Redescription of Yinostius Major (Arthrodira: Heterostiidae) from the Lower Devonian of China, and the Interrelationships of Brachythoraci

Total Page:16

File Type:pdf, Size:1020Kb

Redescription of Yinostius Major (Arthrodira: Heterostiidae) from the Lower Devonian of China, and the Interrelationships of Brachythoraci bs_bs_banner Zoological Journal of the Linnean Society, 2015. With 10 figures Redescription of Yinostius major (Arthrodira: Heterostiidae) from the Lower Devonian of China, and the interrelationships of Brachythoraci YOU-AN ZHU1,2, MIN ZHU1* and JUN-QING WANG1 1Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 2University of Chinese Academy of Sciences, Beijing 100049, China Received 29 December 2014; revised 21 August 2015; accepted for publication 23 August 2015 Yinosteus major is a heterostiid arthrodire (Placodermi) from the Lower Devonian Jiucheng Formation of Yunnan Province, south-western China. A detailed redescription of this taxon reveals the morphology of neurocranium and visceral side of skull roof. Yinosteus major shows typical heterostiid characters such as anterodorsally positioned small orbits and rod-like anterior lateral plates. Its neurocranium resembles those of advanced eubrachythoracids rather than basal brachythoracids, and provides new morphological aspects in heterostiids. Phylogenetic analysis based on parsimony was conducted using a revised and expanded data matrix. The analysis yields a novel sce- nario on the brachythoracid interrelationships, which assigns Heterostiidae (including Heterostius ingens and Yinosteus major) as the sister group of Dunkleosteus amblyodoratus. The resulting phylogenetic scenario suggests that eubrachythoracids underwent a rapid diversification during the Emsian, representing the placoderm response to the Devonian Nekton Revolution. The instability of the relationships between major eubrachythoracid clades might have a connection to their longer ghost lineages than previous scenarios have implied. © 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015 doi: 10.1111/zoj.12356 ADDITIONAL KEYWORDS: Brachythoraci – Heterostiidae – morphology – phylogeny – Placodermi. INTRODUCTION misidentified and given names such as Ichthyosauroides Kutorga, 1835, Asterolepis asmussi Agassiz, 1844–45 The Arthrodira Woodward, 1891 is the largest and most and Chelonichthys asmusii Agassiz, 1844–45. Asmuss diverse group within the Placodermi McCoy, 1848 (Carr, (1856) for the first time referred these Baltic speci- 1995; Young, 2010). The morphological disparity of mens to fish correctly, and named them Heterostius and arthrodires is perhaps best illustrated by the Homostius, respectively, under several specific names. Heterostiidae Jaekel, 1903, an enigmatic arthrodire Shortly thereafter, Pander (1857) gave a more de- taxon known for its large body size and extremely ex- tailed description of the Baltic species of Heterostius tended anterior lateral plates. The type genus of the including a reconstruction of part of the head and tho- family, Heterostius Asmuss, 1856, was among the first racic armour. group of early vertebrates to be described scientifical- Woodward (1891) redefined Chelonichthys asmusii ly. The highly visible, large bony plates from the soft as Heterosteus asmussi. Subsequently, the two names matrix found in the Baltic states had long been noted ‘Heterostius’ and ‘Heterosteus’ seemed to be used inter- by early palaeontologists. However, they were often changeably. To give an incomplete list of examples, the name ‘Heterosteus’ was applied in Heintz (1928), Denison (1978, 1984) and Janvier (1996), while ‘Heterostius’ was *Corresponding author. E-mail: [email protected] applied in Heintz (1930), Gross (1933), Stensiö (1963) © 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015 1 2 Y.