Advances in Supercritical Carbon Dioxide Extraction of Bioactive Substances from Different Parts of Ginkgo Biloba L

Total Page:16

File Type:pdf, Size:1020Kb

Advances in Supercritical Carbon Dioxide Extraction of Bioactive Substances from Different Parts of Ginkgo Biloba L molecules Review Advances in Supercritical Carbon Dioxide Extraction of Bioactive Substances from Different Parts of Ginkgo biloba L. Ruihong Li 1,2,† , Ziming Xia 2,†, Bin Li 2, Ying Tian 2, Guangjie Zhang 2, Min Li 2,* and Junxing Dong 2,* 1 School of Pharmacy, Henan University, Kaifeng 475000, China; [email protected] 2 Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; [email protected] (Z.X.); [email protected] (B.L.); [email protected] (Y.T.); [email protected] (G.Z.) * Correspondence: [email protected] (M.L.); [email protected] (J.D.); Tel.: +86-010-6693-2294 (M.L.); +86-010-6693-1314 (J.D.) † These authors contributed equally to this work. Abstract: Ginkgo biloba L. has always been a popular area of research due to its various active ingredients and pharmacological effects. Ginkgo biloba is rich in ginkgo flavonoids, ginkgolides, and ginkgolic acid, with anti-inflammation, antioxidation, neuroprotection, anti-platelet agglutination, hypolipidemic effect, anti-cancer, and anti-radiation properties. There are many methods to extract and separate the active components of ginkgo. Among them, supercritical carbon dioxide fluid extraction (SFE-CO2) is known for its green, clean, and environment-friendly properties. In this paper, the pharmacological activities, the active components, and structures of different parts of ginkgo, the extraction methods of its effective ingredients, and the application of the SFE-CO2 method for the extraction and separation of active ingredients in Ginkgo biloba from leaves, seeds, pollen, and roots were reviewed, in order to make best use of ginkgo resources, and provide support and references for the development of SFE-CO2 of active components from Ginkgo biloba. Citation: Li, R.; Xia, Z.; Li, B.; Tian, Y.; Zhang, G.; Li, M.; Dong, J. Advances Keywords: Ginkgo biloba L.; active ingredients; supercritical CO2 fluid extraction in Supercritical Carbon Dioxide Extraction of Bioactive Substances from Different Parts of Ginkgo biloba L.. Molecules 2021, 26, 4011. https:// 1. Introduction doi.org/10.3390/molecules26134011 Ginkgo biloba L., also called maidenhair tree, is a rare species of Mesozoic relict and the sole species in the class Ginkgopsida, also known as the “living fossil” [1,2]. Ginkgo biloba Academic Editor: Alessandra Gentili is rich in a variety of natural active ingredients and has a wide range of pharmacological activities [3], which plays an important role in food [4,5], health care [6], medicine [7,8], Received: 16 May 2021 and other fields. The traditional methods of extracting active substances from Ginkgo biloba Accepted: 26 June 2021 include solvent extraction [9], enzymatic hydrolysis [10], and resin extraction [10]. Com- Published: 30 June 2021 pared with supercritical carbon dioxide fluid extraction (SFE-CO2), these methods have many disadvantages, such as low yield, the excessive residue of harmful substances, and Publisher’s Note: MDPI stays neutral long extraction. As a new extraction and separation method, SFE-CO has aroused increas- with regard to jurisdictional claims in 2 published maps and institutional affil- ing concern due to less use of organic solvents, short extraction time, and high yield. In iations. recent years, several studies [11,12] also showed that the yield of bioactive components in Ginkgo biloba will be higher if SFE-CO2 is applied to its extraction and separation. How- ever, no review is available on the SFE-CO2 of active components from different parts of Ginkgo biloba. Therefore, this paper reviewed the biological activities of different parts of Ginkgo biloba and the application of SFE-CO2 in different parts of ginkgo, attempting Copyright: © 2021 by the authors. to provide support and reference for the further development of SFE-CO technology of Licensee MDPI, Basel, Switzerland. 