Galovičová1, Petra Borotová3,4, Simona Kunová3, Tatsiana Savitskaya5, Dmitrij Grinshpan5 1Slovak University of Agriculture, Faculty of Horticulture and Landscape Engineering, Nitra 949 76, Tr. A. Hlinku 2, Slovakia 2University of Rzeszow, Institute of Food Technology and Nutrition, 35-601 Rzeszow, Cwiklinskiej 1, Poland 3Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Nitra 949 76, Tr. A. Hlinku 2, Slovakia 4Slovak University of Agriculture, AgroBioTech Research Centre, Tr. A. Hlinku 2, 94976 Nitra, Slovakia 5Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya str. 14, 220030 Minsk, Belarus Received May, 2021; Revised June, 2021; Accepted June, 2021 Abstract The safety of plant-based food of plant origin is a priority for producers and consumers. The biological value of food products enriched with herbal ingredients is getting more popular among consumers. The present study was aimed to evaluate microbiological quality of grape juice enriched with medicinal plants. There were two varieties of grapes - Welschriesling and Cabernet Sauvignon and six species of medicinal plants used for the experiment: Calendula officinalis L., Ginkgo biloba, Thymus serpyllum, Matricaria recutita, Salvia officinalis L., and Mentha aquatica var. citrata. A total of 14 samples of juice were prepared and two of them were used as controls and 12 samples were treated with medicinal plants. Total microbial count, coliforms, lactic acid bacteria and yeasts and microscopic fungi for testing the microbiological quality were detected.
    [Show full text]
  • A Health Risk Assessment of Lead and Other Metals in Pharmaceutical
    International Journal of Environmental Research and Public Health Article A Health Risk Assessment of Lead and Other Metals in Pharmaceutical Herbal Products and Dietary Supplements Containing Ginkgo biloba in the Mexico City Metropolitan Area Patricia Rojas 1,* , Elizabeth Ruiz-Sánchez 1, Camilo Ríos 2, Ángel Ruiz-Chow 3 and Aldo A. Reséndiz-Albor 4 1 Laboratory of Neurotoxicology, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, SS, Av. Insurgentes sur No. 3877, Mexico City 14269, Mexico; [email protected] 2 Department of Neurochemistry, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, SS, Av. Insurgentes sur No. 3877, Mexico City 14269, Mexico; [email protected] 3 Neuropsychiatry Unit, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, SS, Av. Insurgentes sur No. 3877, Mexico City 14269, Mexico; [email protected] 4 Mucosal Immunity Laboratory, Research and Graduate Section, Instituto Politécnico Nacional, Superior School of Medicine, Plan de San Luis Esq. Salvador Díaz Mirón s/n, C.P., Mexico City 11340, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +52-55-5424-0808 Abstract: The use of the medicinal plant Ginkgo biloba has increased worldwide. However, G. biloba is capable of assimilating both essential and toxic metals, and the ingestion of contaminated products can cause damage to health. The aim of this study was to investigate the safety of manganese (Mn), copper (Cu), lead (Pb), arsenic (As), and cadmium (Cd) in 26 items containing Ginkgo biloba Citation: Rojas, P.; Ruiz-Sánchez, E.; (pharmaceutical herbal products, dietary supplements, and traditional herbal remedies) purchased in Ríos, C.; Ruiz-Chow, Á.; the metropolitan area of Mexico City.
    [Show full text]
  • Cardiovascular System Action Categories & Herbs
    CARDIOVASCULAR SYSTEM ACTION CATEGORIES & HERBS ADAPTOGENIC: Nourishes/protects/modulates/normalizes various metabolic processes, increases the body’s resistance to a wide variety of physical, chemical and biological stresses. Treats whole body more than individual systems. Echium vulgare (Viper’s bugloss, Boraginaceae, Borage family) Soothing mucilage, good for depleted adrenals, damaged lungs. Eleutherococcus senticosus (Siberian Ginseng, Araliaceae, Ginseng family) This one will not raise B.P., can use long term, good for building stamina against stress. Ganoderma spp. (Ganoderma spp. Ganodermataceae) Powerful/nourishing immune stimulant, allows lungs to absorb more oxygen, which in turn is positive for cardiovascular system Glycyrrhiza glabra (Licorice, Fabaceae, Pea/Legume Family) Having a steroid component, licorice is an all-body anti-inflammatory, has a regulatory action over estrogen activity, enhances immune activity. Only concentrated solid extract will raise blood pressure. Tea or tincture will not. Gynostemma pentaphyllum (Gynostemma, Cucurbitaceae, Gourd Family) Contains several ginsenosides (polysaccharides) that are identical to those found in ginseng, good for blood sugar and stress. By maintaining low insulin levels and moderate insulin sensitivity, we can reduce cholesterol buildup. Panax quinquefolius (North American Ginseng, Araliaceae, Ginseng Family) From “Panacea” meaning cure-all. Contains Saponin glycosides, milder action than asian ginsengs, cooling as opposed to warming. Regulates blood sugar and cholesterol, adrenal glands. Saponin Glycoside (Saponins)/Triterpenes - compounds that have a chemical structure similar to endogenous steroidal compounds - plants containing these compounds provide the body with materials to modulate/regulate hormonal and endocrine/immune system processes - aids the body’s own ‘government’ to adapt or adjust to a variety of biological, physical or chemical stresses Withania somnifera (Withania, Solanaceae, Nightshade Family) Relaxing, adrenal support.
