Pisces (Zoology) - Accessscience from Mcgraw-Hill Education

Total Page:16

File Type:pdf, Size:1020Kb

Pisces (Zoology) - Accessscience from Mcgraw-Hill Education Pisces (zoology) - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/pisces-zoology/519700 Article by: Bailey, Reeve M. Formerly, Division of Fishes, Museum of Zoology, University of Michigan, Ann Arbor, Michigan. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.519700 (http://dx.doi.org/10.1036/1097-8542.519700) Content Number of recent species Economics Additional Readings Ecology A term that embraces all fishes and fishlike vertebrates. In early zoological classifications fishes, like mammals, birds, reptiles, and amphibians, were ranked as a class of the vertebrates. As knowledge of fishes increased, it became apparent that, despite their common possession of gills and fins and their dependence on an aquatic environment, not all fishes were closely related. At least five groups of fishes with modern descendants were already established before the tetrapods appeared. Not only are these groups older, but some are decidedly more divergent structurally than are the four classes of tetrapods. For these reasons several classes of fishes are now recognized. The number of classes varies; one reputable but extreme classification recognizes 11 classes of fishes. The primary cleavage in vertebrate classification is that separating the jawless fishes, or Agnatha, from those vertebrates with jaws, the Gnathostomata. After recognition of this split, the name Pisces was commonly restricted to the jawed fishes. When these in turn were divided into two or more classes, Pisces was further restricted by some authorities to the bony fishes. Another scheme involves assignment of class names to each of the major constituent groups of jawed fishes, and use of Pisces as a superclass name. In view of the confusion, it seems best to revert to early practice and to employ Pisces as a group name of convenience to embrace all classes of fishlike vertebrates, from jawless fishes to bony fishes. In this sense it has no actual taxonomic status because it cuts across natural classification, dividing the gnathostomes and grouping part of them with the agnaths. See also: Gnathostomata (/content/gnathostomata/293800); Jawless vertebrates (/content /jawless-vertebrates/014900) The Pisces include four well-defined groups that merit recognition as classes: the Agnatha or jawless fishes, the most primitive; the Placodermi or armored fishes, known only as Paleozoic fossils; the Chondrichthyes or cartilaginous fishes; and the Osteichthyes or bony fishes. Future research may demonstrate the need for further division, but this is most likely to involve Paleozoic groups. See also: Chondrichthyes (/content/chondrichthyes/133100); Osteichthyes (/content /osteichthyes/478500); Placodermi (/content/placodermi/520900) Number of recent species Present fish classification is not sufficiently precise to permit an accurate tabulation of the number of living species. New kinds are constantly being discovered, others are being synonymized as the result of new research, and the literature is scattered. Nevertheless, estimates by competent ichthyologists are so diverse, ranging from 18,000 to 40,000, that an effort is here made to arrive at a reasonably acceptable approximation. There is indication that most previous estimates are too high. 1 of 4 8/12/2015 10:19 AM Pisces (zoology) - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/pisces-zoology/519700 Counts for Recent groups and species include Agnatha, 2 families, about 11 genera, and approximately 45 species; Chondrichthyes, 31 families, some 132 genera, and roughly 575 species; and Osteichthyes, 32 orders, about 357 families, 3570 genera, and about 17,600 species. This last figure broken down gives about 5100 species in 29 orders, nearly 2000 species in the Siluriformes, 3000 species in the Cypriniformes, and 7500 species in the Perciformes. It is to be emphasized that the classification of many groups, especially those in the deep seas and in the tropics, is imperfectly known. Thus, further study will permit refinement of this enumeration of just under 18,300 recognized species of Recent fishes. Ecology Fishes live in almost all permanent waters to which they have been able to gain access. In general they have evolved a body conformation and specialized features that adapt them harmoniously to the world about them. Inhabitants of mountain torrents may have peculiar attachment organs; those living in Antarctic waters at a temperature below freezing have made needed physiological adjustments; fishes of the deep sea commonly carry their own light source, and the female anglerfish is assured a mate by the parasitism of the male on her body. In the East Indies some fishes skip with ease over mud flats, and others undertake nightly forays on land. Some fishes mature at extremely small size. A Philippine goby, Mistichthys, reaches a length of only 0.5 m (1.25 cm) and is commercially important as a food fish although it takes 31,500 fish to make 1 lb (70,000 fish to make 1 kg); and a Samoan fish, Schindleria, attains a weight of only 