2 active components from Ginkgo biloba. This article is an open access article distributed under the terms and 2. Biological Activity of Ginkgo biloba conditions of the Creative Commons Attribution (CC BY) license (https:// Modern pharmacological studies revealed the various biological activities of ginkgo, creativecommons.org/licenses/by/ such as anti-inflammatory, antioxidation, neuron protection, anti-platelet aggregation, 4.0/). Molecules 2021, 26, 4011. https://doi.org/10.3390/molecules26134011 https://www.mdpi.com/journal/molecules Molecules 2021, 26, x FOR PEER REVIEW 2 of 17 2. Biological Activity of Ginkgo biloba Molecules 2021, 26, 4011 2 of 16 Modern pharmacological studies revealed the various biological activities of ginkgo, such as anti-inflammatory, antioxidation, neuron protection, anti-platelet aggregation, hypolipidemic effects, anti-cancer, anti-radiation properties, etc. The main biological ac- hypolipidemic effects, anti-cancer, anti-radiation properties, etc. The main biological tivitiesactivities of Ginkgo of Ginkgobiloba are biloba asare follows as follows (Figure (Figure 1): 1): FigureFigure 1. Bioactivity 1. Bioactivity of Ginkgo of Ginkgo biloba biloba L. L. 2.1. Anti-Inflammatory Effect 2.1. Anti-Inflammatory Effect Li et al. [13] found that the ethyl acetate and chloroform parts of the ginkgo male flower Liextract et al. could[13] found significantly that downregulatethe ethyl acetat inflammatorye and chloroform cytokines parts of nitric of oxidethe ginkgo (NO), TNF- male flowerα ,extract IL-6, PEG could2, iNOS significantly mRNA, and downregulate COX-2 mRNA ininflammatory a dose-dependent cytokines manner, of which nitric made oxide (NO), themTNF- theα, IL-6, anti-inflammatory PEG2, iNOS mRNA, active parts and of COX-2 ginkgo mRNA male flowers. in a dose-dependent Li et al. [14] found manner, that whichginkgolide made them A the could anti-inflammat reduce the inflammatoryory active parts response of ginkgo induced ma byle lipopolysaccharideflowers. Li et al. [14] foundin that vivo ginkgolideand in vitro A. Zhang could et reduce al. [15] the found inflammatory that Ginkgo biloba responseextract induced EGB761 could by lipopoly- inhibit saccharideinflammation in vivo and by regulating in vitro. Zhang inflammatory et al. [15] cytokines found and that mediators Ginkgo bilobain vivo extractand in EGB761 vitro. could Theinhibit main inflammation active ingredient by flavonoidregulating glycosides inflammatory could inhibit cytokines the release and mediators of inflammatory in vivo cytokines in LPS induced RAW264.7 macrophages. and in vitro. The main active ingredient flavonoid glycosides could inhibit the release of inflammatory2.2. Antioxidant cytokines Effect in LPS induced RAW264.7 macrophages. Ginkgo extract is rich in flavonoids, which could be used as a natural antioxidant. 2.2. AntioxidantIt could play Effect an antioxidant activity by scavenging free radicals, superoxide anions, and GinkgoNO, as wellextract as inhibitis rich freein flavonoids, radical reaction which and could lipid peroxidationbe used as a [ 16natural,17]. Mart antioxidant.