New Placoderm Fishes from the Early Devonian B U C H a N G R O U P , E a S T E R N V I C T O R

Total Page:16

File Type:pdf, Size:1020Kb

New Placoderm Fishes from the Early Devonian B U C H a N G R O U P , E a S T E R N V I C T O R PROC. R. SOC. VICT. vol. 96, no. 4, 173-186, Decemb er 1984 NEW PLACODERM FISHES FROM THE EARLY DEVONIAN BUCHAN GROUP, EASTERN VICTORIA By J ohn A. L ong Department of G eology, Australian National Universi ty, P.O . Box 4, Canberra, A.C .T. 2601 A bstract : Three new placoderms are described from the McLarty Member of the Murrindal Limestone (Early Devonian, Buchan Group). M urrindalaspis wallacei gen. el sp. nov. is a palae- acanthaspidoid characterized by having a high m edia n dorsal crest and lacking a m edian ventral keel. M. bairdi sp. nov. differs from the type species in having a low median dorsal crest and a median ventral groove. Taem asosteus m aclarliensis sp. nov. differs from the type species T. novaustrocam bricus W hite in the shape of the posterior region of the nuchal plate, the presence of canals between the infranuch al pits and the posterior face o f the nuchal plate, th e shape of the paranuchal plate, and the developm en t of the apronic lam ina of the anterior lateral plate. The placoderm s, A renipiscis westoUi Young, Errolosleus cf. E. goodradigbeensis Young, W ijdeaspis warrooensis Young, are recorded from the Buchan Group indicati ng close sim ilarity to the ichthyofauna of the contem poraneous M urrumbidgee Group, New Sout h W ales. Few fossil fishes have been studied from the Early been described from the Murrumbidgee and Mulga Devonian Buchan Group. M cCoy (1876) described some Downs Groups in New South Wales and the Cravens placoderm plates from this region as Asterolepis ornata Peak Beds in Queensland, with numerous sites yielding var. australis, which Chapman (1916) queried when m icrovertebrate assemblages (Long 1982, 1983b, Turn er presenting a description of a placoderm skull from et at. 1981, Long & Turner 1984). Buchan. Chapman identified this specimen as a phly- Specimens are housed in the following institutions: ctaenioid, Phlyctaenaspis confertituberculatus, but Hills CPC, Commonwealth Palaeontological Collections, (1936b) assigned the skull to Coccosteus. Stensio (1945) Bureau of Mineral Resources, Canberra; MUGD, recognized differences between the parasphenoid of Geology Department, M elbourne University; and NMV, Coccosteus and the Buchan specimen and erected M useum of Victoria, M elbourne. Buchanosteus for the latter. Additional material of Buchanosteus has since been found from the M urrum­ SYSTEMATIC PALAEONTOLOGY bidgee G roup, New South W ales, making this genus on e Subclass P lacodermi M cCoy 1848 of the best known Early Devonian euarthrodires (W hite Superorder P etalichthyomorpha Miles & Young 1977 1952, W hite & Toombs 1972, Young 1979). The only Order P etalichthyida Jaekel 1911 other fish described from Buchan is a mandible of the dipnoan Dipnorhynchus sussmilchi (Hills 1936a, Thom ­ W iJdeaspis warrooensis Young 1978 son & Campbell 1971). This paper describes placoder m Fig. 4C ' fish material recovered from the Buchan Group durin g M aterial : A piece of trunk shield com prising the right Monash University third year geology field mapping spinal plate and a small sliver of the anterior lateral trips as well as some found by geology honours stud ents plate. NMVP159825, collected Dr. R . E. Fordyce, from both M elbourne and M onash Universities (Long February, 1981. 