-A. ZHU ET AL. and Ørvig (1969). E. Mark-Kurik (pers. commu.) stated chapter on pachyosteomorphs. However, he stated that that the suffix ‘-ostius’ is derived from the adjective Heterostius ‘may turn out to be a coccosteomorph’, based latinized Greek word ‘ostinos’ (bony, having promi- on its elongated occipital region shared with Homostius, nent bones), while the suffix ‘-osteus’ is derived from which he assigned into Coccosteomorphi Stensiö 1944. the substantive ‘osteon’ (bone). Accordingly, the suffix Denison (1978) considered Heterostiidae as the sister ‘-ostius’ should not be corrected as ‘-osteus’ by reason group of all brachythoracids, although he acknowl- of an ‘inadvertent error’ (International Commission on edged that the thoracic armour of Heterostiidae ‘re- Zoological Nomenclature (ICZN), 1999: Art. 32.5.1). We sembles that of Pachyosteina’. He later moved the taxon accept this explanation and only use the names to a higher phylogenetic position by including it in ‘Heterostius’ and ‘Homostius’ in the following text. Brachythoraci Gross, 1932 (Denison, 1984), partly fol- Heintz (1928, 1930) described the Baltic specimens lowing Young (1981), who provided a revised cladogram of Heterostius in detail. Gross (1933) described a showing heterostiids among basal brachythoracids. heterostiid anterior lateral plate from Sötenich, Janvier (1996) described Heterostiidae as a Germany, and assigned it to Heterostius. Ørvig (1969) eubrachythoracid taxon, but beyond that is ‘of uncer- erected the second heterostiid genus, Herasmius, from tain phylogenetic position’. the Wood Bay Group (upper Lower Devonian or lower In the first published attempt to include any Middle Devonian) in Spitsbergen. The only species of heterostiid in a computerized analysis of brachythoracid the genus, Herasmius granulatus, is represented by phylogeny (Zhu & Zhu, 2013), Heterostius ingens is as- an incomplete skull roof. Herasmius granulatus Ørvig, signed to a much more crownward position. It is nested 1969 differs from Heterostius ingens Asmuss, 1856 in within Dunkleosteidae Stensiö, 1963, being the sister having a shorter and broader skull roof, broader and group of Dunkleosteus Lehman, 1956. However, the mor- longer central plates, thinner dermal bones, and much phological evidence that supports this scenario is mostly finer tubercular ornaments. The unidentified plate confined to the external aspects of the skull roof. (Ørvig, 1969: fig. 4C) should be the extended anteri- Here we provide a detailed redescription of the or lateral plate, which is integrated but not fused to holotype of Yinostius major, which yields new the anterior dorsolateral plate, and possibly belongs phylogenetically significant information, especially that to Herasmius granulatus.InHeterostius ingens the two of the neurocranium morphology. We then conduct an plates are fused. updated phylogenetic analysis, which for the first time Wang & Wang (1984) reported the third heterostiid includes basal brachythoracids in the ingroup. Also, genus Yinosteus from the South China block, which new characters are defined based on the comparative represents the first heterostiid outside Euramerica and anatomy of arthrodires, with particular emphasis on illustrates the wide distribution of the group. The fusion the visceral surface of the skull roof and neurocranium of the dermal plates and relatively extensive ossifica- morphology. With a revised data matrix, we hope to tion compared with most other brachythoracids suggest render a more convincing scenario that could lead to that the holotype of Yinosteus major Wang & Wang, a better understanding of not only the position of 1984 belongs to an adult individual. Yinosteus differs heterostiids, but also the brachythoracid phylogeny as from Heterostius and Herasmius in having a smaller a whole. body size, proportionately broader nuchal plate, larger nuchal gap and coarser tubercular ornaments. Part of GEOLOGICAL BACKGROUND the description in Wang & Wang (1984) needs to be properly illustrated. Also, characters that are The holotype material of Yinosteus major was collect- phylogenetically informative were not fully exploited. ed from black shale near Wuding in 1979 (Fig. 1). The The members of the Heterostiidae show similar- horizon was identified by Wang & Wang (1984) as the ities to the basal brachythoracid Homostiidae Jaekel, Black Shale Member of the Middle Devonian Haikou 1903, such as the large body size, anteriorly placed Formation. Shortly thereafter, Wang (1984) included orbits, elongated occipital region, anteriorly extended the horizon within the