    [Show full text]
  • Deer Management in the Garden
    DEER MANAGEMENT IN THE GARDEN Deer can be a nuisance at times to gardeners in the Washington D.C. metropolitan area. As development alters habitats and eliminates predators, deer have adapted to suburban life and their population has grown, increasing the demand and competition for food. In some areas, landscape plants have become one of their food sources. When food is limited, deer may eat plants they normally don’t touch to satisfy their hunger. Although no plant is deer proof, you can make your garden less inviting to wildlife. Below are several strategies, including a list of plants that have been shown that deer dislike in order to discourage these uninvited guests. Deer will continue to adapt to their changing environment, and you’ll need to continue trying different control strategies. But with just a little planning, you can have a beautiful garden and co-exist with deer. METHODS OF DEER MANAGEMENT EXCLUSION: A physical barrier is the most effective method to keep deer from foraging. A 7’ tall fence is required to be effective. Deer fencing should be within easy view of the deer and should lean out towards the deer, away from your garden. A fine mesh is used for the black plastic fencing, which does not detract from the beauty of your landscape. If fencing is not practical, drape deer netting over vulnerable plants. Anchor or fasten deer netting to the ground to prevent the deer from pulling it off of the plants. REPELLENTS: Deer repellents work either through taste, scent, or a combination of both.
    [Show full text]
  • Deer-Resistant Landscape Plants This List of Deer-Resistant Landscape Plants Was Compiled from a Variety of Sources
    Deer-Resistant Landscape Plants This list of deer-resistant landscape plants was compiled from a variety of sources. The definition of a deer-resistant plant is one that may be occasionally browsed, but not devoured. If deer are hungry enough or there’s a limited amount of food available, they will eat almost anything. Perennials, Herbs & Bulbs Achillea Yarrow Lavandula augustifolia Lavender Adiatum pedatum Maiden Hair Fern Liatris Gayfeather Agastache cana Agastache Lychnis chalcedonica Maltese Cross Ajuga reptans Bugleweed Matteuccia Ostrich Fern Alchemilla Lady’s Mantle Mentha Mint Allium spp. Flowering Onion Miscanthus Silver Grass Arabis Rock Cress Myosotis sylvatica Forget-Me-Not Armeria maritime Sea Thrift Narcissus Daffodils & Narcissus Artemisia Wormwood Nepeta Catmint Asarum europaeum Wild Ginger Oenothera Evening Primrose Asclepias tuberosa Butterfly Weed Paeonia Peony Bergenia Bergenia Papaver orientale Oriental Poppy Calamagrostis Reed Grass Pennisetum orientale Oriental Fountain Grass Cerastium Snow-In-Summer Perovskia Russian Sage Cimcifuga Bugbane Physostegia Obedient Plant Convallaria Lily-of-the-Valley Platycodon Balloon Flower Corydalis lutea Gold Bleeding Heart Polygonatum Solomon’s Seal Dicentra Bleeding Heart Pulmonaria Lungwort Digitalis Foxglove Rudbeckia Black Eyed Susan Echinops Globe Thistle Saponaria Soapwort Festuca ovinia Blue Fescue Salvia Sage Galanthus nivalis Snowdrop Sedum Stonecrop Helleborus Hellebores Solidago Goldenrod Iris sibirica & ensata Japanese & Siberian Iris Stachys byzantina Lamb’s Ear Lamium
    [Show full text]
  • Ginkgo Biloba Maidenhair Tree1 Edward F