1983 b). O ccurrence : The uppermost division of the M cLarty The material was prepared using acetic acid with Member of the Murrindal Limestone, immediately dilute polyvinylbuterol to strengthen the exposed b one. northeast of Rocky Camp Quarry, north of Buchan. All specimens were found in the uppermost McLarty M ember or ihe lowermost Rocky Camp Member of the R emarks : The specimen is identified as belonging to M urrindal Limestone, with the richest concentration of Wijdeaspis because the spinal shows a relatively high vertebrates occurring near the contact of the M cLar ty num ber of ornam ental ridges (9-10) which are form ed of and Rocky Camp M embers on the eastern face of Rocky closely packed tubercles arranged in rows. On this basis Camp Hill (Fig. 1). In addition to the macrovertebr ate Young (1978, p. 112) distinguished Wijdeaspis spinal remains rich concentrations of microvertebrate foss ils plates from those of Lunaspis species. The Buchan were recovered from the residues during preparation , specimen is almost identical with that of Wijdeaspis and these have been forwarded to Dr. S. Turner warrooensis figured by Young (1978, figs 2E, 8B). (Queensland Museum) for detailed study. Amongst these are several types of acanthodian and elasm obr anch Order R henanida Broili 1930 scales similar to forms described from the M urrum­ Suborder P alaeacanthaspidoidei Miles & Young 1977 bidgee G roup by Giffin (1980). Recently a jaw of a new Family W eeja sper a spida e W hite 1978 ischnacanthid acanthodian was found in residues fro m D ia g nosis : Palaeacanthaspidoids having a well the Rocky Camp Member (under current study by the developed median dorsal crest on the median dorsal author). Lower Devonian macrovertebrates have also plate, which has a posterior face with a smooth med ial 173 174 JOHN A. LONG BUCHAN D ia g nosis : A weejasperaspid of m oderate size having a median dorsal plate with a sm ooth ventral surface w hich may have a median ventral groove developed; dermal ornam entation of short ridges, approxim ately one-th ird as long as broad, on the dorsal surfaces with pointed stellate tubercles densely concentrated near the an terior and posterior margins; median dorsal crest develope d; a short dorsal transverse sensory line canal situated at the anterior base of the median dorsal crest; the poste rior face of the median dorsal crest with a smooth media n prominence throughout. T y pe S pec ies : Murrindalaspis wallacei sp. nov. R emarks : This palaeacanthaspid is similar to Wee­ jasperaspis gavini W hite (1978) but differs in the absence of the median ventral keel on the median dorsal pla te. Palaeacanthaspis Stensio 1944 also possesses a median dorsal crest but differs from both Murrindalaspis and Weejasperaspis in possessing a large nutritive foramen for the crest on the ventral surface of the median dorsal plate, and by its simple tubercular ornam entation. Of the remaining described palaeacanthaspids none has a well developed median crest; where the median dorsa l plate is unknown (Brindabellaspis Y oung 1980, Romun- dina Orvig 1975, Kimaspis Mark-Kurik 1973a, Kolymaspis in Denison 1978) Murrindalaspis is dis­ tinguished by the characteristic dermal ornam entati on. M urrindalaspis wallacei sp. nov. Figs 2A, D, E, G, 3, 8C, D E tymology : After Mr. M. Wallace, Dept. Geology, University of Tasmania, who discovered several fish es from the Buchan area in 1982, including the type specimen of Murrindalaspis gen. nov., and kindly allowed me to study the material. D ia g nosis : A member of Murrindalaspis with a median dorsal plate having a high median dorsal crest whic h is strongly curved posteriorly and tapers narrowly at its apex. Ventral surface of median dorsal plate smooth , Fig. 1 —Locality map of placoderm fossils collected in the and there are paired prominences developed at the Buchan region. G eology from Teichert & Talent (1958 ). posterior end of the ventral surface near the base of the crest. Ratio of