ínez-Solís It could etplay al. [18an] foundantioxidant that flavonoids activity and by terpenoidsscavenging in ginkgofree radicals, leaf extracts superoxide could be usedanions, to pre- and vent and treat retinal diseases related to oxidative stress. Liu et al. [19] found the activities NO, as well as inhibit free radical reaction and lipid peroxidation [16,17]. Martínez-Solís of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) could be improved et al. [18]by ginkgolide found that while flavonoids the concentration and terpenoids of malondialdehyde in ginkgo (MDA)leaf extracts in the myocardial could be used tissue to preventof myocardialand treat retinal ischemia-reperfusion diseases related (MI/R) to ox rats.idative Ren stress. et al. [Liu20] isolatedet al. [19] polysaccharide found the ac- tivitiescompounds of superoxide GBPS-2 dismutase and GBPS-3 (SOD) from and ginkgo glutathione leaves, which peroxidase could significantly (GSH-Px) scavenge could be improvedsuperoxide by ginkgolide radicals andwhile 3-ethylbenzothiazoline-6-sulphonic the concentration of malondialdehyde (ABTS) radicals, (MDA) asin well the asmy- ocardialhydroxyl tissue freeof myocardial radicals and DPPHischemia-reperfu free radicals.sion (MI/R) rats. Ren et al. [20] isolated polysaccharide compounds GBPS-2 and GBPS-3 from ginkgo leaves, which could sig- 2.3. Neuroprotective Effect nificantly scavenge superoxide radicals and 3-ethylbenzothiazoline-6-sulphonic (ABTS) radicals, asGinkgolide well as hydroxyl B could protect free radicals the nervous and systemDPPH by free inhibiting radicals. platelet-activating factors, reducing the concentration of calcium ions, and downregulating the level of NO [16]. Meanwhile, ginkgo leaf extract could also enhance the local cerebral blood flow to reduce cerebral ischemia and hypoxia [17]. The accumulated amyloid β protein (Aβ) in the brain is a key feature in Alzheimer’s disease. Sasaki et al. [21] found that kayaflavone and sciadopitysin showed a higher inhibitory effect on Aβ42 cytotoxicity in rat adrenal Molecules 2021, 26, 4011 3 of 16 pheochromocytoma (PC12) culture. Li et al. [22] found that ginkgo diterpenoid lactones could reduce the cerebral infarction area and improve the neurological deficit and brain edema remarkably. Kaur et al. [23] investigated the protective effect of Ginkgo biloba leaf extract (GBE) on hippocampal neuronal injury induced by methyl tin chloride (TMT) and suggested that GBE can protect hippocampal neuronals by downregulating the NO level. 2.4. Antiplatelet Aggregative Effect Platelet-activating factor (PAF)
Recommended publications
  • Attention Plus
    ATTENTION PLUS - arnica montana, brain suis, carduus marianus, cinchona officinalis, ginkgo biloba, lecithin, millefolium, phosphoricum acidum, spray Liddell Laboratories Disclaimer: This homeopathic product has not been evaluated by the Food and Drug Administration for safety or efficacy. FDA is not aware of scientific evidence to support homeopathy as effective. ---------- Attention Plus ACTIVE INGREDIENTS: Arnica montana 3X, Brain suis 6X, Carduus marianus 3X, Cinchona officinalis 6X, Ginkgo biloba 6X, Lecithin 12X, Millefolium 3X, Phosphoricum acidum 30C. INDICATIONS: Helps relieve symptoms associated with attention disorders: distractibility, lack of attention, poor concentration, emotional fluctuations. WARNINGS: If symptoms persist, consult a doctor. If pregnant or breast feeding, ask a doctor before use. Keep out of reach of children. In case of overdose, get medical help or call a Poison Control Center right away. Do not use if TAMPER EVIDENT seal around neck of bottle is missing or broken. DIRECTIONS:Adults and children over 12: Spray twice under the tongue 3 times per day Children 12 and under: Consult a doctor prior to use. INACTIVE INGREDIENTS: Organic alcohol 20% v/v, Purified water. KEEP OUT OF REACH OF CHILDREN. In case of overdose, get medical help or contact a Poison Control Center right away. INDICATIONS: Helps relieve symptoms associated with attention disorders: distractibility, lack of attention, poor concentration, emotional fluctuations. LIDDELL LABORATORIES WOODBINE, IA 51579 WWW.LIDDELL.NET 1-800-460-7733 ORAL
