Mucopolysaccharidoses and Mucolipidoses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sphingolipid Metabolism Diseases ⁎ Thomas Kolter, Konrad Sandhoff
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1758 (2006) 2057–2079 www.elsevier.com/locate/bbamem Review Sphingolipid metabolism diseases ⁎ Thomas Kolter, Konrad Sandhoff Kekulé-Institut für Organische Chemie und Biochemie der Universität, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany Received 23 December 2005; received in revised form 26 April 2006; accepted 23 May 2006 Available online 14 June 2006 Abstract Human diseases caused by alterations in the metabolism of sphingolipids or glycosphingolipids are mainly disorders of the degradation of these compounds. The sphingolipidoses are a group of monogenic inherited diseases caused by defects in the system of lysosomal sphingolipid degradation, with subsequent accumulation of non-degradable storage material in one or more organs. Most sphingolipidoses are associated with high mortality. Both, the ratio of substrate influx into the lysosomes and the reduced degradative capacity can be addressed by therapeutic approaches. In addition to symptomatic treatments, the current strategies for restoration of the reduced substrate degradation within the lysosome are enzyme replacement therapy (ERT), cell-mediated therapy (CMT) including bone marrow transplantation (BMT) and cell-mediated “cross correction”, gene therapy, and enzyme-enhancement therapy with chemical chaperones. The reduction of substrate influx into the lysosomes can be achieved by substrate reduction therapy. Patients suffering from the attenuated form (type 1) of Gaucher disease and from Fabry disease have been successfully treated with ERT. © 2006 Elsevier B.V. All rights reserved. Keywords: Ceramide; Lysosomal storage disease; Saposin; Sphingolipidose Contents 1. Sphingolipid structure, function and biosynthesis ..........................................2058 1.1. -
Neuroradiologic Findings in Fucosidosis, a Rare Lysosomal Storage Disease
Neuroradiologic Findings in Fucosidosis, a Rare Lysosomal Storage Disease James M. Provenzale, Daniel P. Barboriak, and Katherine Sims Summary: Fucosidosis is a rare lysosomal storage disorder with vacuolated secondary lysosomes containing some fine the clinical features of mental retardation, cardiomegaly, dysos- fibrillar material and lamellated membrane structures. tosis multiplex, progressive neurologic deterioration, and early A magnetic resonance (MR) examination at the age of death. The neuroradiologic findings in two patients are reported, 10 years showed confluent regions of hyperintense signal and include abnormalities within the globus pallidus (both pa- on T2-weighted images in the periventricular regions, tients) and periventricular white matter (one patient). most prominent surrounding the atria of the lateral ventri- cles. Hyperintense signal was noted in the globus pallidus Index terms: Brain, metabolism; Degenerative disease, Pediatric on T1-weighted images, with corresponding hypointense neuroradiology signal on T2-weighted images (Fig 1). Fucosidosis is a rare metabolic disorder caused by decreased amounts of the enzyme Case 2 a-L-fucosidase, which results in the accumula- A 2-year-old boy was examined for speech delay and tion of fucose-rich storage products within psychomotor retardation. He was born at term after a many organs, including the brain. Patients with normal pregnancy, and appropriate development oc- this disorder usually have delayed intellectual curred during the first year of life. However, by age 2 years, and motor development, and often die within the patient had not developed speech, exhibited autistic the first decade of life. Computed tomographic behavior, and performed motor tasks poorly. Physical ex- (CT) findings have been reported in a few cases amination findings included coarsened facial features, nar- (1, 2). -