6 mg. At the other extreme, the whale shark is reputed to reach a length of 60 ft (20 m), and a 38-ft (13 m) individual weighed more than 13 tons (11.7 metric tons). Adaptive radiation Because their bodies are supported by water, fishes have been afforded the luxury of diversification in body form not possible for terrestrial animals. A deep, pancake-thin body is not uncommon, and an eellike form has been independently developed in many phyletic lines. Trunkfishes are enclosed in a boxlike casque, and some deep-sea fishes have eyes at the tips of elongate stalks. Long, trailing fins are frequent; sargassum fishes develop appendages that serve as holdfasts and for concealment. Food habits Most fishes are more or less carnivorous and predatory, but there is wide diversity in food habits. Many fishes have numerous slender gill rakers with which they strain microorganisms from the water; others have massive teeth and strongly muscled jaws to aid in crushing mollusks or crustaceans. Browsers, nibblers, and grazers employ specially adapted teeth and jaws to scrape vegetation or small attached animals. Some wrasses pluck parasites from larger fishes, and lampreys parasitize other fishes. Reproductive habits Reproductive habits are no less varied than feeding behavior. Most fishes are oviparous and scatter their eggs, but nest building and parental care assume a broad spectrum—from a prepared pile of pebbles, through a grassy spherical retreat, to oral incubation or development of a marsupial pouch on the underside of the male pipefish. Viviparity and ovoviviparity have originated along independent lines. Enormously complicated modifications of the anal fin have been evolved to effect insemination of some species in which the young are born alive. Economics Fishes play an important role in the lives of most people. Fishing is a way of life in most primitive cultures, and ranks high among recreational activities in highly civilized peoples. Maintenance and care of home aquarium fishes provide an avocation for probably millions of people. An occasional swimmer is killed by sharks; more people die from ciguatera contracted from eating poisonous fish flesh; and venomous fishes take a limited toll in human life and suffering. See also: Chordata (/content 2 of 4 8/12/2015 10:19 AM Pisces (zoology) - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/pisces-zoology/519700 /chordata/133700); Vertebrata (/content/vertebrata/730900) Reeve M. Bailey Additional Readings E. V. Balian et al. (eds.), Freshwater Animal Diversity Assessment, Springer, Dordrecht, Netherlands, 2008 M. Bradford, F. J. Kroon, and D. J. Russell, The biology and management of Tilapia mariae (Pisces, Cichlidae) as a native and invasive species: A review, Mar. Freshwater Res., 62(8):902–917, 2011 DOI: 10.1071/MF10289 (http://dx.doi.org/10.1071 /MF10289) D. L. Felder, Gulf of Mexico Origin, Waters, and Biota: Biodiversity, Texas A&M University Press, College Station, TX, 2009 D. J. Russell, P. A. Thuesen, and F. E. Thomson, A review of the biology, ecology, distribution and control of Mozambique tilapia, Oreochromis mossambicus (Peters 1852) (Pisces, Cichlidae) with particular emphasis on invasive Australian populations, Rev. Fish Biol. Fisher., 22(3):533–554, 2012 DOI: 10.1007/s11160-011-9249-z (http://dx.doi.org/10.1007 /s11160-011-9249-z) 3 of 4 8/12/2015 10:19 AM .
Recommended publications
  • FISHING for DUNKLEOSTEUS You’Re Definitely Gonna Need a Bigger Boat by Mark Peter
    OOhhiioo GGeeoollooggyy EEXXTTRRAA July 31, 2019 FISHING FOR DUNKLEOSTEUS You’re definitely gonna need a bigger boat by Mark Peter At an estimated maximum length of 6 to 8.8 meters (20–29 sediments that eroded from the Acadian Mountains, combined feet), Dunkleosteus terrelli (Fig. 1) would have been a match for with abundant organic matter from newly evolved land plants even the Hollywood-sized great white shark from the and marine plankton, settled in the basin as dark organic movie Jaws. Surfers, scuba divers, and swimmers can relax, muds. Over millions of years, accumulation of additional however, because Dunkleosteus has been extinct for nearly 360 overlying sediments compacted the muds into black shale rock. million years. Dunkleosteus was a placoderm, a type of armored The rocks that formed from the Late Devonian seafloor fish, that lived during the Late Devonian Period from about sediments (along with fossils of Dunkleosteus) arrived at their 375–359 million years ago. Fossil remains of the large present location of 41 degrees north latitude after several species Dunkleosteus terrelli are present in the Cleveland hundred million years of slow plate tectonic movement as the Member of the Ohio Shale, which contains rocks that are North American Plate moved northward. approximately 360–359 million years old. Figure 1. A reconstruction of a fully-grown Dunkleosteus terrelli, assuming a length of 29 feet, with angler for scale. Modified from illustration by Hugo Salais of Metazoa Studio. Dunkleosteus cruised Late Devonian seas and oceans as an Figure 2. Paleogeographic reconstruction of eastern North America during apex predator, much like the great white shark of today.