    [Show full text]
  • Desiderata June 2021
    Desiderata June 2021 Desiderata are plants that National Collection Holders are searching for to add to their collections. Many of these plants have been in cultivation in the UK at some point, but they are not currently obtainable through the trade. Others may appear available in the trade, but doubts exist as to whether the material currently sold is correctly named. If you know where some of these plants may be growing, whether it is in the UK or abroad,please contact us at [email protected] 01483 447540, or write to us at : Plant Heritage, 12 Home Farm, Loseley Park, Guildford GU3 1HS, UK. Abutilon ‘Apricot Belle’ Artemisia villarsii Abutilon ‘Benarys Giant’ Arum italicum subsp. italicum ‘Cyclops’ Abutilon ‘Golden Ashford Red’ Arum italicum subsp. italicum ‘Sparkler’ Abutilon ‘Heather Bennington’ Arum maculatum ‘Variegatum’ Abutilon ‘Henry Makepeace’ Aster amellus ‘Kobold’ Abutilon ‘Kreutzberger’ Aster diplostephoides Abutilon ‘Orange Glow (v) AGM’ Astilbe ‘Amber Moon’ Abutilon ‘pictum Variegatum (v)’ Astilbe ‘Beauty of Codsall’ Abutilon ‘Pink Blush’ Astilbe ‘Colettes Charm’ Abutilon ‘Savitzii (v) AGM’ Astilbe ‘Darwins Surprise’ Abutilon ‘Wakehurst’ Astilbe ‘Rise and Shine’ Acanthus montanus ‘Frielings Sensation’ Astilbe subsp. x arendsii ‘Obergartner Jurgens’ Achillea millefolium ‘Chamois’ Astilbe subsp. chinensis hybrid ‘Thunder and Lightning’ Achillea millefolium ‘Cherry King’ Astrantia major subsp. subsp. involucrata ‘Shaggy’ Achillea millefolium ‘Old Brocade’ Azara celastrina Achillea millefolium ‘Peggy Sue’ Azara integrifolia ‘Uarie’ Achillea millefolium ‘Ruby Port’ Azara salicifolia Anemone ‘Couronne Virginale’ Azara serrata ‘Andes Gold’ Anemone hupehensis ‘Superba’ Azara serrata ‘Aztec Gold’ Anemone x hybrida ‘Elegantissima’ Begonia acutiloba Anemone ‘Pink Pearl’ Begonia almedana Anemone vitifolia Begonia barkeri Anthemis cretica Begonia bettinae Anthemis cretica subsp.
    [Show full text]
  • What Pigments Are in Plants?
    BUILD YOUR FUTURE! ANYANG BEST COMPLETE MACHINERY ENGINEERING CO.,LTD WHAT PIGMENTS ARE IN PLANTS? Pigments Pigments are chemical compounds responsible for color in a range of living substances and in the inorganic world. Pigments absorb some of the light they receive, and so reflect only certain wavelengths of visible light. This makes them appear "colorful.” Cave paintings by early man show the early use of pigments, in a limited range from straw color to reddish brown and black. These colors occurred naturally in charcoals, and in mineral oxides such as chalk and ochre. The WebExhibit on Pigments has more information on these early painting palettes. Many early artists used natural pigments, but nowadays they have been replaced by cheaper and less toxic synthetic pigments. Biological Pigments Pigments are responsible for many of the beautiful colors we see in the plant world. Dyes have often been made from both animal sources and plant extracts . Some of the pigments found in animals have also recently been found in plants. Website: www.bestextractionmachine.com Email: [email protected] Tel: +86 372 5965148 Fax: +86 372 5951936 Mobile: ++86 8937276399 BUILD YOUR FUTURE! ANYANG BEST COMPLETE MACHINERY ENGINEERING CO.,LTD Major Plant Pigments White Bird Of Paradise Tree Bilirubin is responsible for the yellow color seen in jaundice sufferers and bruises, and is created when hemoglobin (the pigment that makes blood red) is broken down. Recently this pigment has also been found in plants, specifically in the orange fuzz on seeds of the white Bird of Paradise tree. The bilirubin in plants doesn’t come from breaking down hemoglobin.