The Metabolism of Tay-Sachs Ganglioside: Catabolic Studies with Lysosomal Enzymes from Normal and Tay-Sachs Brain Tissue
The Metabolism of Tay-Sachs Ganglioside: Catabolic Studies with Lysosomal Enzymes from Normal and Tay-Sachs Brain Tissue JOHN F. TALLMAN, WILLIAM G. JOHNSON, and ROSCOE 0. BRADY From the Developmental and Metabolic Neurology Branch, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland 20014, and the Department of Biochemistry, Georgetown University School of Medicine, Washington, D. C. 20007 A B S T R A C T The catabolism of Tay-Sachs ganglioside, date fronm the 19th century and over 599 cases have been N-acetylgalactosaminyl- (N-acetylneuraminosyl) -galac- reported (1). Onset of the disease is in the first 6 months tosylglucosylceramide, has been studied in lysosomal of life and is characterized by apathy, hyperacusis, motor preparations from normal human brain and brain ob- weakness, and appearance of a macular cherry-red spot tained at biopsy from Tay-Sachs patients. Utilizing Tay- in the retina. Seizures and progressive mental deteriora- Sachs ganglioside labeled with '4C in the N-acetylgalac- tion follow with blindness, deafness, and spasticity, lead- tosaminyl portion or 3H in the N-acetylneuraminosyl ing to a state of decerebrate rigidity. These infants usu- portion, the catabolism of Tay-Sachs ganglioside may be ally die by 3 yr of age (2). initiated by either the removal of the molecule of A change in the chemical composition of the brain of N-acetylgalactosamine or N-acetylneuraminic acid. The such patients was first detected by Klenk who showed activity of the N-acetylgalactosamine-cleaving enzyme that there was an increase in the ganglioside content (hexosaminidase) is drastically diminished in such compared with normal human brain tissue (3). -
GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies
International Journal of Molecular Sciences Review GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies Andrés Felipe Leal 1 , Eliana Benincore-Flórez 1, Daniela Solano-Galarza 1, Rafael Guillermo Garzón Jaramillo 1 , Olga Yaneth Echeverri-Peña 1, Diego A. Suarez 1,2, Carlos Javier Alméciga-Díaz 1,* and Angela Johana Espejo-Mojica 1,* 1 Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; [email protected] (A.F.L.); [email protected] (E.B.-F.); [email protected] (D.S.-G.); [email protected] (R.G.G.J.); [email protected] (O.Y.E.-P.); [email protected] (D.A.S.) 2 Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 110231, Colombia * Correspondence: [email protected] (C.J.A.-D.); [email protected] (A.J.E.-M.); Tel.: +57-1-3208320 (ext. 4140) (C.J.A.-D.); +57-1-3208320 (ext. 4099) (A.J.E.-M.) Received: 6 July 2020; Accepted: 7 August 2020; Published: 27 August 2020 Abstract: GM2 gangliosidoses are a group of pathologies characterized by GM2 ganglioside accumulation into the lysosome due to mutations on the genes encoding for the β-hexosaminidases subunits or the GM2 activator protein. Three GM2 gangliosidoses have been described: Tay–Sachs disease, Sandhoff disease, and the AB variant. Central nervous system dysfunction is the main characteristic of GM2 gangliosidoses patients that include neurodevelopment alterations, neuroinflammation, and neuronal apoptosis. Currently, there is not approved therapy for GM2 gangliosidoses, but different therapeutic strategies have been studied including hematopoietic stem cell transplantation, enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, and gene therapy. -
Hyperglycopeptiduria in Genetic Mucolipidoses
