Axial Endoskeleton of a Bony Fish

Total Page:16

File Type:pdf, Size:1020Kb

Axial Endoskeleton of a Bony Fish Fish Form & Funcon Heyer Axial endoskeleton of a bony fish Fish Axial skeleton: Cranium & vertebral column • Fishes — aquatic vertebrates; axial skeleton only – Closed, single-circuit circulatory system • Class- Aganatha — jawless fishes • Class- Chondrichthyes — cartilaginous fishes Vertebra • Class- Osteichthyes — bony fishes Figure 3.02 Locomoon with an axial skeleton Fishes Class- Aganatha — jawless fishes • ~120 extant species (lampreys; hagfish) • Inner layer of mesoderm bloc becomes skeletal • Cartilaginous skeleton vertebrae • Jawless, suctorial mouth with many teeth • Outer layer becomes & protrusible toothed tongue myomere (muscle band) • Medial fin fold; No lateral (paired) fins • Proximal edge of myomere aaches to vertebrae • Distal edge of myomere projects posterio-laterally to insert into connecve ssue of skin • ... Contracon of muscle → lateral flexing body Fishes Fishes Class- Chondrichthyes — cartilaginous fishes Class- Chondrichthyes — cartilaginous fishes • Cartilaginous skeleton, but unique bone tissue present • Cartilaginous skeleton, but unique bone tissue present • Semi-rigid paired lateral fins connected across ventral body wall Subclass- Holocephali — ~ 40 spp. (chimeras) Subclass- Elasmobranchii — ~1,000 spp. (sharks; rays) • 5–7 gill slits [elasmo-branch: “strap gills”] • Protrusible upper jaw not fused to skull • Thick skin with dermal denticles Fins supprted by cartilagenous rods 1 Fish Form & Funcon Heyer Fishes Fishes Class- Chondrichthyes — cartilaginous fishes Class- Chondrichthyes — cartilaginous fishes • Cartilaginous skeleton, but unique bone tissue present Subclass- Elasmobranchii — ~1,000 spp. (sharks; rays) • Semi-rigid paired lateral fins connected across ventral body wall • Protrusible upper jaw not fused to skull CAT scan of a great white shark Lateral fins 1. Jaw opens (pectorals & pelvics) 2. Hyoid arch located ventrally springs jaw forward 3. Jaw protrudes Pelvic fins located near vent & closes 4. Hyoid & jaw Modified for copulatory organs (claspers) in males retract Fishes Class- Chondrichthyes — cartilaginous fishes Subclass- Elasmobranchii — ~1,000 spp. (sharks; rays) • Thick skin with dermal denticles Dermis packed with collagen fibers • Tough body wall • Semirigid aachement for swim muscles Goblin shark 1. Jaw opens 2. Hyoid arch springs jaw Dermal dencles (“skin teeth”) forward 3. Jaw protrudes • Armor & closes • Enlarge to make spine or sng 4. Hyoid & jaw • Streamlining retract in 1.4 seconds! • Anbacterial Fishes Fishes Class- Chondrichthyes Class- Osteichthyes — bony fishes Subclass- Elasmobranchii Subclass- Sarcopterygii — lobe-fin fishes • Jaws with oral denticles • 8 extant spp. (2 coelacanths + 6 lungfishes) • Dermal, not fused to jaw • Multiple rows Subclass- Actinopterigii — ray-fin fishes • Continually shed and replaced • ~30,000 extant spp. (more than all other vertebrates combined) Dynamic Lobe-fin fishes Ray-fin fishes membranous fin supported by flexible, segmented Fleshy fin rays with with bony individual supports acve control Fin margin supported by rigid rays 2 Fish Form & Funcon Heyer Ray fins can be raised and lowered; contorted into variable shapes; Fishes or even undulated or flapped like wings Class- Osteichthyes — bony fishes Subclass- Actinopterigii — ray-fin fishes • ~30,000 extant spp. (more than all other vertebrates combined) Swim: Thrust >> Drag • Body / Caudal fin propulsion • Other fin propulsion Fish Morphology Fish morphology tells us how fish body structures meet the specific demands of their habitats. It includes: • body forms • jaw shapes • fin shapes • tail shapes • coloration 3 Fish Form & Funcon Heyer Fish Form & Funcon Fish Form & Funcon 1. Perciform: “perch form” — generalist 2. Fusiform: bullet-shape; extremely streamlined; low turbulence; efficient long-distance cruiser; not so maneuverable Fish Form & Funcon Fish Forms & Funcon 4. Compressiform: laterally compressed; oval profile 3. Sagiform: “arrow form” — elongated, cylindrical body; — slow but highly maneuverable reef fish broad tail — fast acceleraon, but high drag — burst predator Fish Forms & Funcon Fish Forms & Funcon 6. Taeniform: “ribbon form” — (anguilliform) elongated, laterally 5. Depressiform: dorso-ventrally flaened; usually with large compressed body; usually with connuous fin fold and pectorals & upturned mouth — boom dwellers reduced/absent paired fins i. Crevice dwellers ii. Low energy, slow undulang swimming in low food systems 4 .
