International Conference
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neuroradiologic Findings in Fucosidosis, a Rare Lysosomal Storage Disease
Neuroradiologic Findings in Fucosidosis, a Rare Lysosomal Storage Disease James M. Provenzale, Daniel P. Barboriak, and Katherine Sims Summary: Fucosidosis is a rare lysosomal storage disorder with vacuolated secondary lysosomes containing some fine the clinical features of mental retardation, cardiomegaly, dysos- fibrillar material and lamellated membrane structures. tosis multiplex, progressive neurologic deterioration, and early A magnetic resonance (MR) examination at the age of death. The neuroradiologic findings in two patients are reported, 10 years showed confluent regions of hyperintense signal and include abnormalities within the globus pallidus (both pa- on T2-weighted images in the periventricular regions, tients) and periventricular white matter (one patient). most prominent surrounding the atria of the lateral ventri- cles. Hyperintense signal was noted in the globus pallidus Index terms: Brain, metabolism; Degenerative disease, Pediatric on T1-weighted images, with corresponding hypointense neuroradiology signal on T2-weighted images (Fig 1). Fucosidosis is a rare metabolic disorder caused by decreased amounts of the enzyme Case 2 a-L-fucosidase, which results in the accumula- A 2-year-old boy was examined for speech delay and tion of fucose-rich storage products within psychomotor retardation. He was born at term after a many organs, including the brain. Patients with normal pregnancy, and appropriate development oc- this disorder usually have delayed intellectual curred during the first year of life. However, by age 2 years, and motor development, and often die within the patient had not developed speech, exhibited autistic the first decade of life. Computed tomographic behavior, and performed motor tasks poorly. Physical ex- (CT) findings have been reported in a few cases amination findings included coarsened facial features, nar- (1, 2). -
Down Regulation of Membrane-Bound Neu3 Constitutes a New
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publications of the IAS Fellows IJC International Journal of Cancer Down regulation of membrane-bound Neu3 constitutes a new potential marker for childhood acute lymphoblastic leukemia and induces apoptosis suppression of neoplastic cells Chandan Mandal1, Cristina Tringali2, Susmita Mondal1, Luigi Anastasia2, Sarmila Chandra3, Bruno Venerando2 and Chitra Mandal1 1 Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, A Unit of Council of Scientific and Industrial Research, Govt of India, 4, Raja S. C. Mullick Road, Kolkata 700032, India 2 Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, and IRCCS Policlinico San Donato, San Donato, Milan, Italy 3 Department of Hematology, Kothari Medical Centre, Kolkata 700027, India Membrane-linked sialidase Neu3 is a key enzyme for the extralysosomal catabolism of gangliosides. In this respect, it regulates pivotal cell surface events, including trans-membrane signaling, and plays an essential role in carcinogenesis. In this report, we demonstrated that acute lymphoblastic leukemia (ALL), lymphoblasts (primary cells from patients and cell lines) are characterized by a marked down-regulation of Neu3 in terms of both gene expression (230 to 40%) and enzymatic activity toward ganglioside GD1a (225.6 to 30.6%), when compared with cells from healthy controls. Induced overexpression of Neu3 in the ALL-cell line, MOLT-4, led to a significant increase of ceramide (166%) and to a parallel decrease of lactosylceramide (255%). These events strongly guided lymphoblasts to apoptosis, as we assessed by the decrease in Bcl2/ Bax ratio, the accumulation of Neu3 transfected cells in the sub G0–G1 phase of the cell cycle, the enhanced annexin-V positivity, the higher cleavage of procaspase-3. -
Oxidative Stress, a New Hallmark in the Pathophysiology of Lafora Progressive Myoclonus Epilepsy Carlos Romá-Mateo *, Carmen Ag