Tohoku J. exp. Med., 1974, 112, 373-380 Hyperglycopeptiduria in Genetic Mucolipidoses TADAO ORII, TAKAMICHI CHIBA, RYOJI MINAMI, KAZUKO S UKEGAWA and TooRu NAKAO Department of Pediatrics, Sapporo Medical College, Sapporo ORII, T., CHmA, T., MINAMI, R., SUKEUAWA,K. and NAKAO, T. Hyper glycopeptiduria in Genetic Mucolipidoses. Tohoku J. exp. Med., 1974, 112 (4), 373-380 -Urinary cetylpyridinium chloride (CPC)-precipitates and non-CPC- precipitates in normal male children and seven patients with a new type of mucolipidosis, GM1-gangliosidosis type 1, I-cell disease, Hurler syndrome, Morquio syndrome, Gaucher's disease adult type and Tay-Sachs disease were studied using several methods including Sephadex G-25 gel filtration, ECTEOLA-cellulose column chromatography and enzymatic digestion with chondroitinase ABC. 1) Considerable amounts of glycopeptide fractions were detected in the urine of the patients with a new type of mucolipidosis, Gm1-gangliosidosis type 1, I-cell disease and also Gaucher's disease adult type compared with that of normal male children and other patients. 2) The total acid mucopolysaccharides excreted into the urine from two patients with Hurler syndrome and Morquio syndrome were much higher than those excreted in normal male children and other patients. 3) Large amounts of the chondroitinase ABC-resistant acid mucopolysaccharides were found in the urine of patients with Hurler syndrome, Morquio syndrome and Gm,-gangliosidosis type 1. mucolipidoses; glycopeptiduria; Gaucher's disease A group of storage disease which exhibits signs and symptoms of both mucopolysaccharidoses and sphingolipidoses has tentatively been classified as the mucolipidoses by Spranger and Wiedemann (1970). With the exception of the Austin type of sulfatidosis, it has been reported by several workers that the patients with mucolipidosis generally show normal urinary excretion of uronic acid-containing mucopolysaccharides. -
Correction of the Enzymic Defect in Cultured Fibroblasts from Patients with Fabry's Disease: Treatment with Purified A-Galactosidase from Ficin
Pediat. Res. 7: 684-690 (1973) Fabry's disease genetic disease ficin trihexosylceramide a-galactosidase Correction of the Enzymic Defect in Cultured Fibroblasts from Patients with Fabry's Disease: Treatment with Purified a-Galactosidase from Ficin GLYN DAWSON1341, REUBEN MATALON, AND YU-TEH LI Departments of Pediatrics and Biochemistry, Joseph P. Kennedy, Jr., Mental Retardation Research Center, University of Chicago, Chicago, Illinois, USA Extract Cultured skin fibroblasts from patients with Fabry's disease showed the characteristic a-galactosidase deficiency and accumulated a four- to sixfold excess of trihexosylceram- ide (GL-3). To demonstrate the correction, cells previously labeled with U-14G-glucose were grown in medium containing a purified a-galactosidase preparation obtained from ficin. The results demonstrated that a-galactosidase was taken up rapidly from the medium and that, despite its apparent instability in the fibroblasts, it was able to become incorporated into lysosomes and catabolize the stored trihexosylceramide. These findings support the reports of therapeutic endeavors by renal transplantation and plasma infusion in Fabry's disease and suggest the extension of such studies to other related disorders in which the cultured skin fibroblasts are chemically abnormal, namely, Gaucher's disease, lactosylceramidosis, and GM2-gangliosidosis type II. Speculation It may be possible to replace the specific missing lysosomal hydrolase in various sphingolipidoses and other storage diseases. Although we do not propose to effect enzyme replacement therapy in vivo with a plant enzyme, such studies in tissue culture are valid, and eventually human a-galactosidase, of comparable activity and purity, will become available. Introduction tially unaffected, periodic crises of pain occur and this may be explained by the accumulation of GL-3 in the Fabry's disease (angiokeratoma corporis diffusum uni- dorsal root ganglia [21, 23]. -