    [Show full text]
  • Pacific Plate Biogeography, with Special Reference to Shorefishes
    Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • 'Placoderm' (Arthrodira)
    Jobbins et al. Swiss J Palaeontol (2021) 140:2 https://doi.org/10.1186/s13358-020-00212-w Swiss Journal of Palaeontology RESEARCH ARTICLE Open Access A large Middle Devonian eubrachythoracid ‘placoderm’ (Arthrodira) jaw from northern Gondwana Melina Jobbins1* , Martin Rücklin2, Thodoris Argyriou3 and Christian Klug1 Abstract For the understanding of the evolution of jawed vertebrates and jaws and teeth, ‘placoderms’ are crucial as they exhibit an impressive morphological disparity associated with the early stages of this process. The Devonian of Morocco is famous for its rich occurrences of arthrodire ‘placoderms’. While Late Devonian strata are rich in arthrodire remains, they are less common in older strata. Here, we describe a large tooth-bearing jaw element of Leptodontich- thys ziregensis gen. et sp. nov., an eubrachythoracid arthrodire from the Middle Devonian of Morocco. This species is based on a large posterior superognathal with a strong dentition. The jawbone displays features considered syna- pomorphies of Late Devonian eubrachythoracid arthrodires, with one posterior and one lateral row of conical teeth oriented postero-lingually. μCT-images reveal internal structures including pulp cavities and dentinous tissues. The posterior orientation of the teeth and the traces of a putative occlusal contact on the lingual side of the bone imply that these teeth were hardly used for feeding. Similar to Compagopiscis and Plourdosteus, functional teeth were pos- sibly present during an earlier developmental stage and have been worn entirely. The morphological features of the jaw element suggest a close relationship with plourdosteids. Its size implies that the animal was rather large. Keywords: Arthrodira, Dentition, Food web, Givetian, Maïder basin, Palaeoecology Introduction important to reconstruct character evolution in early ‘Placoderms’ are considered as a paraphyletic grade vertebrates.
    [Show full text]
  • A Dissertation Entitled Evolution, Systematics
    A Dissertation Entitled Evolution, systematics, and phylogeography of Ponto-Caspian gobies (Benthophilinae: Gobiidae: Teleostei) By Matthew E. Neilson Submitted as partial fulfillment of the requirements for The Doctor of Philosophy Degree in Biology (Ecology) ____________________________________ Adviser: Dr. Carol A. Stepien ____________________________________ Committee Member: Dr. Christine M. Mayer ____________________________________ Committee Member: Dr. Elliot J. Tramer ____________________________________ Committee Member: Dr. David J. Jude ____________________________________ Committee Member: Dr. Juan L. Bouzat ____________________________________ College of Graduate Studies The University of Toledo December 2009 Copyright © 2009 This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. _______________________________________________________________________ An Abstract of Evolution, systematics, and phylogeography of Ponto-Caspian gobies (Benthophilinae: Gobiidae: Teleostei) Matthew E. Neilson Submitted as partial fulfillment of the requirements for The Doctor of Philosophy Degree in Biology (Ecology) The University of Toledo December 2009 The study of biodiversity, at multiple hierarchical levels, provides insight into the evolutionary history of taxa and provides a framework for understanding patterns in ecology. This is especially poignant in invasion biology, where the prevalence of invasiveness in certain taxonomic groups could
    [Show full text]
  • Shortest Recorded Vertebrate Lifespan Found in a Coral Reef Fish
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Current Biology Vol 15 No 8 R288 monkeyflowers and other taxa are just 35 days, of which at least 10 helping to overcome this gap. Correspondence are taken to reach sexual maturity The ‘bottom up’ or genetic (Figure 1B). This provides the approach to studying speciation species with a remarkable three- has hunted down genes Shortest recorded week window in which to responsible for premating and reproduce and contribute to the postmating isolation, and then vertebrate next generation. shown that the gene sequences lifespan found in a Already constrained by time, the exhibit signatures of recent lifetime fecundity of E. sigillata is selection. But this approach has coral reef fish further restricted by small adult told us little about the nature of body sizes of 11–20 mm, limiting that selection. Is selection the number of eggs a female can divergent or has divergence Martial Depczynski and produce. Yet pygmy gobies are an occurred under uniform selection? David R. Bellwood incredibly successful group, Was selection in response to numbering some 70 species with environmental differences? Was it Extreme short lifespans are of a geographic distribution natural or sexual selection? interest because they mark encompassing reefs across the Finally, we still know little about current evolutionary boundaries Indian and Pacific Oceans [1]. To how mate preferences evolve and biological limits within which investigate lifetime fecundity, we within and between populations life’s essential tasks must be bred pygmy gobies in captivity. during the process of speciation.