    Fact Sheet ST-273 November 1993 Ginkgo biloba Maidenhair Tree1 Edward F. Gilman and Dennis G. Watson2 INTRODUCTION Ginkgo is practically pest-free, resistant to storm damage, and casts light to moderate shade (Fig. 1). Young trees are often very open but they fill in to form a denser canopy. It makes a durable street tree where there is enough overhead space to accommodate the large size. The shape is often irregular with a large branch or two seemingly forming its own tree on the trunk. But this does not detract from its usefulness as a city tree unless the tree will be growing in a restricted overhead space. If this is the case, select from the narrow upright cultivars such as ‘Princeton Sentry’ and ‘Fairmont’. Ginkgo tolerates most soil, including compacted, and alkaline, and grows slowly to 75 feet or more tall. The tree is easily transplanted and has a vivid yellow fall color which is second to none in brilliance, even in the south. However, leaves fall quickly and the fall color show is short. GENERAL INFORMATION Scientific name: Ginkgo biloba Pronunciation: GINK-go bye-LOE-buh Common name(s): Maidenhair Tree, Ginkgo Family: Ginkgoaceae Figure 1. Middle-aged Maidenhair Tree. USDA hardiness zones: 3 through 8A (Fig. 2) Origin: not native to North America Uses: Bonsai; wide tree lawns (>6 feet wide); drought are common medium-sized tree lawns (4-6 feet wide); Availability: generally available in many areas within recommended for buffer strips around parking lots or its hardiness range for median strip plantings in the highway; specimen; sidewalk cutout (tree pit); residential street tree; tree has been successfully grown in urban areas where air pollution, poor drainage, compacted soil, and/or 1.
    [Show full text]
  • Urban Trees As Social Triggers: the Case of the Ginkgo Biloba Specimen in Tallinn, Estonia
    234 Riin Magnus, Heldur Sander Sign Systems Studies 47(1/2), 2019, 234–256 Urban trees as social triggers: The case of the Ginkgo biloba specimen in Tallinn, Estonia Riin Magnus Department of Semiotics University of Tartu Jakobi 2, 51005 Tartu, Estonia e-mail: [email protected] Heldur Sander Mahtra 9–121 20038 Tallinn, Estonia e-mail: [email protected] Abstract: Urban trees are considered to be essential and integral to urban environ- ments, to contribute to the biodiversity of cities as well as to the well-being of their inhabitants. In addition, urban trees may also serve as living memorials, helping to remember major social eruptions and to cement continuity with the past, but also as social disruptors that can induce clashes between different ideals of culture. In this paper, we focus on a specific case, a Ginkgo biloba specimen growing at Süda Street in the centre of Tallinn, in order to demonstrate how the shifts in the meaning attributed to a non-human organism can shape cultural memory and underlie social confrontations. Integrating an ecosemiotic approach to human-non-human interactions with Juri Lotman’s approach to cultural memory and cultural space, we point out how non-human organisms can delimit cultural space at different times and how the ideal of culture is shaped by different ways of incorporating or other species in the human cultural ideal or excluding them from it. Keywords: urban greenery; cultural memory; human-plant interactions; Ginkgo biloba; cultural space Riin Magnus, Heldur Sander In the environmental humanities’ endeavour to highlight the role of other species in the shaping of human culture and environments, animals have played the lead role for a long time.