newly erected Jiucheng For- anterior lateral plate and reduction of ventral thorac- mation and maintained its Middle Devonian diagno- ic armour. However, heterostiids also resemble the ad- sis, which was supported by Liu (1994). The dating vanced eubrachythoracids in the position of the of the Jiucheng Formation was modified by Wang & posterolateral corner of the skull roof, and the highly Zhu (1995) to be late Emsian, Early Devonian, under developed posterior carinal process of the ventral keel the following arguments: first, the Jiucheng Forma- of the median dorsal plate (Stensiö, 1963; Denison, 1978; tion and the Pojiao Formation below it were continu- Young, 1981; Zhu & Zhu, 2013). ously deposited, and the latter is dated to be early This mosaic character complement of heterostiids has Emsian based on the invertebrate evidence; second, resulted in competing hypotheses of their phylogenetic the fish fauna from the Jiucheng Formation is com- assignment. Stensiö (1963) discussed Heterostius in the parable with European and Australian Emsian faunas. © 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015 EARLY DEVONIAN ARTHRODIRE FROM CHINA 3 Figure 1. Devonian sequence in the Wuding area (Yunnan, China), showing the stratigraphic position of Yinostius
Recommended publications
  • FISHING for DUNKLEOSTEUS You’Re Definitely Gonna Need a Bigger Boat by Mark Peter
    OOhhiioo GGeeoollooggyy EEXXTTRRAA July 31, 2019 FISHING FOR DUNKLEOSTEUS You’re definitely gonna need a bigger boat by Mark Peter At an estimated maximum length of 6 to 8.8 meters (20–29 sediments that eroded from the Acadian Mountains, combined feet), Dunkleosteus terrelli (Fig. 1) would have been a match for with abundant organic matter from newly evolved land plants even the Hollywood-sized great white shark from the and marine plankton, settled in the basin as dark organic movie Jaws. Surfers, scuba divers, and swimmers can relax, muds. Over millions of years, accumulation of additional however, because Dunkleosteus has been extinct for nearly 360 overlying sediments compacted the muds into black shale rock. million years. Dunkleosteus was a placoderm, a type of armored The rocks that formed from the Late Devonian seafloor fish, that lived during the Late Devonian Period from about sediments (along with fossils of Dunkleosteus) arrived at their 375–359 million years ago. Fossil remains of the large present location of 41 degrees north latitude after several species Dunkleosteus terrelli are present in the Cleveland hundred million years of slow plate tectonic movement as the Member of the Ohio Shale, which contains rocks that are North American Plate moved northward. approximately 360–359 million years old. Figure 1. A reconstruction of a fully-grown Dunkleosteus terrelli, assuming a length of 29 feet, with angler for scale. Modified from illustration by Hugo Salais of Metazoa Studio. Dunkleosteus cruised Late Devonian seas and oceans as an Figure 2. Paleogeographic reconstruction of eastern North America during apex predator, much like the great white shark of today.
    [Show full text]
  • Cambridge University Press 978-1-107-17944-8 — Evolution And
    Cambridge University Press 978-1-107-17944-8 — Evolution and Development of Fishes Edited by Zerina Johanson , Charlie Underwood , Martha Richter Index More Information Index abaxial muscle,33 Alizarin red, 110 arandaspids, 5, 61–62 abdominal muscles, 212 Alizarin red S whole mount staining, 127 Arandaspis, 5, 61, 69, 147 ability to repair fractures, 129 Allenypterus, 253 arcocentra, 192 Acanthodes, 14, 79, 83, 89–90, 104, 105–107, allometric growth, 129 Arctic char, 130 123, 152, 152, 156, 213, 221, 226 alveolar bone, 134 arcualia, 4, 49, 115, 146, 191, 206 Acanthodians, 3, 7, 13–15, 18, 23, 29, 63–65, Alx, 36, 47 areolar calcification, 114 68–69, 75, 79, 82, 84, 87–89, 91, 99, 102, Amdeh Formation, 61 areolar cartilage, 192 104–106, 114, 123, 148–149, 152–153, ameloblasts, 134 areolar mineralisation, 113 156, 160, 189, 192, 195, 198–199, 207, Amia, 154, 185, 190, 193, 258 Areyongalepis,7,64–65 213, 217–218, 220 ammocoete, 30, 40, 51, 56–57, 176, 206, 208, Argentina, 60–61, 67 Acanthodiformes, 14, 68 218 armoured agnathans, 150 Acanthodii, 152 amphiaspids, 5, 27 Arthrodira, 12, 24, 26, 28, 74, 82–84, 86, 194, Acanthomorpha, 20 amphibians, 1, 20, 150, 172, 180–182, 245, 248, 209, 222 Acanthostega, 22, 155–156, 255–258, 260 255–256 arthrodires, 7, 11–13, 22, 28, 71–72, 74–75, Acanthothoraci, 24, 74, 83 amphioxus, 49, 54–55, 124, 145, 155, 157, 159, 80–84, 152, 192, 207, 209, 212–213, 215, Acanthothoracida, 11 206, 224, 243–244, 249–250 219–220 acanthothoracids, 7, 12, 74, 81–82, 211, 215, Amphioxus, 120 Ascl,36 219 Amphystylic, 148 Asiaceratodus,21