median dorsal crest height/plate le ngth prominence. M edian dorsal plate with a B /L index ap­ approxim ately 64. proximately 80. Coarse ornamentation consisting of H olotype : M UGD6066 (Figs 2A, D, E , G, 3), an almost short ridges and pointed tubercles each with well d efined complete median dorsal plate from the top of the grooves. M cLarty Member of the M urrindal Limestone from the R emarks : W hite’s diagnosis (1978) has been m odified to vicinity of Rocky Camp Quarry, north of Buchan incorporate features of the new genus from Buchan. (Fig. 1). Weejasperaspis White 1978 and Murrindalaspis gen. D escr ipt ion : The holotype is almost complete, missing nov. are similar in the proportions of the m edian d orsal only the top of the crest and a small part of the left plate, in their median dorsal crests and in the mor ­ anterolateral corner. It bears a high, slender median phology of the derm al ornam entation; they differ ch iefly dorsal crest (cr.d) which starts approximately 28% of in the well-developed median ventral ridge on Wee­ the plate length from the anterior margin, and exte nds jasperaspis only, and in the size of tubercles of the backwards beyond the level of the posterior margin (Fig. external ornam ent. 3). In profile the crest is strongly curved, being propor­ tionately much narrower than the broad crest of Wee­ M urrindalaspis gen. nov. jasperaspis (Fig. 8). The anterior m argin of the plate has E tymology : A fter the settlement of M urrindal, north of a short median convexity and lateral to this region the Buchan. anterior margin extends forward at an angle of abou t NEW PLACODERM FISHES Fig. 2 —M urrindalaspis gen. nov., Emsian, Buchan. A , D, E, G, M . wallacei sp. nov., M UGD6066. H olotype m edian dorsal plate in A , ventral, D , post erior, E, right lateral and G, dorsal views, x l. B, C, F, H . M . bairdi sp. nov., NM VP59892. H olotype median dorsal plate in B, posterior, C, ventral, and F, right lateral views. H , detail of derm al ornam entat ion. B, x2; C, F, x l; H, x4. All specimens whitened with am m onium chloride. 176 JOHN A. LONG 40° to the lateral margin of the plate. There is a narrow D ia g nosis : A Murrindalaspis having a median dorsal overlap platform (ant.oa) along the extent of the plate which bears a low median dorsal crest.
Recommended publications
  • Cambridge University Press 978-1-107-17944-8 — Evolution And
    Cambridge University Press 978-1-107-17944-8 — Evolution and Development of Fishes Edited by Zerina Johanson , Charlie Underwood , Martha Richter Index More Information Index abaxial muscle,33 Alizarin red, 110 arandaspids, 5, 61–62 abdominal muscles, 212 Alizarin red S whole mount staining, 127 Arandaspis, 5, 61, 69, 147 ability to repair fractures, 129 Allenypterus, 253 arcocentra, 192 Acanthodes, 14, 79, 83, 89–90, 104, 105–107, allometric growth, 129 Arctic char, 130 123, 152, 152, 156, 213, 221, 226 alveolar bone, 134 arcualia, 4, 49, 115, 146, 191, 206 Acanthodians, 3, 7, 13–15, 18, 23, 29, 63–65, Alx, 36, 47 areolar calcification, 114 68–69, 75, 79, 82, 84, 87–89, 91, 99, 102, Amdeh Formation, 61 areolar cartilage, 192 104–106, 114, 123, 148–149, 152–153, ameloblasts, 134 areolar mineralisation, 113 156, 160, 189, 192, 195, 198–199, 207, Amia, 154, 185, 190, 193, 258 Areyongalepis,7,64–65 213, 217–218, 220 ammocoete, 30, 40, 51, 56–57, 176, 206, 208, Argentina, 60–61, 67 Acanthodiformes, 14, 68 218 armoured agnathans, 150 Acanthodii, 152 amphiaspids, 5, 27 Arthrodira, 12, 24, 26, 28, 74, 82–84, 86, 194, Acanthomorpha, 20 amphibians, 1, 20, 150, 172, 180–182, 245, 248, 209, 222 Acanthostega, 22, 155–156, 255–258, 260 255–256 arthrodires, 7, 11–13, 22, 28, 71–72, 74–75, Acanthothoraci, 24, 74, 83 amphioxus, 49, 54–55, 124, 145, 155, 157, 159, 80–84, 152, 192, 207, 209, 212–213, 215, Acanthothoracida, 11 206, 224, 243–244, 249–250 219–220 acanthothoracids, 7, 12, 74, 81–82, 211, 215, Amphioxus, 120 Ascl,36 219 Amphystylic, 148 Asiaceratodus,21