    [Show full text]
  • Antimicrobial Effect of Medicinal Plants on Microbiological Quality of Grape Juice
    ADVANCED RESEARCH IN LIFE SCIENCES 5, 2021, 28-35 www.degruyter.com/view/j/arls DOI:10.2478/arls-2021-0026 Research Article Antimicrobial Effect of Medicinal Plants on Microbiological Quality of Grape Juice Miroslava Kačániová1,2, Jakub Mankovecký1, Lucia Galovičová1, Petra Borotová3,4, Simona Kunová3, Tatsiana Savitskaya5, Dmitrij Grinshpan5 1Slovak University of Agriculture, Faculty of Horticulture and Landscape Engineering, Nitra 949 76, Tr. A. Hlinku 2, Slovakia 2University of Rzeszow, Institute of Food Technology and Nutrition, 35-601 Rzeszow, Cwiklinskiej 1, Poland 3Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Nitra 949 76, Tr. A. Hlinku 2, Slovakia 4Slovak University of Agriculture, AgroBioTech Research Centre, Tr. A. Hlinku 2, 94976 Nitra, Slovakia 5Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya str. 14, 220030 Minsk, Belarus Received May, 2021; Revised June, 2021; Accepted June, 2021 Abstract The safety of plant-based food of plant origin is a priority for producers and consumers. The biological value of food products enriched with herbal ingredients is getting more popular among consumers. The present study was aimed to evaluate microbiological quality of grape juice enriched with medicinal plants. There were two varieties of grapes - Welschriesling and Cabernet Sauvignon and six species of medicinal plants used for the experiment: Calendula officinalis L., Ginkgo biloba, Thymus serpyllum, Matricaria recutita, Salvia officinalis L., and Mentha aquatica var. citrata. A total of 14 samples of juice were prepared and two of them were used as controls and 12 samples were treated with medicinal plants. Total microbial count, coliforms, lactic acid bacteria and yeasts and microscopic fungi for testing the microbiological quality were detected.
    [Show full text]
  • High-Resolution Reconstructions Of
    A Tale of Two Theses: High-Resolution Reconstructions of Atmospheric CO2 in Deep Time Using Plant Stomata Garland Upchurch, Texas State University M.S. Students: Jonathan Richey and Joseph Milligan Thesis advisers: Garland Upchurch and Dana Royer Co-authors on papers listed later Introduction • Paleobotany provides important information on paleoclimate. – Physical climate – Past CO2 • Deep time studies typically have coarse stratigraphic resolution – Macrofossils – Sporadic occurrence – Long-term trends • Today—plant fossils can provide data on CO2 in deep time with high stratigraphic resolution – Carbon cycle perturbations and extinctions of the deep geologic past. Plants and CO2 • Leaf function is an adaptive compromise. – Maximize carbon gain – Minimizing water loss • Diffusion, CO2 and H2O – Stomata – Open and close • Today’s atmosphere Cross section of a leaf showing the – 100 moles H2O: 1 mole CO2 movement of CO2, H2O & O2 – More favorable ratio under high CO2 • Reduce conductanceReduce water loss yet gain carbon • Long term: Changing number and dimensions of stomata Stomatal Methods for Paleo-CO2 • Stomatal Index – Woodward (1987) – Reduction in stomatal number on leaf with elevated CO2 – Species specific • Living fossils – Levels out at high CO2 • Mechanistic stomatal model – Franks et al. (2014) – Applicable to all fossil species – Measure structural and chemical features on fossil – Calculate physiological parameters Stomatal Index for Ginkgo biloba. Solid – Estimate paleo-CO2 circles are historic records, open circles are plants grown under elevated CO2. The Franks et al. Mechanistic Model • Based on photosynthesis model of Farquhar, von Caemmerer, and co-workers • Measure stomatal size, density, fraction of leaf surface – Calculate gc(tot) • Measure δ13C – Calculate Δleaf – Calculate Ci/Ca • Calculate Ca – Assumptions • Assimilation rate: An • Temperature of photosynthesis – 19–26°C • Mean error ~28% – Extant plants – Royer et al.