Recommended publications
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Fishes Scales & Tails Scale Types 1
    Phylum Chordata SUBPHYLUM VERTEBRATA Metameric chordates Linear series of cartilaginous or boney support (vertebrae) surrounding or replacing the notochord Expanded anterior portion of nervous system THE FISHES SCALES & TAILS SCALE TYPES 1. COSMOID (most primitive) First found on ostracaderm agnathans, thick & boney - composed of: Ganoine (enamel outer layer) Cosmine (thick under layer) Spongy bone Lamellar bone Perhaps selected for protection against eurypterids, but decreased flexibility 2. GANOID (primitive, still found on some living fish like gar) 3. PLACOID (old scale type found on the chondrichthyes) Dentine, tooth-like 4. CYCLOID (more recent scale type, found in modern osteichthyes) 5. CTENOID (most modern scale type, found in modern osteichthyes) TAILS HETEROCERCAL (primitive, still found on chondrichthyes) ABBREVIATED HETEROCERCAL (found on some primitive living fish like gar) DIPHYCERCAL (primitive, found on sarcopterygii) HOMOCERCAL (most modern, found on most modern osteichthyes) Agnatha (class) [connect the taxa] Cyclostomata (order) Placodermi Acanthodii (class) (class) Chondrichthyes (class) Osteichthyes (class) Actinopterygii (subclass) Sarcopterygii (subclass) Dipnoi (order) Crossopterygii (order) Ripidistia (suborder) Coelacanthiformes (suborder) Chondrostei (infra class) Holostei (infra class) Teleostei (infra class) CLASS AGNATHA ("without jaws") Most primitive - first fossils in Ordovician Bottom feeders, dorsal/ventral flattened Cosmoid scales (Ostracoderms) Pair of eyes + pineal eye - present in a few living fish and reptiles - regulates circadian rhythms Nine - seven gill pouches No paired appendages, medial nosril ORDER CYCLOSTOMATA (60 spp) Last living representatives - lampreys & hagfish Notochord not replaced by vertebrae Cartilaginous cranium, scaleless body Sea lamprey predaceous - horny teeth in buccal cavity & on tongue - secretes anti-coaggulant Lateral Line System No stomach or spleen 5 - 7 year life span - adults move into freshwater streams, spawn, & die.