Fucosidosis: Ultrastructural Study of Conjunctiva and Skin and Enzyme Analysis of Tears
Fucosidosis: ultrastructural study of conjunctiva and skin and enzyme analysis of tears /. Libert,9 F. Van Hoof," and M. Tondeur*** Conjunctival and skin biopsies from two new patients with fucosidosis were studied by electron microscopy. In both tissues, the connective tissue cells and the capillary endothelial cells were filled with single membrane limited inclusions of two types: (1) Clear inclusions containing a fibrillogranular reticulum. (2) Dark inclusions with a dense granular material. Specific stainings in ultrastructure suggest that these inclusions contain oligosaccharide chains. The ultrastructural aspect is characteristic for fucosidosis. Enzyme studies on tears realize an easy and secure technique for the diagnosis of the disease. -Lhe interest of conjunctival biopsy in the io-i5 Most of the lysosomal acid hydrolases study of storage diseases is now abun- can be assayed in tears, and their defi- dantly documented. Pathologic changes ciency allows the diagnosis of several other have been demonstrated in the systemic inborn lysosomal diseases.16"18 mucopolysaccharidoses,1 several mucolip- Fucosidosis, an autosomal lysosomal dis- idoses,2"5 Fabry's disease,6'7 Niemann- ease, is characterized by the absence or the Pick's disease,8 and cystinosis.9 profound deficiency of a-L-fucosidase,19"21 The usefulness of tears for the enzymatic which results in the widespread accumula- screening of inborn lysosomal diseases was tion of fucose-containing glycosphingolip- recognized about two years ago and ap- ids, oligosaccharides, and polysaccharides, plied to Tay-Sachs and Fabry's diseases.7' together with an increased excretion of fucosides in urine.22 Clinically, a severe and a mild phenotype have been distin- From the Departments of Ophthalmology" and guished.23' 24 The patients suffering from Pediatrics,00" Hopital Saint-Pierre, Universite Libre de Bruxelles, and from the International the severe form present a progressive psy- Institute of Cellular and Molecular Patholo- chomotor retardation and a moderate gy,00 Universite Catholique de Louvain. -
4Th Glycoproteinoses International Conference Advances in Pathogenesis and Therapy
Program & Abstracts 4TH GLYCOPROTEINOSES INTERNATIONAL CONFERENCE ADVANCES IN PATHOGENESIS AND THERAPY ISMRD ST. LOUIS, MISSOURI, UNITED STATES Program & Abstracts I SM R D ADVANCES IN PATHOGENESIS AND THERAPY Program & Abstracts ISMRD would like to say A Very Special Thank You to the following organizations and companies who have very generously given donations and sponsorship to support the 4th International Conference on Glycoproteinoses THE PRENILLE EDWARD MALLINCKRODT FOUNDATION JR FOUNDATION MARK HASKINS I SM R D 4TH GLYCOPROTEINOSES INTERNATIONAL CONFERENCE 2015 ADVANCES IN PATHOGENESIS AND THERAPY Program & Abstracts ISMRD is very proud to display 10 featured Expression of Hope artworks to be Auctioned at the Gala Dinner. These beautiful prints are from Genzyme’s featured Artwork selection. Contents Welcome 1 SCIENTIFIC COMMITTEE: Stuart Kornfeld ISMRD Mission & Governance 3 (Chair, Scientifi c Planning Committee) Steve Walkley Sara Cathey ISMRD General Information 5 Richard Steet Sean Thomas Ackley, Philippines Miriam Storchli, Switzerland Alessandra d’Azzo ‘Hope’ by Sarah Noble, New Zealand Scientifi c Program 9 FAMILY CONFERENCE COMMITTEE: Family Program for Mucolipidosis 11 Jenny Noble (Conference Organiser) Jackie James (Conference Organiser Family Program For Alpha Mannosidosis /Sialidosis/ 13 - St. Louis) Fucosidosis/Aspartylglucosaminuria Mark Stark John Forman ‘All around the world’ by Zih Yun Li , Taiwan Childrens Program 16 Susan Kester Carolyn Paisley-Dew Tish Adkins Abstracts 17 Sara DeAngelis, Russia Gayle Rose, United States Speaker Profi les 60 Delegates 81 Helen Walker, Australia Nicklas Harkins, Canada Naomi Arai, Japan David Wentworth, Serbia I SM R D 4TH GLYCOPROTEINOSES INTERNATIONAL CONFERENCE 2015 ADVANCES IN PATHOGENESIS AND THERAPY Program & Abstracts On behalf of the Scientifi c Planning Committee, I want to extend a warm welcome to all the investigators and Welcome! families who have traveled to St. -