    [Show full text]
  • A Health Risk Assessment of Lead and Other Metals in Pharmaceutical
    International Journal of Environmental Research and Public Health Article A Health Risk Assessment of Lead and Other Metals in Pharmaceutical Herbal Products and Dietary Supplements Containing Ginkgo biloba in the Mexico City Metropolitan Area Patricia Rojas 1,* , Elizabeth Ruiz-Sánchez 1, Camilo Ríos 2, Ángel Ruiz-Chow 3 and Aldo A. Reséndiz-Albor 4 1 Laboratory of Neurotoxicology, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, SS, Av. Insurgentes sur No. 3877, Mexico City 14269, Mexico; [email protected] 2 Department of Neurochemistry, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, SS, Av. Insurgentes sur No. 3877, Mexico City 14269, Mexico; [email protected] 3 Neuropsychiatry Unit, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, SS, Av. Insurgentes sur No. 3877, Mexico City 14269, Mexico; [email protected] 4 Mucosal Immunity Laboratory, Research and Graduate Section, Instituto Politécnico Nacional, Superior School of Medicine, Plan de San Luis Esq. Salvador Díaz Mirón s/n, C.P., Mexico City 11340, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +52-55-5424-0808 Abstract: The use of the medicinal plant Ginkgo biloba has increased worldwide. However, G. biloba is capable of assimilating both essential and toxic metals, and the ingestion of contaminated products can cause damage to health. The aim of this study was to investigate the safety of manganese (Mn), copper (Cu), lead (Pb), arsenic (As), and cadmium (Cd) in 26 items containing Ginkgo biloba Citation: Rojas, P.; Ruiz-Sánchez, E.; (pharmaceutical herbal products, dietary supplements, and traditional herbal remedies) purchased in Ríos, C.; Ruiz-Chow, Á.; the metropolitan area of Mexico City.
    [Show full text]
  • Cardiovascular System Action Categories & Herbs
    CARDIOVASCULAR SYSTEM ACTION CATEGORIES & HERBS ADAPTOGENIC: Nourishes/protects/modulates/normalizes various metabolic processes, increases the body’s resistance to a wide variety of physical, chemical and biological stresses. Treats whole body more than individual systems. Echium vulgare (Viper’s bugloss, Boraginaceae, Borage family) Soothing mucilage, good for depleted adrenals, damaged lungs. Eleutherococcus senticosus (Siberian Ginseng, Araliaceae, Ginseng family) This one will not raise B.P., can use long term, good for building stamina against stress. Ganoderma spp. (Ganoderma spp. Ganodermataceae) Powerful/nourishing immune stimulant, allows lungs to absorb more oxygen, which in turn is positive for cardiovascular system Glycyrrhiza glabra (Licorice, Fabaceae, Pea/Legume Family) Having a steroid component, licorice is an all-body anti-inflammatory, has a regulatory action over estrogen activity, enhances immune activity. Only concentrated solid extract will raise blood pressure. Tea or tincture will not. Gynostemma pentaphyllum (Gynostemma, Cucurbitaceae, Gourd Family) Contains several ginsenosides (polysaccharides) that are identical to those found in ginseng, good for blood sugar and stress. By maintaining low insulin levels and moderate insulin sensitivity, we can reduce cholesterol buildup. Panax quinquefolius (North American Ginseng, Araliaceae, Ginseng Family) From “Panacea” meaning cure-all. Contains Saponin glycosides, milder action than asian ginsengs, cooling as opposed to warming. Regulates blood sugar and cholesterol, adrenal glands. Saponin Glycoside (Saponins)/Triterpenes - compounds that have a chemical structure similar to endogenous steroidal compounds - plants containing these compounds provide the body with materials to modulate/regulate hormonal and endocrine/immune system processes - aids the body’s own ‘government’ to adapt or adjust to a variety of biological, physical or chemical stresses Withania somnifera (Withania, Solanaceae, Nightshade Family) Relaxing, adrenal support.