    [Show full text]
  • A New Osteolepidid Fish From
    Rea. West. Aust. MU8. 1985, 12(3): 361-377 ANew Osteolepidid Fish from the Upper Devonian Gogo Formation, Western Australia J.A. Long* Abstract A new osteolepidid crossopterygian, Gogonasus andrewsi gen. et sp. nov., is des­ cribed from a single fronto-ethmoidal shield and associated ethmosphenoid, from the Late Devonian (Frasnian) Gogo Formation, Western Australia. Gogonasus is is distinguished from other osteolepids by the shape and proportions of the fronto­ ethmoidal shield, absence of palatal fenestrae, well developed basipterygoid pro­ cesses and moderately broad parasphenoid. The family Osteolepididae is found to be paraphyletic, with Gogonasus being regarded as a plesiomorphic osteolepidid at a similar level of organisation to Thursius. Introduction Much has been published on the well-preserved Late Devonian fish fauna from the Gogo Formation, Western Australia, although to date all the papers describing fish have been on placoderms (Miles 1971; Miles and Dennis 1979; Dennis and Miles 1979-1983; Young 1984), palaeoniscoids (Gardiner 1973, 1984; Gardiner and Bartram 1977) or dipnoans (Miles 1977; Campbell and Barwick 1982a, 1982b, 1983, 1984a). This paper describes the only osteolepiform from the fauna (Gardiner and Miles 1975), a small snout with associated braincase, ANU 21885, housed in the Geology Department, Australian National University. The specimen, collected by the Australian National University on the 1967 Gogo Expedition, was prepared by Dr S.M. Andrews (Royal Scottish Museum) and later returned to the ANU. Onychodus is the only other crossopterygian in the fauna. In its proportions and palatal structure the new specimen provides some additional new points of the anatomy of osteolepiforms. Few Devonian crossopte­ rygians are known from Australia, and so the specimen is significant in having resemblances to typical Northern Hemisphere species.
    [Show full text]
  • Subsurface Facies Analysis of the Devonian Berea Sandstone in Southeastern Ohio
    SUBSURFACE FACIES ANALYSIS OF THE DEVONIAN BEREA SANDSTONE IN SOUTHEASTERN OHIO William T. Garnes A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2014 Committee: James Evans, Advisor Jeffrey Snyder Charles Onasch ii ABSTRACT James Evans, Advisor The Devonian Berea Sandstone is an internally complex, heterogeneous unit that appears prominently both in outcrop and subsurface in Ohio. While the unit is clearly deltaic in outcrops in northeastern Ohio, its depositional setting is more problematic in southeastern Ohio where it is only found in the subsurface. The goal of this project was to search for evidence of a barrier island/inlet channel depositional environment for the Berea Sandstone to assess whether the Berea Sandstone was deposited under conditions in southeastern Ohio unique from northeastern Ohio. This project involved looking at cores from 5 wells: 3426 (Athens Co.), 3425 (Meigs Co.), 3253 (Athens Co.), 3252 (Athens Co.), and 3251 (Athens Co.) In cores, the Berea Sandstone ranges from 2 to 10 m (8-32 ft) thick, with an average thickness of 6.3 m (20.7 ft). Core descriptions involved hand specimens, thin section descriptions, and core photography. In addition to these 5 wells, the gamma ray logs from 13 wells were used to interpret the architecture and lithologies of the Berea Sandstone in Athens Co. and Meigs Co. as well as surrounding Vinton, Washington, and Morgan counties. Analysis from this study shows evidence of deltaic lobe progradation, abandonment, and re-working. Evidence of interdistributary bays with shallow sub-tidal environments, as well as large sand bodies, is also present.