    [Show full text]
  • Indiana Medical History Museum Guide to the Medicinal Plant Garden
    Indiana Medical History Museum Guide to the Medicinal Plant Garden Garden created and maintained by Purdue Master Gardeners of Marion County IMHM Medicinal Plant Garden Plant List – Common Names Trees and Shrubs: Arborvitae, Thuja occidentalis Culver’s root, Veronicastrum virginicum Black haw, Viburnum prunifolium Day lily, Hemerocallis species Catalpa, Catalpa bignonioides Dill, Anethum graveolens Chaste tree, Vitex agnus-castus Elderberry, Sambucus nigra Dogwood, Cornus florida Elecampane, Inula helenium Elderberry, Sambucus nigra European meadowsweet, Queen of the meadow, Ginkgo, Ginkgo biloba Filipendula ulmaria Hawthorn, Crateagus oxycantha Evening primrose, Oenothera biennis Juniper, Juniperus communis False Solomon’s seal, Smilacina racemosa Redbud, Cercis canadensis Fennel, Foeniculum vulgare Sassafras, Sassafras albidum Feverfew, Tanacetum parthenium Spicebush, Lindera benzoin Flax, Linum usitatissimum Witch hazel, Hamamelis virginiana Foxglove, Digitalis species Garlic, Allium sativum Climbing Vines: Golden ragwort, Senecio aureus Grape, Vitis vinifera Goldenrod, Solidago species Hops, Humulus lupulus Horehound, Marrubium vulgare Passion flower, Maypop, Passiflora incarnata Hyssop, Hyssopus officinalis Wild yam, Dioscorea villosa Joe Pye weed, Eupatorium purpureum Ladybells, Adenophora species Herbaceous Plants: Lady’s mantle, Alchemilla vulgaris Alfalfa, Medicago sativa Lavender, Lavendula angustifolia Aloe vera, Aloe barbadensis Lemon balm, Melissa officinalis American skullcap, Scutellaria laterifolia Licorice, Glycyrrhiza
    [Show full text]
  • Bulk Drug Substances Under Evaluation for Section 503A
    Updated July 1, 2020 Bulk Drug Substances Nominated for Use in Compounding Under Section 503A of the Federal Food, Drug, and Cosmetic Act Includes three categories of bulk drug substances: • Category 1: Bulk Drug Substances Under Evaluation • Category 2: Bulk Drug Substances that Raise Significant Safety Concerns • Category 3: Bulk Drug Substances Nominated Without Adequate Support Updates to Section 503A Categories • Removal from category 3 o Artesunate – This bulk drug substance is a component of an FDA-approved drug product (NDA 213036) and compounded drug products containing this substance may be eligible for the exemptions under section 503A of the FD&C Act pursuant to section 503A(b)(1)(A)(i)(II). This change will be effective immediately and will not have a waiting period. For more information, please see the Interim Policy on Compounding Using Bulk Drug Substances Under Section 503A and the final rule on bulk drug substances that can be used for compounding under section 503A, which became effective on March 21, 2019. 1 Updated July 1, 2020 503A Category 1 – Bulk Drug Substances Under Evaluation • 7 Keto Dehydroepiandrosterone • Glycyrrhizin • Acetyl L Carnitine/Acetyl-L- carnitine • Kojic Acid Hydrochloride • L-Citrulline • Alanyl-L-Glutamine • Melatonin • Aloe Vera/ Aloe Vera 200:1 Freeze Dried • Methylcobalamin • Alpha Lipoic Acid • Methylsulfonylmethane (MSM) • Artemisia/Artemisinin • Nettle leaf (Urtica dioica subsp. dioica leaf) • Astragalus Extract 10:1 • Nicotinamide Adenine Dinucleotide (NAD) • Boswellia • Nicotinamide
    [Show full text]
  • Herbal Nootropics: Crocus Sativus, Ginkgo Biloba and Melissa Officinalis
    Mini Review Open Access Journal of Mini Review Biomedical Science ISSN: 2690-487X Herbal nootropics: Crocus Sativus, Ginkgo Biloba and Melissa Officinalis Suzan Tireki* Food Engineering Department, Istanbul Sabahattin Zaim University, Turkey ABSTRACT plants as nutraceuticals, supplements and functional foods and beverages that improve mental functions. Nootropics can balance the neurologicalNootropics are system the substances and restore which a sensation improve of memory relaxation and and cognition wellness and leading ease learning. to optimum Consumers self-healing can benefit and health. from nootropicAlthough consumers are very new to the nootropic products interest in nootropic ingredients is increasing because people are looking for functional foods to enhance their attention, focus and memory and to manage their well-being and mood especially due to the Covid-19 pandemic. It is expected that these demands will continue, and nootropics market is estimated to increase to US $5.32 billion with 13.2% compound annual growth rate (CAGR) by 2026 including pandemic impacts. Therefore, this mini review focuses on three of the natural herbal nootropics Crocus sativus (saffron), Ginkgo biloba and Melissa officinalis (lemon balm) as they are prominent ingredients in the functional product development. KEYWORDS: Nootropics; Crocus sativus; Saffron; Ginkgo biloba; Melissa officinalis; Lemon balm; Mood; Cognition; Well-being INTRODUCTION functional products include Ginkgo biloba, guarana, caffeine, Nootropics are the substances that ease learning and improve Melissa officinalis (lemon balm), Crocus sativus (saffron) and memory and cognition [1]. Nootropic is also mentioned as “acting turmeric, green tea, ginger, cocoa and B1, B6, B12 vitamins. Consumers are looking for cognition, memory and focus from their and their extracted components in the form of nutraceuticals, food and beverages [4].
    [Show full text]