    [Show full text]
  • Deer Management in the Garden
    DEER MANAGEMENT IN THE GARDEN Deer can be a nuisance at times to gardeners in the Washington D.C. metropolitan area. As development alters habitats and eliminates predators, deer have adapted to suburban life and their population has grown, increasing the demand and competition for food. In some areas, landscape plants have become one of their food sources. When food is limited, deer may eat plants they normally don’t touch to satisfy their hunger. Although no plant is deer proof, you can make your garden less inviting to wildlife. Below are several strategies, including a list of plants that have been shown that deer dislike in order to discourage these uninvited guests. Deer will continue to adapt to their changing environment, and you’ll need to continue trying different control strategies. But with just a little planning, you can have a beautiful garden and co-exist with deer. METHODS OF DEER MANAGEMENT EXCLUSION: A physical barrier is the most effective method to keep deer from foraging. A 7’ tall fence is required to be effective. Deer fencing should be within easy view of the deer and should lean out towards the deer, away from your garden. A fine mesh is used for the black plastic fencing, which does not detract from the beauty of your landscape. If fencing is not practical, drape deer netting over vulnerable plants. Anchor or fasten deer netting to the ground to prevent the deer from pulling it off of the plants. REPELLENTS: Deer repellents work either through taste, scent, or a combination of both.
    [Show full text]
  • Deer-Resistant Landscape Plants This List of Deer-Resistant Landscape Plants Was Compiled from a Variety of Sources
    Deer-Resistant Landscape Plants This list of deer-resistant landscape plants was compiled from a variety of sources. The definition of a deer-resistant plant is one that may be occasionally browsed, but not devoured. If deer are hungry enough or there’s a limited amount of food available, they will eat almost anything. Perennials, Herbs & Bulbs Achillea Yarrow Lavandula augustifolia Lavender Adiatum pedatum Maiden Hair Fern Liatris Gayfeather Agastache cana Agastache Lychnis chalcedonica Maltese Cross Ajuga reptans Bugleweed Matteuccia Ostrich Fern Alchemilla Lady’s Mantle Mentha Mint Allium spp. Flowering Onion Miscanthus Silver Grass Arabis Rock Cress Myosotis sylvatica Forget-Me-Not Armeria maritime Sea Thrift Narcissus Daffodils & Narcissus Artemisia Wormwood Nepeta Catmint Asarum europaeum Wild Ginger Oenothera Evening Primrose Asclepias tuberosa Butterfly Weed Paeonia Peony Bergenia Bergenia Papaver orientale Oriental Poppy Calamagrostis Reed Grass Pennisetum orientale Oriental Fountain Grass Cerastium Snow-In-Summer Perovskia Russian Sage Cimcifuga Bugbane Physostegia Obedient Plant Convallaria Lily-of-the-Valley Platycodon Balloon Flower Corydalis lutea Gold Bleeding Heart Polygonatum Solomon’s Seal Dicentra Bleeding Heart Pulmonaria Lungwort Digitalis Foxglove Rudbeckia Black Eyed Susan Echinops Globe Thistle Saponaria Soapwort Festuca ovinia Blue Fescue Salvia Sage Galanthus nivalis Snowdrop Sedum Stonecrop Helleborus Hellebores Solidago Goldenrod Iris sibirica & ensata Japanese & Siberian Iris Stachys byzantina Lamb’s Ear Lamium
    [Show full text]
  • Ginkgo Biloba Maidenhair Tree1 Edward F
    Fact Sheet ST-273 November 1993 Ginkgo biloba Maidenhair Tree1 Edward F. Gilman and Dennis G. Watson2 INTRODUCTION Ginkgo is practically pest-free, resistant to storm damage, and casts light to moderate shade (Fig. 1). Young trees are often very open but they fill in to form a denser canopy. It makes a durable street tree where there is enough overhead space to accommodate the large size. The shape is often irregular with a large branch or two seemingly forming its own tree on the trunk. But this does not detract from its usefulness as a city tree unless the tree will be growing in a restricted overhead space. If this is the case, select from the narrow upright cultivars such as ‘Princeton Sentry’ and ‘Fairmont’. Ginkgo tolerates most soil, including compacted, and alkaline, and grows slowly to 75 feet or more tall. The tree is easily transplanted and has a vivid yellow fall color which is second to none in brilliance, even in the south. However, leaves fall quickly and the fall color show is short. GENERAL INFORMATION Scientific name: Ginkgo biloba Pronunciation: GINK-go bye-LOE-buh Common name(s): Maidenhair Tree, Ginkgo Family: Ginkgoaceae Figure 1. Middle-aged Maidenhair Tree. USDA hardiness zones: 3 through 8A (Fig. 2) Origin: not native to North America Uses: Bonsai; wide tree lawns (>6 feet wide); drought are common medium-sized tree lawns (4-6 feet wide); Availability: generally available in many areas within recommended for buffer strips around parking lots or its hardiness range for median strip plantings in the highway; specimen; sidewalk cutout (tree pit); residential street tree; tree has been successfully grown in urban areas where air pollution, poor drainage, compacted soil, and/or 1.