    [Show full text]
  • Fishes Scales & Tails Scale Types 1
    Phylum Chordata SUBPHYLUM VERTEBRATA Metameric chordates Linear series of cartilaginous or boney support (vertebrae) surrounding or replacing the notochord Expanded anterior portion of nervous system THE FISHES SCALES & TAILS SCALE TYPES 1. COSMOID (most primitive) First found on ostracaderm agnathans, thick & boney - composed of: Ganoine (enamel outer layer) Cosmine (thick under layer) Spongy bone Lamellar bone Perhaps selected for protection against eurypterids, but decreased flexibility 2. GANOID (primitive, still found on some living fish like gar) 3. PLACOID (old scale type found on the chondrichthyes) Dentine, tooth-like 4. CYCLOID (more recent scale type, found in modern osteichthyes) 5. CTENOID (most modern scale type, found in modern osteichthyes) TAILS HETEROCERCAL (primitive, still found on chondrichthyes) ABBREVIATED HETEROCERCAL (found on some primitive living fish like gar) DIPHYCERCAL (primitive, found on sarcopterygii) HOMOCERCAL (most modern, found on most modern osteichthyes) Agnatha (class) [connect the taxa] Cyclostomata (order) Placodermi Acanthodii (class) (class) Chondrichthyes (class) Osteichthyes (class) Actinopterygii (subclass) Sarcopterygii (subclass) Dipnoi (order) Crossopterygii (order) Ripidistia (suborder) Coelacanthiformes (suborder) Chondrostei (infra class) Holostei (infra class) Teleostei (infra class) CLASS AGNATHA ("without jaws") Most primitive - first fossils in Ordovician Bottom feeders, dorsal/ventral flattened Cosmoid scales (Ostracoderms) Pair of eyes + pineal eye - present in a few living fish and reptiles - regulates circadian rhythms Nine - seven gill pouches No paired appendages, medial nosril ORDER CYCLOSTOMATA (60 spp) Last living representatives - lampreys & hagfish Notochord not replaced by vertebrae Cartilaginous cranium, scaleless body Sea lamprey predaceous - horny teeth in buccal cavity & on tongue - secretes anti-coaggulant Lateral Line System No stomach or spleen 5 - 7 year life span - adults move into freshwater streams, spawn, & die.
    [Show full text]
  • Class Wars: Chondrichthyes and Osteichthyes Dominance in Chesapeake Bay, 2002-2012
    Class Wars: Chondrichthyes and Osteichthyes dominance in Chesapeake Bay, 2002-2012. 01 July 2013 Introduction The objective of this analysis was to demonstrate a possible changing relationship between two Classes of fishes, Osteichthyes (the bony fishes) and Chondrichthyes (the cartilaginous fishes) in Chesapeake Bay based on 11 years of monitoring. If any changes between the two Classes appeared to be significant, either statistically or anecdotally, the data were explored further in an attempt to explain the variation. The Class Osteichthyes is characterized by having a skeleton made of bone and is comprised of the majority of fish species worldwide, while the Chondrichthyes skeleton is made of cartilage and is represented by the sharks, skates, and rays (the elasmobranch fishes) and chimaeras1. Many shark species are generally categorized as apex predators, while skates and rays and some smaller sharks can be placed into the mesopredator functional group (Myers et al., 2007). By definition, mesopredators prey upon a significant array of lower trophic groups, but also serve as the prey base for apex predators. Global demand for shark and consequential shark fishing mortality, estimated at 97 million sharks in 2010 (Worm et al., 2013), is hypothesized to have contributed to the decline of these apex predators in recent years (Baum et al., 2003 and Fowler et al., 2005), which in turn is suggested to have had a cascading effect on lower trophic levels—an increase in mesopredators and subsequent decrease in the prey base (Myers et al., 2007). According to 10 years of trawl survey monitoring of Chesapeake Bay, fish species composition of catches has shown a marked change over the years (Buchheister et al., 2013).