International Conference
5TH GLYCOPROTEINOSES INTERNATIONAL CONFERENCE Rome, Italy November 1-4 2017 EMBRACING INNOVATION ADVANCING THE CURE PROGRAM & ABSTRACTS 5TH GLYCOPROTEINOSES INTERNATIONAL CONFERENCE ROME, ITALY NOVEMBER 1-4 2017 EMBRACING INNOVATION ADVANCING THE CURE ISMRD would like to say a very special thank you to the following organizations and companies who have very generously given donations to support the 5th International Conference on Glycoproteinoses. ISMRD is an internationally focused not-for-profi t organization whose mission is to advocate for families and patients aff ected by one of the following disorders. Alpha-Mannosidosis THE WAGNER FOUNDATION Aspartylglucosaminuria Beta-Mannosidosis Fucosidosis Galactosialidosis ISMRD is very grateful for all the help and support that Symposia has given us Sialidosis (Mucolipidosis I) in the organization of our Conference on-the-ground support in Rome. Mucolipidosis II, II/III, III alpha/beta Mucolipidosis III Gamma Schindler Disease EMBRACING INNOVATION ADVANCING THE CURE SCIENTIFIC COMMITTEE: Alessandra d’Azzo CHAIR Contents Amelia Morrone Italy Richard Steet USA Welcome 2 Heather Flanagan-Steet USA ISMRD Mission & Governance 4 Dag Malm Norway ISMRD General Information 6 Thomas Braulke Dedicated to helping patients Germany in the rare disease community Stuart Kornfeld with unmet medical needs Scientifi c Program 10 USA Ultragenyx Pharmaceutical Inc. is a clinical-stage Family Program 14 ISMRD CONFERENCE biopharmaceutical company committed to creating new COMMITTEE: therapeutics to combat serious, -
Alpha-Fucosidosis ¬タモ Two Brothers Presenting with Dysostosis Multiplex
The Egyptian Journal of Medical Human Genetics (2016) 17, 243–246 HOSTED BY Ain Shams University The Egyptian Journal of Medical Human Genetics www.ejmhg.eg.net www.sciencedirect.com CASE REPORT Alpha-fucosidosis – Two brothers presenting with dysostosis multiplex Rimshah Shaukat a, Syed Musa Raza a, Zabedah Md. Yuns b, Affandi Omar b, Bushra Afroze c,* a Aga Khan Medical University, Karachi, Pakistan b Institute of Medical Research, Kuala Lumpur, Malaysia c Department of Paediatrics & Child Health, Aga Khan University Hospital, Karachi, Pakistan Received 5 November 2015; accepted 30 November 2015 Available online 30 December 2015 KEYWORDS Abstract a-Fucosidosis is a rare inherited neuro-degenerative disorder causing progressive neuro- a Alpha-fucosidosis; logical deterioration leading to early death. Definitive diagnosis requires -fucosidase enzyme assay Pakistani patients; or FUCA1 gene testing, which being expensive limits the definitive diagnosis in resource limited Dysostosis multiplex countries. We present two siblings with classic symptoms, radiological and MRI brain findings sug- gestive of a-fucosidosis and a clinical approach to reach to the diagnosis. Ó 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of Ain Shams University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 1. Introduction a-fucosidosis from Pakistan, focusing on radiological findings as a diagnostic tool to develop an approach to a patient with a-Fucosidosis (OMIM # 230000) is an autosomal recessive dysostosis multiplex, in neuro-degenerative disorders including a lysosomal storage disorder caused by the deficiency of fucosi- -fucosidosis (Fig. 1). -
A New Simultaneous Measurement of Lysosphingolipids by LC-MS/MS