    [Show full text]
  • Guide to the Geology of Northeastern Ohio
    SDMS US EPA REGION V -1 SOME IMAGES WITHIN THIS DOCUMENT MAY BE ILLEGIBLE DUE TO BAD SOURCE DOCUMENTS. GUIDE TO THE GEOLOGY of NORTHEASTERN OHIO Edited by P. O. BANKS & RODNEY M. FELDMANN 1970 Northern Ohio Geological Society ELYP.i.A PU&UC LIBRARt as, BEDROCK GEOLOGY OF NORTHEASTERN OHIO PENNSYLVANIAN SYSTEM MISSISSIPPIAN SYSTEM DEVONIAN SYSTEM \V&fe'£:i£:VS:#: CANTON viSlSWSSWM FIGURr I Geologic map of northeastern Ohio. Individual formations within each time unit are not dis- -guished, and glacial deposits have been omitted. Because the bedding planes are nearly ••.crizontal, the map patterns of the contacts closely resemble the topographic contours at those z evations. The older and deeper units are most extensively exposed where the major rivers rave cut into them, while the younger units are preserved in the intervening higher areas. CO «< in Dev. Mississippian r-c Penn. a> 3 CO CD BRADF. KINOERHOOK MERAMEC —1 OSAGE CHESTER POTTSVIUE ro to r-» c-> e-> e= e-i GO n « -n V) CO V* o ^_ ^ 0. = -^ eo CO 3 c= « ^> <C3 at ta B> ^ °» eu ra to a O9 eo ^ a* s 1= ca \ *** CO ^ CO to CM v» o' CO to CO 3 =3 13- *•» \ ¥\ A. FIGURE 1. Columnar section ol the major stratigraphic units in northeastern Ohio showing their relative positions in the standard geologic time scale. The Devonian-Mississippian boundary is not known with certainty to lie within the Cleveland Shale. The base of the Mississippian in the northern part of the state is transitional with the Bradford Series of the Devonian System and may lie within the Cleveland Shale (Weller er a/., 1948).
    [Show full text]
  • 'Placoderm' (Arthrodira)
    Jobbins et al. Swiss J Palaeontol (2021) 140:2 https://doi.org/10.1186/s13358-020-00212-w Swiss Journal of Palaeontology RESEARCH ARTICLE Open Access A large Middle Devonian eubrachythoracid ‘placoderm’ (Arthrodira) jaw from northern Gondwana Melina Jobbins1* , Martin Rücklin2, Thodoris Argyriou3 and Christian Klug1 Abstract For the understanding of the evolution of jawed vertebrates and jaws and teeth, ‘placoderms’ are crucial as they exhibit an impressive morphological disparity associated with the early stages of this process. The Devonian of Morocco is famous for its rich occurrences of arthrodire ‘placoderms’. While Late Devonian strata are rich in arthrodire remains, they are less common in older strata. Here, we describe a large tooth-bearing jaw element of Leptodontich- thys ziregensis gen. et sp. nov., an eubrachythoracid arthrodire from the Middle Devonian of Morocco. This species is based on a large posterior superognathal with a strong dentition. The jawbone displays features considered syna- pomorphies of Late Devonian eubrachythoracid arthrodires, with one posterior and one lateral row of conical teeth oriented postero-lingually. μCT-images reveal internal structures including pulp cavities and dentinous tissues. The posterior orientation of the teeth and the traces of a putative occlusal contact on the lingual side of the bone imply that these teeth were hardly used for feeding. Similar to Compagopiscis and Plourdosteus, functional teeth were pos- sibly present during an earlier developmental stage and have been worn entirely. The morphological features of the jaw element suggest a close relationship with plourdosteids. Its size implies that the animal was rather large. Keywords: Arthrodira, Dentition, Food web, Givetian, Maïder basin, Palaeoecology Introduction important to reconstruct character evolution in early ‘Placoderms’ are considered as a paraphyletic grade vertebrates.