    [Show full text]
  • 'Placoderm' (Arthrodira)
    Jobbins et al. Swiss J Palaeontol (2021) 140:2 https://doi.org/10.1186/s13358-020-00212-w Swiss Journal of Palaeontology RESEARCH ARTICLE Open Access A large Middle Devonian eubrachythoracid ‘placoderm’ (Arthrodira) jaw from northern Gondwana Melina Jobbins1* , Martin Rücklin2, Thodoris Argyriou3 and Christian Klug1 Abstract For the understanding of the evolution of jawed vertebrates and jaws and teeth, ‘placoderms’ are crucial as they exhibit an impressive morphological disparity associated with the early stages of this process. The Devonian of Morocco is famous for its rich occurrences of arthrodire ‘placoderms’. While Late Devonian strata are rich in arthrodire remains, they are less common in older strata. Here, we describe a large tooth-bearing jaw element of Leptodontich- thys ziregensis gen. et sp. nov., an eubrachythoracid arthrodire from the Middle Devonian of Morocco. This species is based on a large posterior superognathal with a strong dentition. The jawbone displays features considered syna- pomorphies of Late Devonian eubrachythoracid arthrodires, with one posterior and one lateral row of conical teeth oriented postero-lingually. μCT-images reveal internal structures including pulp cavities and dentinous tissues. The posterior orientation of the teeth and the traces of a putative occlusal contact on the lingual side of the bone imply that these teeth were hardly used for feeding. Similar to Compagopiscis and Plourdosteus, functional teeth were pos- sibly present during an earlier developmental stage and have been worn entirely. The morphological features of the jaw element suggest a close relationship with plourdosteids. Its size implies that the animal was rather large. Keywords: Arthrodira, Dentition, Food web, Givetian, Maïder basin, Palaeoecology Introduction important to reconstruct character evolution in early ‘Placoderms’ are considered as a paraphyletic grade vertebrates.
    [Show full text]
  • Australian Carnivorous Plants N
    AUSTRALIAN NATURAL HISTORY International Standard Serial Number: 0004-9840 1. Australian Carnivorous Plants N. S. LANDER 6. With a Thousand Sea Lions JUDITH E. KING and on the Auckland Islands BASIL J . MAR LOW 12. How Many Australians? W. D. BORRIE 17. Australia's Rainforest Pigeons F. H. J. CROME 22. Salt-M aking Among the Baruya WILLIAM C. CLARKE People of Papua New Guinea and IAN HUGHES 25. The Case for a Bush Garden JEAN WALKER 28. "From Greenland's Icy Mountains . .... ALEX RITCHIE F RO NT COVER . 36. Books Shown w1th its insect prey is Drosera spathulata. a Sundew common 1n swampy or damp places on the east coast of Australia between the Great Div1d1ng Range and the AUSTRALIAN NATURAL HISTORY 1s published quarterly by The sea. and occasionally Australian Museum. 6-8 College Street. Sydney found 1n wet heaths in Director Editorial Committee Managing Ed 1tor Tasman1a This species F H. TALBOT Ph 0. F.L S. HAROLD G COGGER PETER F COLLIS of carnivorous plant also occurs throughout MICHAEL GRAY Asia and 1n the Philip­ KINGSLEY GREGG pines. Borneo and New PATRICIA M McDONALD Zealand (Photo S Jacobs) See the an1cle on Australian car­ ntvorous plants on page 1 Subscrtpttons by cheque or money order - payable to The Australian M useum - should be sent to The Secretary, The Australian Museum. P.O. Box 285. Sydney South 2000 Annual Subscription S2 50 posted S1nglc copy 50c (62c posted) jJ ___ AUSTRALIAN CARNIVOROUS PLANTS By N . S.LANDER Over the last 100 years a certain on ly one.