    [Show full text]
  • Class Wars: Chondrichthyes and Osteichthyes Dominance in Chesapeake Bay, 2002-2012
    Class Wars: Chondrichthyes and Osteichthyes dominance in Chesapeake Bay, 2002-2012. 01 July 2013 Introduction The objective of this analysis was to demonstrate a possible changing relationship between two Classes of fishes, Osteichthyes (the bony fishes) and Chondrichthyes (the cartilaginous fishes) in Chesapeake Bay based on 11 years of monitoring. If any changes between the two Classes appeared to be significant, either statistically or anecdotally, the data were explored further in an attempt to explain the variation. The Class Osteichthyes is characterized by having a skeleton made of bone and is comprised of the majority of fish species worldwide, while the Chondrichthyes skeleton is made of cartilage and is represented by the sharks, skates, and rays (the elasmobranch fishes) and chimaeras1. Many shark species are generally categorized as apex predators, while skates and rays and some smaller sharks can be placed into the mesopredator functional group (Myers et al., 2007). By definition, mesopredators prey upon a significant array of lower trophic groups, but also serve as the prey base for apex predators. Global demand for shark and consequential shark fishing mortality, estimated at 97 million sharks in 2010 (Worm et al., 2013), is hypothesized to have contributed to the decline of these apex predators in recent years (Baum et al., 2003 and Fowler et al., 2005), which in turn is suggested to have had a cascading effect on lower trophic levels—an increase in mesopredators and subsequent decrease in the prey base (Myers et al., 2007). According to 10 years of trawl survey monitoring of Chesapeake Bay, fish species composition of catches has shown a marked change over the years (Buchheister et al., 2013).
    [Show full text]
  • Systematic Morphology of Fishes in the Early 21St Century
    Copeia 103, No. 4, 2015, 858–873 When Tradition Meets Technology: Systematic Morphology of Fishes in the Early 21st Century Eric J. Hilton1, Nalani K. Schnell2, and Peter Konstantinidis1 Many of the primary groups of fishes currently recognized have been established through an iterative process of anatomical study and comparison of fishes that has spanned a time period approaching 500 years. In this paper we give a brief history of the systematic morphology of fishes, focusing on some of the individuals and their works from which we derive our own inspiration. We further discuss what is possible at this point in history in the anatomical study of fishes and speculate on the future of morphology used in the systematics of fishes. Beyond the collection of facts about the anatomy of fishes, morphology remains extremely relevant in the age of molecular data for at least three broad reasons: 1) new techniques for the preparation of specimens allow new data sources to be broadly compared; 2) past morphological analyses, as well as new ideas about interrelationships of fishes (based on both morphological and molecular data) provide rich sources of hypotheses to test with new morphological investigations; and 3) the use of morphological data is not limited to understanding phylogeny and evolution of fishes, but rather is of broad utility to understanding the general biology (including phenotypic adaptation, evolution, ecology, and conservation biology) of fishes. Although in some ways morphology struggles to compete with the lure of molecular data for systematic research, we see the anatomical study of fishes entering into a new and exciting phase of its history because of recent technological and methodological innovations.
    [Show full text]
  • The Absence of Sharks from Abyssal Regions of the World's Oceans
    Proc. R. Soc. B (2006) 273, 1435–1441 doi:10.1098/rspb.2005.3461 Published online 21 February 2006 The absence of sharks from abyssal regions of the world’s oceans Imants G. Priede1,*, Rainer Froese2, David M. Bailey3, Odd Aksel Bergstad4, Martin A. Collins5, Jan Erik Dyb6, Camila Henriques1, Emma G. Jones7 and Nicola King1 1University of Aberdeen, Oceanlab, Newburgh, Aberdeen AB41 6AA, UK 2Leibniz-Institut fu¨r Meereswissenschaften, IfM-GEOMAR, Du¨sternbrooker Weg 20, 24105 Kiel, Germany 3Marine Biology Research Division, Scripps Institution of Oceanography, UCSD 9500 Gilman Drive, La Jolla, CA 92093-0202, USA 4Institute of Marine Research, Flødevigen Marine Research Station, 4817 His, Norway 5British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK 6Møre Research, Section of Fisheries, PO Box 5075, 6021 Aalesund, Norway 7FRS Marine Laboratory, 375 Victoria Road, Aberdeen AB11 9DB, UK The oceanic abyss (depths greater than 3000 m), one of the largest environments on the planet, is characterized by absence of solar light, high pressures and remoteness from surface food supply necessitating special molecular, physiological, behavioural and ecological adaptations of organisms that live there. Sampling by trawl, baited hooks and cameras we show that the Chondrichthyes (sharks, rays and chimaeras) are absent from, or very rare in this region. Analysis of a global data set shows a trend of rapid disappearance of chondrichthyan species with depth when compared with bony fishes. Sharks, apparently well adapted to life at high pressures are conspicuous on slopes down to 2000 m including scavenging at food falls such as dead whales.