    [Show full text]
  • Urban Trees As Social Triggers: the Case of the Ginkgo Biloba Specimen in Tallinn, Estonia
    234 Riin Magnus, Heldur Sander Sign Systems Studies 47(1/2), 2019, 234–256 Urban trees as social triggers: The case of the Ginkgo biloba specimen in Tallinn, Estonia Riin Magnus Department of Semiotics University of Tartu Jakobi 2, 51005 Tartu, Estonia e-mail: [email protected] Heldur Sander Mahtra 9–121 20038 Tallinn, Estonia e-mail: [email protected] Abstract: Urban trees are considered to be essential and integral to urban environ- ments, to contribute to the biodiversity of cities as well as to the well-being of their inhabitants. In addition, urban trees may also serve as living memorials, helping to remember major social eruptions and to cement continuity with the past, but also as social disruptors that can induce clashes between different ideals of culture. In this paper, we focus on a specific case, a Ginkgo biloba specimen growing at Süda Street in the centre of Tallinn, in order to demonstrate how the shifts in the meaning attributed to a non-human organism can shape cultural memory and underlie social confrontations. Integrating an ecosemiotic approach to human-non-human interactions with Juri Lotman’s approach to cultural memory and cultural space, we point out how non-human organisms can delimit cultural space at different times and how the ideal of culture is shaped by different ways of incorporating or other species in the human cultural ideal or excluding them from it. Keywords: urban greenery; cultural memory; human-plant interactions; Ginkgo biloba; cultural space Riin Magnus, Heldur Sander In the environmental humanities’ endeavour to highlight the role of other species in the shaping of human culture and environments, animals have played the lead role for a long time.
    [Show full text]
  • Phytochemistry and Pharmacological Activities of Clitoria Ternatea
    International Journal of Natural and Social Sciences, 2017, 4(1): 01-10 ISSN: 2313-4461 Phytochemistry and pharmacological activities of Clitoria ternatea Md. Bakhtiar Lijon1*, Nigar Sultana Meghla2, Eleas Jahedi1, Md. Abdur Rahman1, Ismail Hossain1 1Modern Food Testing Laboratory, Chittagong City Corporation, Chittagong, Bangladesh 2Department of Microbiology, Jessore University of Science and Technology, Bangladesh ARTICLE INFO ABSTRACT Article history Clitoria ternatea is a twining herbal medicinal plant mostly found in Asia. Various constituents are found in different parts of the plant. The plant Clitotia ternatea is traditionally used for Accepted 03 Jan 2017 food coloring, stress, infertility and gonorrhea. The plant has been widely used in Ayurveda. Online release 09 Jan 2017 Pharmacologically it is an anxiolytic, anti inflammatory, analgesic, anti-microbial and anti carcinogenic. It is also Cns Depressant, nephroprotective and has anti-Stress activities. Keyword Generally Clitoria ternatea has larvicidal activities, proteolytic activities, antihelmintic activities, antihyperglycenmic activity, diuretic activity, antioxidant activity, antihistaminic Clitoria ternatea activity and treat goiter. As Clitoria ternatea plant has great usefulness it should be cultivated, Morphology conserve and further research should be conducted for human well being. This article will Phytochemistry focus on pharmaco-chemical characterization of Clitoria ternatea with the traditional and Pharmacological activity pharmacological uses of Clitoria ternatea. *Corresponding Author Md. Bakhtiar Lijon [email protected] INTRODUCTION function (Ramaswamy et al., 2011). It is also used in the treatment of chronic bronchitis, dropsy, Plants and herbs have been an important goiter, leprosy, mucous disorders, sight weakness, contributor to the quality of human life for skin diseases, sore throat and tumors (Ramaswamy thousands of years.
    [Show full text]