    [Show full text]
  • Copyrighted Material
    06_250317 part1-3.qxd 12/13/05 7:32 PM Page 15 Phylum Chordata Chordates are placed in the superphylum Deuterostomia. The possible rela- tionships of the chordates and deuterostomes to other metazoans are dis- cussed in Halanych (2004). He restricts the taxon of deuterostomes to the chordates and their proposed immediate sister group, a taxon comprising the hemichordates, echinoderms, and the wormlike Xenoturbella. The phylum Chordata has been used by most recent workers to encompass members of the subphyla Urochordata (tunicates or sea-squirts), Cephalochordata (lancelets), and Craniata (fishes, amphibians, reptiles, birds, and mammals). The Cephalochordata and Craniata form a mono- phyletic group (e.g., Cameron et al., 2000; Halanych, 2004). Much disagree- ment exists concerning the interrelationships and classification of the Chordata, and the inclusion of the urochordates as sister to the cephalochor- dates and craniates is not as broadly held as the sister-group relationship of cephalochordates and craniates (Halanych, 2004). Many excitingCOPYRIGHTED fossil finds in recent years MATERIAL reveal what the first fishes may have looked like, and these finds push the fossil record of fishes back into the early Cambrian, far further back than previously known. There is still much difference of opinion on the phylogenetic position of these new Cambrian species, and many new discoveries and changes in early fish systematics may be expected over the next decade. As noted by Halanych (2004), D.-G. (D.) Shu and collaborators have discovered fossil ascidians (e.g., Cheungkongella), cephalochordate-like yunnanozoans (Haikouella and Yunnanozoon), and jaw- less craniates (Myllokunmingia, and its junior synonym Haikouichthys) over the 15 06_250317 part1-3.qxd 12/13/05 7:32 PM Page 16 16 Fishes of the World last few years that push the origins of these three major taxa at least into the Lower Cambrian (approximately 530–540 million years ago).
    [Show full text]
  • Redescription of Yinostius Major (Arthrodira: Heterostiidae) from the Lower Devonian of China, and the Interrelationships of Brachythoraci
    bs_bs_banner Zoological Journal of the Linnean Society, 2015. With 10 figures Redescription of Yinostius major (Arthrodira: Heterostiidae) from the Lower Devonian of China, and the interrelationships of Brachythoraci YOU-AN ZHU1,2, MIN ZHU1* and JUN-QING WANG1 1Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 2University of Chinese Academy of Sciences, Beijing 100049, China Received 29 December 2014; revised 21 August 2015; accepted for publication 23 August 2015 Yinosteus major is a heterostiid arthrodire (Placodermi) from the Lower Devonian Jiucheng Formation of Yunnan Province, south-western China. A detailed redescription of this taxon reveals the morphology of neurocranium and visceral side of skull roof. Yinosteus major shows typical heterostiid characters such as anterodorsally positioned small orbits and rod-like anterior lateral plates. Its neurocranium resembles those of advanced eubrachythoracids rather than basal brachythoracids, and provides new morphological aspects in heterostiids. Phylogenetic analysis based on parsimony was conducted using a revised and expanded data matrix. The analysis yields a novel sce- nario on the brachythoracid interrelationships, which assigns Heterostiidae (including Heterostius ingens and Yinosteus major) as the sister group of Dunkleosteus amblyodoratus. The resulting phylogenetic scenario suggests that eubrachythoracids underwent a rapid diversification during the Emsian, representing the placoderm response to the Devonian Nekton Revolution. The instability of the relationships between major eubrachythoracid clades might have a connection to their longer ghost lineages than previous scenarios have implied. © 2015 The Linnean Society of London, Zoological Journal of the Linnean Society, 2015 doi: 10.1111/zoj.12356 ADDITIONAL KEYWORDS: Brachythoraci – Heterostiidae – morphology – phylogeny – Placodermi.
    [Show full text]
  • The Earliest Phyllolepid (Placodermi, Arthrodira) from the Late Lochkovian (Early Devonian) of Yunnan (South China)
    Geol. Mag. 145 (2), 2008, pp. 257–278. c 2007 Cambridge University Press 257 doi:10.1017/S0016756807004207 First published online 30 November 2007 Printed in the United Kingdom The earliest phyllolepid (Placodermi, Arthrodira) from the Late Lochkovian (Early Devonian) of Yunnan (South China) V. DUPRET∗ &M.ZHU Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, P.O. Box 643, Xizhimenwai Dajie 142, Beijing 100044, People’s Republic of China (Received 1 November 2006; accepted 26 June 2007) Abstract – Gavinaspis convergens, a new genus and species of the Phyllolepida (Placodermi: Arthrodira), is described on the basis of skull remains from the Late Lochkovian (Xitun Formation, Early Devonian) of Qujing (Yunnan, South China). This new form displays a mosaic of characters of basal actinolepidoid arthrodires and more derived phyllolepids. A new hypothesis is proposed concerning the origin of the unpaired centronuchal plate of the Phyllolepida by a fusion of the paired central plates into one single dermal element and the loss of the nuchal plate. A phylogenetic analysis suggests the position of Gavinaspis gen. nov. as the sister group of the Phyllolepididae, in a distinct new family (Gavinaspididae fam. nov.). This new form suggests a possible Chinese origin for the Phyllolepida or that the common ancestor to Phyllolepida lived in an area including both South China and Gondwana, and in any case corroborates the palaeogeographic proximity between Australia and South China during the Devonian Period. Keywords: Devonian, China, Placodermi, phyllolepids, biostratigraphy, palaeobiogeography. 1. Introduction 1934). Subsequently, they were considered as either sharing an immediate common ancestor with the The Phyllolepida are a peculiar group of the Arthrodira Arthrodira (Denison, 1978), belonging to the Actin- (Placodermi), widespread in the Givetian–Famennian olepidoidei (Long, 1984), or being of indetermined of Gondwana (Australia, Antarctica, Turkey, South position within the Arthrodira (Goujet & Young,1995).