    [Show full text]
  • Great White Shark Carcharodon Carcharias
    Great White Shark Carcharodon carcharias Great White Sharks (Great Whites) are large predators at the top of the marine food chain. They are in the same class as all sharks and rays (Chondrichthyes) – this group is different from other fish as their skeleton is made from cartilage instead of bone. They have an average length of four to five metres, but can grow up to seven metres. Using their powerful tails to propel them, these sharks can move Bioregion resources through the water at up to 24 km per hour. Their mouths are lined with up to 300 serrated triangular teeth arranged in several rows. Diet Great Whites are able to use electroreception (the ability to detect weak electrical currents) to find and attack prey without seeing it. This can be useful in murky water or when their prey is hidden under sediment. This gives them the ability to navigate by sensing the Earth’s magnetic field. They have a strong sense of smell which is also useful in detecting prey. Contrary to some people’s beliefs, they often only attack humans to ‘sample bite’ and do not usually choose to eat human flesh, preferring marine mammals such as seals and sea lions. They are also known to feed on dolphins, octopus, squid, other sharks, rays and lobster, fish, crabs and seabirds. Breeding Great Whites have a low reproduction rate that makes it difficult for species numbers to recover. Males mature at eight to ten years and females mature at 12-18 years. Females give birth to two to ten pups once every two to three years.
    [Show full text]
  • Body-Shape Diversity in Triassic–Early Cretaceous Neopterygian fishes: Sustained Holostean Disparity and Predominantly Gradual Increases in Teleost Phenotypic Variety
    Body-shape diversity in Triassic–Early Cretaceous neopterygian fishes: sustained holostean disparity and predominantly gradual increases in teleost phenotypic variety John T. Clarke and Matt Friedman Comprising Holostei and Teleostei, the ~32,000 species of neopterygian fishes are anatomically disparate and represent the dominant group of aquatic vertebrates today. However, the pattern by which teleosts rose to represent almost all of this diversity, while their holostean sister-group dwindled to eight extant species and two broad morphologies, is poorly constrained. A geometric morphometric approach was taken to generate a morphospace from more than 400 fossil taxa, representing almost all articulated neopterygian taxa known from the first 150 million years— roughly 60%—of their history (Triassic‒Early Cretaceous). Patterns of morphospace occupancy and disparity are examined to: (1) assess evidence for a phenotypically “dominant” holostean phase; (2) evaluate whether expansions in teleost phenotypic variety are predominantly abrupt or gradual, including assessment of whether early apomorphy-defined teleosts are as morphologically conservative as typically assumed; and (3) compare diversification in crown and stem teleosts. The systematic affinities of dapediiforms and pycnodontiforms, two extinct neopterygian clades of uncertain phylogenetic placement, significantly impact patterns of morphological diversification. For instance, alternative placements dictate whether or not holosteans possessed statistically higher disparity than teleosts in the Late Triassic and Jurassic. Despite this ambiguity, all scenarios agree that holosteans do not exhibit a decline in disparity during the Early Triassic‒Early Cretaceous interval, but instead maintain their Toarcian‒Callovian variety until the end of the Early Cretaceous without substantial further expansions. After a conservative Induan‒Carnian phase, teleosts colonize (and persistently occupy) novel regions of morphospace in a predominantly gradual manner until the Hauterivian, after which expansions are rare.