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC 1 Oxidative stress, a new hallmark in the pathophysiology of Lafora progressive myoclonus epilepsy Carlos Romá-Mateo1,2*, Carmen Aguado3,4*, José Luis García-Giménez1,2,3*, Erwin 3,4 3,5 1,2,3# Knecht , Pascual Sanz , Federico V. Pallardó 1 FIHCUV-INCLIVA. Valencia. Spain 2 Dept. Physiology. School of Medicine and Dentistry. University of Valencia. Valencia. Spain 3 CIBERER. Centro de Investigación Biomédica en Red de Enfermedades Raras. Valencia. Spain. 4 Centro de Investigación Príncipe Felipe. Valencia. Spain. 5 IBV-CSIC. Instituto de Biomedicina de Valencia. Consejo Superior de Investigaciones Científicas. Valencia. Spain. * These authors contributed equally to this work # Corresponding author: Dr. Federico V. Pallardó Dept. Physiology, School of Medicine and Dentistry, University of Valencia. E46010-Valencia, Spain. Fax. +34963864642 [email protected] 2 ABSTRACT Lafora Disease (LD, OMIM 254780, ORPHA501) is a devastating neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies and caused, in most cases, by mutations in either EPM2A or EPM2B genes, encoding respectively laforin, a phosphatase with dual specificity that is involved in the dephosphorylation of glycogen, and malin, an E3-ubiquitin ligase involved in the polyubiquitination of proteins related with glycogen metabolism. Thus, it has been reported that laforin and malin form a functional complex that acts as a key regulator of glycogen metabolism and that also plays a crucial role in protein homeostasis (proteostasis). In relationship with this last function, it has been shown that cells are more sensitive to ER-stress and show defects in proteasome and autophagy activities in the absence of a functional laforin-malin complex. -
An in Vitro Model for Lysosomal Storage Diseases Using Aspartylglucosaminuria Patient Cells
AN IN VITRO MODEL FOR LYSOSOMAL STORAGE DISEASES USING ASPARTYLGLUCOSAMINURIA PATIENT CELLS Master´s Thesis University of Turku MSc Degree Programme in Biomedical Sciences Drug Discovery and Development 4/2020 Maria Kjellman Supervisors Riikka Äänismaa, PhD Senior Scientist Therapy Area Rare Diseases Orion Corporation Orion Pharma Jarkko Venäläinen, PhD Principal Scientist Therapy Area Rare Diseases Orion Corporation Orion Pharma Ullamari Pesonen, PhD Professor of Pharmacology and Drug Development Institute of Biomedicine Faculty of Medicine University of Turku Pharmacology, Drug Development and Therapeutics The originality of this thesis has been verified in accordance with the University of Turku quality assurance system using the Turnitin OriginalityCheck service. ABSTRACT UNIVERSITY OF TURKU Institute of Biomedicine, Faculty of Medicine KJELLMAN, MARIA: An In Vitro Model for Lysosomal Storage Diseases Using Aspartylglucosaminuria Patient Cells Master‘s Thesis, 73 pages MSc Degree Programme in Biomedical Sciences Drug Discovery and Development April 2020 BACKGROUND Lysosomes are acidic organelles responsible for recycling of metabolic byproducts and cellular debris, and there are approximately 60 enzymes within lysosomes responsible for the recycling process. These enzymes can be malfunctional due to genetic mutations, which results in a lysosomal storage disease (LSD). One of these diseases is aspartylglucosaminuria (AGU) caused by an incorrectly folded aspartylglucosaminidase (AGA) enzyme, which results in a buildup of the substrate aspartylglucosamine. This enzymatic deficiency impairs the cellular function in both central nervous system (CNS) and periphery manifesting as an impaired physical and mental development. UNMET MEDICAL NEED Currently, there are no curative or even symptom alleviating treatments available. AIM The aim of this research was to establish a reliable in vitro model of LSD to enable repeatable experiments for drug development purposes. -
Program Download
5TH GLYCOPROTEINOSES INTERNATIONAL CONFERENCE ROME, ITALY NOVEMBER 1-4 2017 EMBRACING INNOVATION ADVANCING THE CURE ISMRD would like to say a very special thank you to the following organizations and companies who have very generously given donations to support the 5th International Conference on Glycoproteinoses. THE WAGNER FOUNDATION ISMRD is very grateful for all the help and support that Symposia has given us in the organization of our Conference on-the-ground support in Rome. Dedicated to helping patients in the rare disease community with unmet medical needs Ultragenyx Pharmaceutical Inc. is a clinical-stage biopharmaceutical company committed to creating new therapeutics to combat serious, debilitating diseases. www.ultragenyx.com © 2017 Ultragenyx Pharmaceutical Inc. www.ultragenyx.com 