    [Show full text]
  • Download This PDF File
    BRANCHES ITS ALL IN HISTORY WALES NATURAL SOUTH PROCEEDINGS of the of NEW 139 VOLUME LINNEAN SOCIETY VOL. 139 DECEMBER 2017 PROCEEDINGS OF THE LINNEAN SOCIETY OF N.S.W. (Dakin, 1914) (Branchiopoda: Anostraca: (Dakin, 1914) (Branchiopoda: from south-eastern Australia from south-eastern Octopus Branchinella occidentalis , sp. nov.: A new species of A , sp. nov.: NTES FO V I E R X E X D L E C OF C Early Devonian conodonts from the southern Thomson Orogen and northern Lachlan Orogen in north-western Early Devonian conodonts from the southern New South Wales. Pickett. I.G. Percival and J.W. Zhen, R. Hegarty, Y.Y. Australia Wales, Silurian brachiopods from the Bredbo area north of Cooma, New South D.L. Strusz D.R. Mitchell and A. Reid. D.R. Mitchell and Thamnocephalidae). Timms. D.C. Rogers and B.V. Wales. Precis of Palaeozoic palaeontology in the southern tablelands region of New South Zhen. Y.Y. I.G. Percival and Octopus kapalae Predator morphology and behaviour in C THE C WALES A C NEW SOUTH D SOCIETY S LINNEAN O I M N R T G E CONTENTS Volume 139 Volume 31 December 2017 in 2017, compiled published Papers http://escholarship.library.usyd.edu.au/journals/index.php/LIN at Published eScholarship) at online published were papers individual (date PROCEEDINGS OF THE LINNEAN SOCIETY OF NSW OF PROCEEDINGS 139 VOLUME 69-83 85-106 9-56 57-67 Volume 139 Volume 2017 Compiled 31 December OF CONTENTS TABLE 1-8 THE LINNEAN SOCIETY OF NEW SOUTH WALES ISSN 1839-7263 B E Founded 1874 & N R E F E A Incorporated 1884 D C N T U O The society exists to promote the cultivation and O R F study of the science of natural history in all branches.
    [Show full text]
  • A New Lower Devonian Arthrodire (Placodermi) from the NW Siberian Platform
    Estonian Journal of Earth Sciences, 2013, 62, 3, 131–138 doi: 10.3176/earth.2013.11 A new Lower Devonian arthrodire (Placodermi) from the NW Siberian Platform Elga Mark-Kurik Institute of Geology at Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; [email protected] Received 24 August 2012, accepted 5 November 2012 Abstract. A new genus and species of arthrodires, Eukaia elongata (Actinolepidoidei, Placodermi), is described from the Lower Devonian, ?Pragian of the Turukhansk region, NW Siberian Platform. A single specimen of the fish, a skull roof, comes probably from the lower part of the Razvedochnyj Formation. The occurrence of an actinolepidoid arthrodire in the Early Devonian of this area of Siberia is unexpected. Eukaia shows some distant relationship with the genus Actinolepis, but several features indicate similarity to representatives of other arthrodires. Key words: actinolepidoid arthrodire, placoderm, Lower Devonian, ?Pragian, NW Siberian Platform. INTRODUCTION (Fig. 1). The first two units are Lochkovian in age, the lower part of the Razvedochnyj Fm belongs to the Pragian The northwestern part of the Siberian Platform in the and the upper part of the Razvedochnyj Fm plus the lower Russian Arctic is well known for rich and amphiaspidid- part of the Mantura Fm to the Emsian (Matukhin 1995). dominated Early Devonian fish faunas. One of the The Zub Fm (up to 150 m thick) consists of carbonaceous- important areas where these faunas have been discovered argillaceous and sulphate rocks. Invertebrates and fossil is the near-Yenisej zone of the Tunguska syneclise fishes, e.g. a cyathaspidid Steinaspis, are comparatively (Krylova et al.