    [Show full text]
  • Adaptive Radiation and Evolution: Fishes
    ADAPTIVE RADIATION AND EVOLUTION: FISHES Purpose The purpose of this exercise is to illustrate some of the adaptive radiation and subsequent evolution of fishes. We will make direct observations of living fishes at the Stephen Birch Aquarium- museum, located at the Scripps campus of UCSD. We will look at two of the three classes of fishes, the cartilaginous fishes (Chondrichthyes) and the bony fishes (Osteichthyes). The ocean is a stable place to live. The ocean's temperatures are generally uniform over a long period. Water offers support to fish's bodies, so that strong skeletons are not necessary, although the high viscosity of water creates a problem to their locomotion. The fish’s solution, in response to this problem, is to achieve some degree of streamlining. As a result, fishes from the same habitat look very much alike. It is not that these fishes are closely related because of their similar look, but the solution to the locomotion through the water is a common one. We will first explore the cartilaginous fishes such as sharks, skates, guitarfishes and rays. We will see how they solved the problem presented by their high body density (heavier than water) and underwent adaptative radiation that lead most of them to the bottom habitat. Next, we will look at the bony fishes. These bony fishes, with their specially evolved "swim bladder" solved their body density problem. This allowed the bony fishes to exploit new environments and niches (occupations) not available to the cartilaginous fishes. Locomotion In Water Fishes swim by special longitudinal muscles that are attached along the spine and branch out diagonally up and back over the lateral surface.
    [Show full text]
  • A Rare Occurrence of Matched Otoliths And
    A RARE OCCURRENCE OF MATCHED OTOLITHS AND ASSOCIATED SKELETAL REMAINS OF APOGON TOWNSENDI (OSTEICHTHYES) FROM THE CALOOSAHATCHEE FORMATION (LOWER PLEISTOCENE) OF FLORIDA Gary L. Stringer1, Richard C. Hulbert Jr.2, Dirk Nolf3, Paul Roth4, and Roger W. Portell4 ABSTRACT A matched pair of otoliths (right and left saccular otoliths) and associated skeletal remains (n = 107) of Apogon townsendi (belted cardinalfish) were obtained in unconsolidated sediment from inside the valves of an articulated scallop Carolinapecten eboreus. The scallop specimen was collected in Hendry County, Florida, from the lower Pleistocene Caloosahatchee Formation, approximately 1.7 to 2.1 Ma. The recov- ery of this vertebrate material is highly significant because no skeletal remains of bony fish with in situ or associated otoliths are known from the Gulf or Atlantic coasts of the United States. Furthermore, the specimen represents the first fossil record of the family Apogonidae and the genus Apogon from Florida and the first report of the species Apogon townsendi in the fossil record. The length of the fossil Apogon townsendi was determined to be 4.7 cm based on the linear relationship between fish length and otolith length and utilizing modern specimens of the species for comparison and analysis. The length of the fossil Apogon townsendi indicated that it was an adult fish upon death (> 2.1 cm). Although several taphonomic scenarios are considered, including commensalism, it is believed that the apogonid died in close proximity to the empty scallop shell, which was followed by fairly rapid washing in of sediment with the fish into the valves of the scallop (i.e., sediment trapping).
    [Show full text]
  • ASFIS ISSCAAP Fish List February 2007 Sorted on Scientific Name