8/16 MRCP-UGNX-00008 5TH GLYCOPROTEINOSES INTERNATIONAL CONFERENCE 2017 Welcome to Rome! On behalf of ISMRD, I would like to welcome Of course, our conference would not take you all to the Fifth Glycoproteinoses place without significant charitable donations. International Conference on 'Embracing I would like to thank the following companies Innovation and Advancing the Cure'. and foundations, Ultragenyx, EveryLife Foundation, Sanofi/Genzyme, Amicus and The ISMRD is thrilled to bring our International Wagner Foundation. I would also like to extend Conference to Europe allowing us to connect our very grateful thanks to Symposia who are with families, researchers, clinicians, support event planners, who have worked alongside us groups and others who work in the field of rare here in Rome and have helped you check in at diseases. But, more importantly to help make registration. They will be on site throughout the the invaluable connections for families who meeting offering support and answering any perhaps have never met another family with questions you may have. -
File Download
Radiological and clinical characterization of the lysosomal storage disorders: non-lipid disorders Minzhi Xing, Emory University E I Parker, Emory University A Moreno-De-Luca, Geisinger Health System Elie Harmouche, Emory University Michael Terk, Emory University Journal Title: British Journal of Radiology Volume: Volume 87, Number 1033 Publisher: British Institute of Radiology | 2014-01-01, Pages 20130467-20130467 Type of Work: Article | Final Publisher PDF Publisher DOI: 10.1259/bjr.20130467 Permanent URL: https://pid.emory.edu/ark:/25593/pr2p5 Final published version: http://dx.doi.org/10.1259/bjr.20130467 Copyright information: © 2014 The Authors. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits distribution of derivative works, making multiple copies, distribution, public display, and publicly performance, provided the original work is properly cited. This license requires credit be given to copyright holder and/or author, copyright and license notices be kept intact. Accessed September 24, 2021 3:09 PM EDT BJR © 2014 The Authors. Published by the British Institute of Radiology Received: Revised: Accepted: doi: 10.1259/bjr.20130467 28 July 2013 29 October 2013 8 November 2013 Cite this article as: Xing M, Parker EI, Moreno-De-Luca A, Harmouche E, Terk MR. Radiological and clinical characterization of the lysosomal storage disorders: non-lipid disorders. Br J Radiol 2014;87:20130467. REVIEW ARTICLE Radiological -
Childhood Dementia Initiative
Childhood Dementia in Australia: quantifying the burden on patients, carers, the healthcare system and our society Prepared by: Dominic Tilden, Madeline Valeri and Magda Ellis THEMA Consulting Pty Ltd www.thema.net Prepared for: Childhood Dementia Initiative www.childhooddementia.org THEMA Consulting Report (2020). Childhood Dementia in Australia: quantifying the burden on patients, carers, the healthcare system and our society. www.childhooddementia.org/burdenstudy Released on the 18th November 2020 Sydney, Australia. © Childhood Dementia Initiative 2020 Website address for further details. www.childhooddementia.org KEY POINTS : Childhood dementia is a recognised, albeit little known group of disorders, comprised of more than 70 individual genetic conditions. : Childhooddementiadisordersareprogressiveanddevastatinginnatureandposeasignificantlycomplex medicalchallenge,withpatientstypicallyrelyingonfulltimesupportivecareandextensivehealthcare services in the mid-later stages of the disease. : ThisstudydemonstratesforthefirsttimetheburdenassociatedwithchildhooddementiainAustralia, the tremendous negative impact it has on affected children, families and the community, and the resulting economic costs. : Effective therapeutic intervention remains an unmet clinical need for the vast majority of childhood dementia disorders. : It is estimated that the collective incidence of disorders that cause childhood dementia is 36 per 100,000 live births. This equates to 129 births in Australia each year. : In 2021, it is estimated there will be 2273 Australians -
Fast Urinary Screening of Oligosaccharidoses by MALDI-TOF/TOF Mass Spectrometry