    [Show full text]
  • Ptyctodontid Fishes (Vertebrata, Placodermi) from the Late Devonian Gogo Formation, Western Australia, with a Revision of the European Genus Ctenurella 0Rvig, 1960
    Ptyctodontid fishes (Vertebrata, Placodermi) from the Late Devonian Gogo Formation, Western Australia, with a revision of the European genus Ctenurella 0rvig, 1960 John A. LONG Department of Earth and Planetary Sciences, The Western Australian Museum, Francis Street, Perth, Western Australia, 6000 (Australia) Long J. A. 1997. — Ptyctodontid fishes (Vertebrata, Placodermi) from the Late Devonian Gogo Formation, Western Australia, with a revision of the European genus Ctenurella 0rvlg, 1960. Geodiversitas 19 (3) : 515-555. ABSTRACT A new, almost complete specimen of the ptyctodontid placoderm Campbellodus decipiens Miles et Young, 1977 enables description of the skull toof, trunk shield, visceral skeleton, pelvic girdle, dermal scale cover, and parts of the vertebtal column. A new reconstruction of the head shield of Ctenurella gladbachensis 0rvig, 1960 from Bergisch-Gladbach permits this taxon to be genetically defined from the Gogo species pteviously referred to that genus. The Gogo form is here referred to Austroptyctodus n.g. A new spe­ KEYWORDS cimen of Austroptyctodus gardineri Miles et Young, 1977, together with new Ptyctodontida, observations of Chelyophorus verneuili Agassiz, 1844 and Ctenurella gladba­ Devonian, chensis 0rvig, 1960, shows new information fot the endocranium, the hyoid Placodermi, Gogo, arch and visceral skeleton, identifying the previously identified "metaptery- Australia, goid" elements as paired nasal bones. The large visceral skeleton bone poste­ Austroptyctodus n.g., rior to the jaw joint in ptyctodontids is here identified as an elongated Ctenurella, Chelyophorus. interhyal. RESUME Une nouvelle description du toit crânien, de la cuirasse thoracique, du sque­ lette viscéral, de la ceinture pelvienne, de l'écaillure et de quelques éléments de la colonne vertébtale est proposée à partit d'un nouveau spécimen sub­ complet du ptyctodonte Campbellodus decipiens Miles et Young, 1977.
    [Show full text]
  • Family-Group Names of Fossil Fishes
    European Journal of Taxonomy 466: 1–167 ISSN 2118-9773 https://doi.org/10.5852/ejt.2018.466 www.europeanjournaloftaxonomy.eu 2018 · Van der Laan R. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:1F74D019-D13C-426F-835A-24A9A1126C55 Family-group names of fossil fishes Richard VAN DER LAAN Grasmeent 80, 1357JJ Almere, The Netherlands. Email: [email protected] urn:lsid:zoobank.org:author:55EA63EE-63FD-49E6-A216-A6D2BEB91B82 Abstract. The family-group names of animals (superfamily, family, subfamily, supertribe, tribe and subtribe) are regulated by the International Code of Zoological Nomenclature. Particularly, the family names are very important, because they are among the most widely used of all technical animal names. A uniform name and spelling are essential for the location of information. To facilitate this, a list of family- group names for fossil fishes has been compiled. I use the concept ‘Fishes’ in the usual sense, i.e., starting with the Agnatha up to the †Osteolepidiformes. All the family-group names proposed for fossil fishes found to date are listed, together with their author(s) and year of publication. The main goal of the list is to contribute to the usage of the correct family-group names for fossil fishes with a uniform spelling and to list the author(s) and date of those names. No valid family-group name description could be located for the following family-group names currently in usage: †Brindabellaspidae, †Diabolepididae, †Dorsetichthyidae, †Erichalcidae, †Holodipteridae, †Kentuckiidae, †Lepidaspididae, †Loganelliidae and †Pituriaspididae. Keywords. Nomenclature, ICZN, Vertebrata, Agnatha, Gnathostomata.