    ASFIS ISSCAAP Fish List Sorted on Scientific Name February 2007 Scientific name English Name French name Spanish Name Code Abalistes stellaris (Bloch & Schneider 1801) Starry triggerfish AJS Abbottina rivularis (Basilewsky 1855) Chinese false gudgeon ABB Ablabys binotatus (Peters 1855) Redskinfish ABW Ablennes hians (Valenciennes 1846) Flat needlefish Orphie plate Agujón sable BAF Aborichthys elongatus Hora 1921 ABE Abralia andamanika Goodrich 1898 BLK Abralia veranyi (Rüppell 1844) Verany's enope squid Encornet de Verany Enoploluria de Verany BLJ Abraliopsis pfefferi (Verany 1837) Pfeffer's enope squid Encornet de Pfeffer Enoploluria de Pfeffer BJF Abramis brama (Linnaeus 1758) Freshwater bream Brème d'eau douce Brema común FBM Abramis spp Freshwater breams nei Brèmes d'eau douce nca Bremas nep FBR Abramites eques (Steindachner 1878) ABQ Abudefduf luridus (Cuvier 1830) Canary damsel AUU Abudefduf saxatilis (Linnaeus 1758) Sergeant-major ABU Abyssobrotula galatheae Nielsen 1977 OAG Abyssocottus elochini Taliev 1955 AEZ Abythites lepidogenys (Smith & Radcliffe 1913) AHD Acanella spp Branched bamboo coral KQL Acanthacaris caeca (A. Milne Edwards 1881) Atlantic deep-sea lobster Langoustine arganelle Cigala de fondo NTK Acanthacaris tenuimana Bate 1888 Prickly deep-sea lobster Langoustine spinuleuse Cigala raspa NHI Acanthalburnus microlepis (De Filippi 1861) Blackbrow bleak AHL Acanthaphritis barbata (Okamura & Kishida 1963) NHT Acantharchus pomotis (Baird 1855) Mud sunfish AKP Acanthaxius caespitosa (Squires 1979) Deepwater mud lobster Langouste
    [Show full text]
  • Marine Animals VERTEBRATES
    Marine Animals VERTEBRATES OCN 201 Biology Lecture 7 Arthropods Segmented Worms The Animal Chordates Family Tree Molluscs Lophophores Echinoderms Round Worms Cnidarians Bilateria Rotifers Ctenophores Radiata Flatworms Proboscis Sponges Worms Ancestral Protist The Chordates Invertebrates Vertebrates Chordate Features • Presence of a notochord • Dorsal hollow nerve cord • Pharyngeal slits (originally for feeding, later modified) Invertebrate Chordates Tunicates Lancelets • Pelagic or benthic • Small fish-like • Often colonial • Suspension feeder • Suspension feeders • Can swim, but usually stays partly buried Amphioxus The Major Fish Groups • Jawless fishes (Agnatha) • Cartilaginous fishes (Chondrichthyes) • Bony fishes (Osteichthyes) Agnatha Lamprey • No jaws • No appendages • Cartilaginous • Parasites or Scavengers Hagfish Chondrichthyes (Cartilaginous Fish) • Sharks Skates and Rays • Skeleton of cartilage • Have jaws • Carnivores or Planktivores Chondrichthyes: Planktivores • Planktivores (filter feeders) are largest • Gaping mouth with small or no teeth • Gill rakers • Manta Ray (8 m across!) • Whale Shark (up to 17 m long!) Gill Rakers Gill Arch Cookie-Cutter Shark Osteichthyes • 22,000 species • From about 1 cm to 8 m • Surface to deep ≥ 8370 m Smallest, lightest Most Massive bony fish: Mola Mola Stout Infant fish Up to 1300 kg and 3 m tip to tip Feeds on gelatinous zooplankton Examples of feeding strategies Herbivores (algae) Planktivores (Filter Feeders) H2O filter: gill rakers mouth gill opening gut Predators Parrot Fish - eats coral Tuna
    [Show full text]
  • And Their Functional, Ecological, and Evolutionary Implications
    DePaul University Via Sapientiae College of Science and Health Theses and Dissertations College of Science and Health Spring 6-14-2019 Body Forms in Sharks (Chondrichthyes: Elasmobranchii), and Their Functional, Ecological, and Evolutionary Implications Phillip C. Sternes DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/csh_etd Part of the Biology Commons Recommended Citation Sternes, Phillip C., "Body Forms in Sharks (Chondrichthyes: Elasmobranchii), and Their Functional, Ecological, and Evolutionary Implications" (2019). College of Science and Health Theses and Dissertations. 327. https://via.library.depaul.edu/csh_etd/327 This Thesis is brought to you for free and open access by the College of Science and Health at Via Sapientiae. It has been accepted for inclusion in College of Science and Health Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact [email protected]. Body Forms in Sharks (Chondrichthyes: Elasmobranchii), and Their Functional, Ecological, and Evolutionary Implications A Thesis Presented in Partial Fulfilment of the Requirements for the Degree of Master of Science June 2019 By Phillip C. Sternes Department of Biological Sciences College of Science and Health DePaul University Chicago, Illinois Table of Contents Table of Contents.............................................................................................................................ii List of Tables..................................................................................................................................iv
    [Show full text]