Fast urinary screening of oligosaccharidoses by MALDI-TOF/TOF mass spectrometry. Laurent Bonesso, Monique Piraud, Céline Caruba, Emmanuel van Obberghen, Raymond Mengual, Charlotte Hinault To cite this version: Laurent Bonesso, Monique Piraud, Céline Caruba, Emmanuel van Obberghen, Raymond Mengual, et al.. Fast urinary screening of oligosaccharidoses by MALDI-TOF/TOF mass spectrometry.. Orphanet Journal of Rare Diseases, BioMed Central, 2014, 9 (1), pp.19. 10.1186/1750-1172-9-19. inserm- 00945684 HAL Id: inserm-00945684 https://www.hal.inserm.fr/inserm-00945684 Submitted on 12 Feb 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Bonesso et al. Orphanet Journal of Rare Diseases 2014, 9:19 http://www.ojrd.com/content/9/1/19 RESEARCH Open Access Fast urinary screening of oligosaccharidoses by MALDI-TOF/TOF mass spectrometry Laurent Bonesso1, Monique Piraud5, Céline Caruba1, Emmanuel Van Obberghen1,2,3,4, Raymond Mengual1† and Charlotte Hinault1,2,3,4*† Abstract Background: Oligosaccharidoses, which belong to the lysosomal storage diseases, are inherited metabolic disorders due to the absence or the loss of function of one of the enzymes involved in the catabolic pathway of glycoproteins and indirectly of glycosphingolipids. -
Fucosidosis: Ultrastructural Study of Conjunctiva and Skin and Enzyme Analysis of Tears
Fucosidosis: ultrastructural study of conjunctiva and skin and enzyme analysis of tears /. Libert,9 F. Van Hoof," and M. Tondeur*** Conjunctival and skin biopsies from two new patients with fucosidosis were studied by electron microscopy. In both tissues, the connective tissue cells and the capillary endothelial cells were filled with single membrane limited inclusions of two types: (1) Clear inclusions containing a fibrillogranular reticulum. (2) Dark inclusions with a dense granular material. Specific stainings in ultrastructure suggest that these inclusions contain oligosaccharide chains. The ultrastructural aspect is characteristic for fucosidosis. Enzyme studies on tears realize an easy and secure technique for the diagnosis of the disease. -Lhe interest of conjunctival biopsy in the io-i5 Most of the lysosomal acid hydrolases study of storage diseases is now abun- can be assayed in tears, and their defi- dantly documented. Pathologic changes ciency allows the diagnosis of several other have been demonstrated in the systemic inborn lysosomal diseases.16"18 mucopolysaccharidoses,1 several mucolip- Fucosidosis, an autosomal lysosomal dis- idoses,2"5 Fabry's disease,6'7 Niemann- ease, is characterized by the absence or the Pick's disease,8 and cystinosis.9 profound deficiency of a-L-fucosidase,19"21 The usefulness of tears for the enzymatic which results in the widespread accumula- screening of inborn lysosomal diseases was tion of fucose-containing glycosphingolip- recognized about two years ago and ap- ids, oligosaccharides, and polysaccharides, plied to Tay-Sachs and Fabry's diseases.7' together with an increased excretion of fucosides in urine.22 Clinically, a severe and a mild phenotype have been distin- From the Departments of Ophthalmology" and guished.23' 24 The patients suffering from Pediatrics,00" Hopital Saint-Pierre, Universite Libre de Bruxelles, and from the International the severe form present a progressive psy- Institute of Cellular and Molecular Patholo- chomotor retardation and a moderate gy,00 Universite Catholique de Louvain. -
Geting Processes
Translational Science of Rare Diseases 4 (2019) 133–157 133 DOI 10.3233/TRD-190047 IOS Press Practical management of lysosomal storage disorders (LSDs) Pranoot Tanpaiboona,b,∗ aAdvanced Diagnostics Genetics, Genomics and R&D, Quest Diagnostics, San Juan Capistrano, CA, USA bChildren’s National Rare Disease Institute, Michigan Ave NW, Washington, DC, USA Abstract. Lysosomal Storage Disorders (LSDs) comprise a group of disorders causing defects at the organelle and sub- organelle level with a wide range of pathophysiologies and clinical consequences. Signs and symptoms of LSDs involve multiple organ systems. The main pathological mechanism of most LSDs was previously thought to be cytotoxic effects of a specific storage substance secondary to functional impairment or insufficient lysosomal enzymes. Other pathophysiologic mechanisms of LSDs have been discovered such as dysfunction of cell signaling, disturbance of cell homeostasis, inflamma- tory process and dysfunction of autophagy. The goal of treatment is to balance equilibrium