    [Show full text]
  • Arthrodira, Homostiidae) from the Emsian of Aragón, Spain, and Its Distribution
    FISH FROM THE EMSIAN OF ARAGÓN 139 Tityosteus, A MARINE FISH (ARTHRODIRA, HOMOSTIIDAE) FROM THE EMSIAN OF ARAGÓN, SPAIN, AND ITS DISTRIBUTION Elga MARK-KURIK1 and Peter CARLS2 1 Institute of Geology. Tallinn University of Technology, Estonia Avenue 7, 10143 Tallinn, Estonia. E-mail: [email protected] 2 Institut für Umweltgeologie, Technische Universität, Braunschweig, Pockels- Str. 3, D 38106, Germany. Mark-Kurik, E. and Carls, P. 2004. Tityosteus, a marine fish (Arthrodira, Homostiidae) from the Emsian of Aragón, Spain, and its distribution. [Tityosteus, un pez marino (Arthrodira, Homostiidae) del Emsiense de Aragón, España, y su distribución.] Revista Española de Paleontología, 19 (2), 139-144. ISSN 0213-6937. ABSTRACT A right marginal plate (over 11 cm long) of Tityosteus cf. rieversae Gross, 1960, emend., has been found in the late part of the Early Emsian (late Zlichovian) in the Mariposas Fm. of the Eastern Iberian Cordillera in south- ern Aragón. The palaeoecological conditions correspond to a hemipelagic ensialic basin, with predominant ele- ments of Hercynic biofacies but still with photic bottom. The Emsian genus Tityosteus is now known from the Hunsrück Schiefer of Germany and the closely connected Ibero-Armorican Trough and also from the more dis- tant Minusinsk Basin of southern Siberia. Palaeo-oceans between western Europe and southern Siberia were no zoogeographical barriers for these large, possibly microphagous fishes in open sea. The name of the type spe- cies of Tityosteus is emended. Keywords: Placodermi, marginal plate, palaeoecology, palaeozoogeography, late Zlichovian. RESUMEN Se describe una placa marginal derecha (más de 11 cm de longitud) de Tityosteus cf. rieversae Gross, 1960, emend., de la parte tardía del Emsiense Inferior (Zlichoviense tardío) de la Fm.
    [Show full text]
  • Contributions in BIOLOGY and GEOLOGY
    MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - ---
    [Show full text]
  • New Placoderm Fishes from the Early Devonian B U C H a N G R O U P , E a S T E R N V I C T O R
    PROC. R. SOC. VICT. vol. 96, no. 4, 173-186, Decemb er 1984 NEW PLACODERM FISHES FROM THE EARLY DEVONIAN BUCHAN GROUP, EASTERN VICTORIA By J ohn A. L ong Department of G eology, Australian National Universi ty, P.O . Box 4, Canberra, A.C .T. 2601 A bstract : Three new placoderms are described from the McLarty Member of the Murrindal Limestone (Early Devonian, Buchan Group). M urrindalaspis wallacei gen. el sp. nov. is a palae- acanthaspidoid characterized by having a high m edia n dorsal crest and lacking a m edian ventral keel. M. bairdi sp. nov. differs from the type species in having a low median dorsal crest and a median ventral groove. Taem asosteus m aclarliensis sp. nov. differs from the type species T. novaustrocam bricus W hite in the shape of the posterior region of the nuchal plate, the presence of canals between the infranuch al pits and the posterior face o f the nuchal plate, th e shape of the paranuchal plate, and the developm en t of the apronic lam ina of the anterior lateral plate. The placoderm s, A renipiscis westoUi Young, Errolosleus cf. E. goodradigbeensis Young, W ijdeaspis warrooensis Young, are recorded from the Buchan Group indicati ng close sim ilarity to the ichthyofauna of the contem poraneous M urrumbidgee Group, New Sout h W ales. Few fossil fishes have been studied from the Early been described from the Murrumbidgee and Mulga Devonian Buchan Group. M cCoy (1876) described some Downs Groups in New South Wales and the Cravens placoderm plates from this region as Asterolepis ornata Peak Beds in Queensland, with numerous sites yielding var.
    [Show full text]
  • Late Devonian and Early Mississippian Distal Basin-Margin Sedimentation of Northern Ohio1
    Late Devonian and Early Mississippian Distal Basin-Margin Sedimentation of Northern Ohio1 THOMAS L. LEWIS, Department of Geological Sciences, Cleveland State University, Cleveland, OH 44115 ABSTRACT. Clastic sediments, derived from southeastern, eastern and northeastern sources, prograded west- ward into a shallow basin at the northwestern margin of the Appalachian Basin in Late Devonian and Early Mississippian time. The western and northwestern boundary of the basin was the submerged Cincinnati Arch. The marine clastic wedges provided a northwest paleoslope and a distal, gentle shelf-edge margin that controlled directional emplacement of coarse elastics. Rising sea levels coupled with differences in sedimen- tation rates and localized soft-sediment deformation within the basin help explain some features of the Bedford and Berea Formations. The presence of sand-filled mudcracks and flat-topped symmetrical ripple marks in the Berea Formation attest to very shallow water deposition and local subaerial exposure at the time of emplacement of part of the formation. Absence of thick, channel-form deposits eastward suggests loss of section during emergence. OHIO J. SCI. 88 (1): 23-39, 1988 INTRODUCTION The Bedford Formation (Newberry 1870) is the most The Ohio Shale, Bedford, and Berea Formations of lithologically varied formation of the group. It is com- northern Ohio are clastic units which record prograda- prised of gray and red mudshales, siltstone, and very tional and transgressional events during Late Devonian fine-grained sandstone. The Bedford Formation thins and Early Mississippian time. The sequence of sediments both to the east and west and reaches its maximum is characterized by (1) gray mudshale, clayshale, siltstone, thickness in the Cleveland area.