Clin Chem Lab Med 2017; 55(3): 403–414 Open Access Giulia Polo, Alessandro P. Burlina, Thilini B. Kolamunnage, Michele Zampieri, Carlo Dionisi-Vici, Pietro Strisciuglio, Martina Zaninotto, Mario Plebani and Alberto B. Burlina* Diagnosis of sphingolipidoses: a new simultaneous measurement of lysosphingolipids by LC-MS/MS DOI 10.1515/cclm-2016-0340 population. The results demonstrate that the LC-MS/ Received April 21, 2016; accepted July 15, 2016; previously published MS method can quantify different LysoSLs and can be online August 17, 2016 used to identify patients with Fabry (LysoGb3), Gaucher Abstract and Krabbe (HexSph) diseases, prosaposine deficiency (LysoGb3 and HexSph), and Niemann-Pick disease types Background: Lysosphingolipids (LysoSLs) are deriva- A/B and C (LysoSM and LysoSM-509). tives of sphingolipids which have lost the amide-linked Conclusions: This LC-MS/MS method allows a rapid and acyl chain. More recently, LysoSLs have been identi- simultaneous quantification of LysoSLs and is useful as a fied as storage compounds in several sphingolipidoses, biochemical diagnostic tool for sphingolipidoses. including Gaucher, Fabry and Niemann-Pick diseases. To Keywords: Fabry; Gaucher; glucosylsphingosine; Krabbe; date, different methods have been developed to measure LC-MS/MS; LysoGb3; lysosphingolipids; lysosphingomy- each individual lysosphingolipid in plasma. This report elin; Niemann-Pick; psychosine. describes a rapid liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) assay for simulta- neous quantification of several LysoSLs in plasma. Introduction Methods: We analyzed the following compounds: hexo- sylsphingosine (HexSph), globotriaosylsphingosine Sphingolipidoses are a group of inherited lysosomal storage (LysoGb3), lysosphingomyelin (LysoSM) and lysosphin- disorders (LSD) caused by defects in the lysosomal degrada- gomyelin-509 (LysoSM-509). -
Sphingolipidoses
J Clin Pathol: first published as 10.1136/jcp.s3-8.1.94 on 1 January 1974. Downloaded from J. clini. Path., 27, Suppl. (Roy. Coll. Path.), 8, 94-105 Sphingolipidoses KONRAD SANDHOFF From the Max-Planck Institute for Psychiatry, Neurochemische Abteilung, Muntich, Gernmany Sphingolipidoses are inborn errors of metabolism, 1882; Sachs, 1896; Fabry, 1898; Anderson, 1898; characterized by the accumulation of sphingo- Alzheimer, 1910; Niemann, 1914; Krabbe, 1916; lipids. These lysosomal diseases (Hers, 1965) are due Scholz, 1925). With progress in the analysis of lipids to a deficiency in the degradative pathway (for these diseases have been more accurately defined as references see Hers and Van Hoof, 1973). So far, specific lipid storage diseases, and it has become neither changes in the extent of sphingolipid bio- feasible to classify them more systematically on the synthesis, ie, an overproduction, nor a deficiency basis of the main accumulating lipid (Aghion, 1934; of a transferase activity have been observed. The Klenk, 1934, 1942; Jatzkewitz, 1958; Svennerholm, latter could result in the absence of the enzyme 1962). However, these nomenclatures, the first product and/or accumulation of its substrates. based on clinical and pathomorphological descrip- Recessive inherited deficiencies of sphingolipid tions and the second based on the main accumulating degrading enzyme activities have been found in all lipid, are not always congruent. For example, tissues that have been tested. The sphingolipid diseases such as infantile GM2-gangliosidosis (Tay- hydrolases studied thus far have been shown to be of Sachs disease) are ganglioside storage diseases, lysosomal origin (for references, see Vaes, 1973). while no ganglioside accumulation has been found Most of these enzymes display an optimal activity in neuronal ceroid-lipofuscinoses (Batten-Vogt dis- in an acidic pH range.