    [Show full text]
  • Unmasking Evolution
    UNMASKING EVOLUTION by Laurence D Smart BScAgr, Dip Ed, Grad Dip Ed The Resource Book REPRODUCIBLE BLACK-LINE Copy freely MASTERS August 1995 May 1996 July 2000 September 2000 -1- FORWARD The theory of evolution is believed to be an incontrovertible fact by the general public and most of the scientific community, and is taught as such by most educators. This should not be the case. The theory of evolution is a valid scientific hypothesis, but the facts are that it has not been proved beyond a shadow of a doubt. To be proven valid, the theory of evolution must undergo the scrutiny (rigours) of the scientific method. This, however, cannot be accomplished because the millions of years required for experimental testing are beyond the reasonable limit of human observation. The current ‘evidence’ for the theory of evolution would not stand up in a court of law while undergoing judicial scrutiny. There would be indications that biased interpretation of data had occurred, as alternative theories could be presented to account for observed and tested facts. The theory of evolution needs its facade of scientific immutability lifted, and exposed for what it really is - an unproven scientific theory. My university training and experience as a research scientist, led me to do an analysis of the scientific data on evolution. This set of facts and quotes is my expose, and it is a step in the direction of lifting evolution’s facade. (15/4/95) INTRODUCTION I have been teaching science for over 25 years, but I have had a number of problems with the theory of evolution.
    [Show full text]
  • Systematic Morphology of Fishes in the Early 21St Century
    Copeia 103, No. 4, 2015, 858–873 When Tradition Meets Technology: Systematic Morphology of Fishes in the Early 21st Century Eric J. Hilton1, Nalani K. Schnell2, and Peter Konstantinidis1 Many of the primary groups of fishes currently recognized have been established through an iterative process of anatomical study and comparison of fishes that has spanned a time period approaching 500 years. In this paper we give a brief history of the systematic morphology of fishes, focusing on some of the individuals and their works from which we derive our own inspiration. We further discuss what is possible at this point in history in the anatomical study of fishes and speculate on the future of morphology used in the systematics of fishes. Beyond the collection of facts about the anatomy of fishes, morphology remains extremely relevant in the age of molecular data for at least three broad reasons: 1) new techniques for the preparation of specimens allow new data sources to be broadly compared; 2) past morphological analyses, as well as new ideas about interrelationships of fishes (based on both morphological and molecular data) provide rich sources of hypotheses to test with new morphological investigations; and 3) the use of morphological data is not limited to understanding phylogeny and evolution of fishes, but rather is of broad utility to understanding the general biology (including phenotypic adaptation, evolution, ecology, and conservation biology) of fishes. Although in some ways morphology struggles to compete with the lure of molecular data for systematic research, we see the anatomical study of fishes entering into a new and exciting phase of its history because of recent technological and methodological innovations.
    [Show full text]
  • Patterns of Evolution in Gobies (Teleostei: Gobiidae): a Multi-Scale Phylogenetic Investigation
    PATTERNS OF EVOLUTION IN GOBIES (TELEOSTEI: GOBIIDAE): A MULTI-SCALE PHYLOGENETIC INVESTIGATION A Dissertation by LUKE MICHAEL TORNABENE BS, Hofstra University, 2007 MS, Texas A&M University-Corpus Christi, 2010 Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in MARINE BIOLOGY Texas A&M University-Corpus Christi Corpus Christi, Texas December 2014 © Luke Michael Tornabene All Rights Reserved December 2014 PATTERNS OF EVOLUTION IN GOBIES (TELEOSTEI: GOBIIDAE): A MULTI-SCALE PHYLOGENETIC INVESTIGATION A Dissertation by LUKE MICHAEL TORNABENE This dissertation meets the standards for scope and quality of Texas A&M University-Corpus Christi and is hereby approved. Frank L. Pezold, PhD Chris Bird, PhD Chair Committee Member Kevin W. Conway, PhD James D. Hogan, PhD Committee Member Committee Member Lea-Der Chen, PhD Graduate Faculty Representative December 2014 ABSTRACT The family of fishes commonly known as gobies (Teleostei: Gobiidae) is one of the most diverse lineages of vertebrates in the world. With more than 1700 species of gobies spread among more than 200 genera, gobies are the most species-rich family of marine fishes. Gobies can be found in nearly every aquatic habitat on earth, and are often the most diverse and numerically abundant fishes in tropical and subtropical habitats, especially coral reefs. Their remarkable taxonomic, morphological and ecological diversity make them an ideal model group for studying the processes driving taxonomic and phenotypic diversification in aquatic vertebrates. Unfortunately the phylogenetic relationships of many groups of gobies are poorly resolved, obscuring our understanding of the evolution of their ecological diversity. This dissertation is a multi-scale phylogenetic study that aims to clarify phylogenetic relationships across the Gobiidae and demonstrate the utility of this family for studies of macroevolution and speciation at multiple evolutionary timescales.
    [Show full text]