    [Show full text]
  • Australian Carnivorous Plants N
    AUSTRALIAN NATURAL HISTORY International Standard Serial Number: 0004-9840 1. Australian Carnivorous Plants N. S. LANDER 6. With a Thousand Sea Lions JUDITH E. KING and on the Auckland Islands BASIL J . MAR LOW 12. How Many Australians? W. D. BORRIE 17. Australia's Rainforest Pigeons F. H. J. CROME 22. Salt-M aking Among the Baruya WILLIAM C. CLARKE People of Papua New Guinea and IAN HUGHES 25. The Case for a Bush Garden JEAN WALKER 28. "From Greenland's Icy Mountains . .... ALEX RITCHIE F RO NT COVER . 36. Books Shown w1th its insect prey is Drosera spathulata. a Sundew common 1n swampy or damp places on the east coast of Australia between the Great Div1d1ng Range and the AUSTRALIAN NATURAL HISTORY 1s published quarterly by The sea. and occasionally Australian Museum. 6-8 College Street. Sydney found 1n wet heaths in Director Editorial Committee Managing Ed 1tor Tasman1a This species F H. TALBOT Ph 0. F.L S. HAROLD G COGGER PETER F COLLIS of carnivorous plant also occurs throughout MICHAEL GRAY Asia and 1n the Philip­ KINGSLEY GREGG pines. Borneo and New PATRICIA M McDONALD Zealand (Photo S Jacobs) See the an1cle on Australian car­ ntvorous plants on page 1 Subscrtpttons by cheque or money order - payable to The Australian M useum - should be sent to The Secretary, The Australian Museum. P.O. Box 285. Sydney South 2000 Annual Subscription S2 50 posted S1nglc copy 50c (62c posted) jJ ___ AUSTRALIAN CARNIVOROUS PLANTS By N . S.LANDER Over the last 100 years a certain on ly one.
    [Show full text]
  • Coincidence of Photic Zone Euxinia and Impoverishment of Arthropods
    www.nature.com/scientificreports OPEN Coincidence of photic zone euxinia and impoverishment of arthropods in the aftermath of the Frasnian- Famennian biotic crisis Krzysztof Broda1*, Leszek Marynowski2, Michał Rakociński1 & Michał Zatoń1 The lowermost Famennian deposits of the Kowala quarry (Holy Cross Mountains, Poland) are becoming famous for their rich fossil content such as their abundant phosphatized arthropod remains (mostly thylacocephalans). Here, for the frst time, palaeontological and geochemical data were integrated to document abundance and diversity patterns in the context of palaeoenvironmental changes. During deposition, the generally oxic to suboxic conditions were interrupted at least twice by the onset of photic zone euxinia (PZE). Previously, PZE was considered as essential in preserving phosphatised fossils from, e.g., the famous Gogo Formation, Australia. Here, we show, however, that during PZE, the abundance of arthropods drastically dropped. The phosphorous content during PZE was also very low in comparison to that from oxic-suboxic intervals where arthropods are the most abundant. As phosphorous is essential for phosphatisation but also tends to fux of the sediment during bottom water anoxia, we propose that the PZE in such a case does not promote the fossilisation of the arthropods but instead leads to their impoverishment and non-preservation. Thus, the PZE conditions with anoxic bottom waters cannot be presumed as universal for exceptional fossil preservation by phosphatisation, and caution must be paid when interpreting the fossil abundance on the background of redox conditions. 1 Euxinic conditions in aquatic environments are defned as the presence of H2S and absence of oxygen . If such conditions occur at the chemocline in the water column, where light is available, they are defned as photic zone euxinia (PZE).
    [Show full text]