of the enzyme and the accumulated substance. Replacing deficient enzyme through exogenous enzyme replacement therapy (ERT) or stem cell transplantation has been the main method of treatment for several years. The ability of ERT to alleviate neurologic symptoms is limited owing to the inability of the exogenous enzyme to cross the blood-brain barrier. The benefit of stem cell transplantation on neurologic symptoms has been demonstrated for Hurler syndrome, but it is not clear for most LSDs. Other strategies, such as gene therapy, have been under development to overcome this limitation and provide a better outcome. Early treatment or pre-symptomatic treatment could also slow disease progression and improve prognosis. -
Lysosomal Diseases
THE GLYCOPROTEINOSES: SECOND INTERNATIONAL WORKSHOP ON ADVANCES IN PATHOGENESIS AND THERAPY JULY 26-27, 2007 ANN ARBOR, MICHIGAN Scientific Conference Day 1 Morning Sessions, July 26 7:30-8:15 Continental Breakfast 8:15-8:30 Welcome and Introductions, Opening Remarks – Goals of the conference, progress since the last conference - Steven Walkley (with additional comments by officials from ISMRD, NINDS, ORD) 8:30-9:15 Plenary Address Cross-Correction: Looking Back, Looking Forward – Elizabeth Neufeld Session 1: Animal Models, Pathogenesis, Experimental Therapies (Chair, Mark Haskins) α-Mannosidosis 9:15-9:35 Enzyme replacement therapy for α-Mannosidosis - Judith Blanz 9:35-9:55 α-Mannosidosis in the Guinea Pig – Pathophysiological, behavioral, and treatment issues - John Hopwood 10:00-10:15 Break α-Mannosidosis (continued) 10:15-10:35 Strategies for translating gene therapy in the brain from rodents to clinical use - John Wolfe 10:35-10:55 Quantitative Imaging of gray matter disease associated with feline α- mannosidosis – Charles Vite β-Mannosidosis 10:55-11:15 β-Mannosidosis mice – A model for the human disease? – Karen Friderici Fucosidosis 11:15-11:30 Intrathecal enzyme infusion therapy in canine fucosidosis – Gauthami Kondagari 11:30-12:00 General Discussion 12:00-1:30 Lunch Afternoon Session, July 26 1:30-2:15 Special Lecture: The Glycoproteinoses: Limited Progress in Molecular Insight still Surpasses Present-day Treatment Efficacy – Jules Leroy Session 2: Animal Models, Pathogenesis, Experimental Therapies (Chair, John Wolfe) -
4Th Glycoproteinoses International Conference Advances in Pathogenesis and Therapy
Program & Abstracts 4TH GLYCOPROTEINOSES INTERNATIONAL CONFERENCE ADVANCES IN PATHOGENESIS AND THERAPY ISMRD ST. LOUIS, MISSOURI, UNITED STATES Program & Abstracts I SM R D ADVANCES IN PATHOGENESIS AND THERAPY Program & Abstracts ISMRD would like to say A Very Special Thank You to the following organizations and companies who have very generously given donations and sponsorship to support the 4th International Conference on Glycoproteinoses THE PRENILLE EDWARD MALLINCKRODT FOUNDATION JR FOUNDATION MARK HASKINS I SM R D 4TH GLYCOPROTEINOSES INTERNATIONAL CONFERENCE 2015 ADVANCES IN PATHOGENESIS AND THERAPY Program & Abstracts ISMRD is very proud to display 10 featured Expression of Hope artworks to be Auctioned at the Gala Dinner. These beautiful prints are from Genzyme’s featured Artwork selection. Contents Welcome 1 SCIENTIFIC COMMITTEE: Stuart Kornfeld ISMRD Mission & Governance 3 (Chair, Scientifi c Planning Committee) Steve Walkley Sara Cathey ISMRD General Information 5 Richard Steet Sean Thomas Ackley, Philippines Miriam Storchli, Switzerland Alessandra d’Azzo ‘Hope’ by Sarah Noble, New Zealand Scientifi c Program 9 FAMILY CONFERENCE COMMITTEE: Family Program for Mucolipidosis 11 Jenny Noble (Conference Organiser) Jackie James (Conference Organiser Family Program For Alpha Mannosidosis /Sialidosis/ 13 - St. Louis) Fucosidosis/Aspartylglucosaminuria Mark Stark John Forman ‘All around the world’ by Zih Yun Li , Taiwan Childrens Program 16 Susan Kester Carolyn Paisley-Dew Tish Adkins Abstracts 17 Sara DeAngelis, Russia Gayle Rose, United States Speaker Profi les 60 Delegates 81 Helen Walker, Australia Nicklas Harkins, Canada Naomi Arai, Japan David Wentworth, Serbia I SM R D 4TH GLYCOPROTEINOSES INTERNATIONAL CONFERENCE 2015 ADVANCES IN PATHOGENESIS AND THERAPY Program & Abstracts On behalf of the Scientifi c Planning Committee, I want to extend a warm welcome to all the investigators and Welcome! families who have traveled to St.