    [Show full text]
  • Fossil Fishes (Arthrodira and Acanthodida) from the Upper Devonian Chadakoin Formation of Erie County, Pennsylvania1
    Fossil Fishes (Arthrodira and Acanthodida) from the Upper Devonian Chadakoin Formation of Erie County, Pennsylvania1 KEVIN M. YEAGER2, Department of Geosciences, Edinboro University of Pennsylvania, Edinboro, PA 16444 ABSTRACT. Several fossil fish were discovered in 1994 in the Upper Devonian Chadakoin Formation, near Howard Falls, just outside of Edinboro, Erie County, Pennsylvania. These fossils are fragmentary in nature and have been described based on their morphology. They are identified as the median dorsal plate of the large arthrodire Dunkleosteus terrelli Newberry, 1873, and the spines of probable acanthodian fishes. The identification of the median dorsal plate of Dunkleosteus represents a new occurrence of the genus. In general, these discoveries are of scientific interest because very little is known about the composition of the fish fauna that inhabited the Devonian shallow seas of northwestern Pennsylvania. OHIO J. SCI. 96 (3): 52-56,1996 INTRODUCTION Pennsylvania were deposited in a shallow water en- This study was an outgrowth of geologic field map- vironment. The shallower bottom sediments were oxy- ping being conducted in the Howard Falls area near genated by waves and currents, and supported a variety Edinboro, Pennsylvania. In August 1994, the first of of scavengers. several vertebrate fossil specimens were discovered. The Nonetheless, reduced preservation potential alone first specimen was excavated, reconstructed, and identi- does not explain why fossil fishes are poorly known fied by specialists from the Pennsylvania State Museum, from Pennsylvania. The Devonian rocks of southern Harrisburg. Since that time, four more vertebrate speci- New York were deposited in shallow waters also, but mens have been collected. These specimens were have yielded a diverse fish fauna (Eastman 1907).
    [Show full text]
  • Comments on Distribution and Taphonomy of Devonian Placoderms in the Holy Cross Mountains, Poland
    Comments on distribution and taphonomy of Devonian placoderms in the Holy Cross Mountains, Poland Piotr Szrek Taphonomy, stratigraphical occurrences and geographical distribution of Devonian placoderms in the Holy Cross Mountains described by former researchers is revised. Four main types of preservation states occur in the placoderm fossils of that region. Fossil preservation depends on geodynamic processes. Mechanical damage appears to be the main factor explaining the final state of preservation. For most of the previously described as well as the new specimens, the occurrences were dated biostratigraphically by palynomorphs and conodonts. The taxonomic distribution of placoderms in space and time within the Devonian strata in the Holy Cross Mountains correlates well with the Devonian nekton revolution, but it is also controlled by the regional palaeoecology and local synsedimentary tectonics of the carbonate platform. • Key words: Placodermi, Devonian, distribution, taphonomy, Holy Cross Mountains, Poland. SZREK, P. 2020. Comments on distribution and taphonomy of Devonian placoderms in the Holy Cross Mountains, Poland. Bulletin of Geosciences 95(1), 23–39 (7 figures, 2 tables). Czech Geological Survey, Prague. ISSN 1214-1119. Manuscript received June 4, 2019; accepted in revised form December 16, 2019; published online January 21, 2020; issued March 31, 2020. Piotr Szrek, Polish Geological Institute–National Research Institute, 4 Rakowiecka Street, 00-975 Warsaw, Poland; piotr. [email protected] & University of Warsaw, Faculty of Geology, Żwirki i Wigury Street 93, 02-089 Warsaw, Poland Placodermi McCoy, 1848 (armoured fishes) are a group areas. However, Kulczycki worked prior to the publication of early jawed vertebrates that appeared in the Silurian of Wegener’s theory of continental drift, resulting in some period and reached maximum diversification during the erroneous palaeogeographic conclusions, but his cor- Devonian.
    [Show full text]