Molecular and Structural Characterization of the Candidate Enzymes Responsible for Tartaric Acid Synthesis in the Grapevine by Yong Jia

Total Page:16

File Type:pdf, Size:1020Kb

Molecular and Structural Characterization of the Candidate Enzymes Responsible for Tartaric Acid Synthesis in the Grapevine by Yong Jia Molecular and structural characterization of the candidate enzymes responsible for tartaric acid synthesis in the grapevine By Yong Jia Thesis by a combination of conventional and publication formats submitted to The University of Adelaide for the degree of Doctor of Philosophy The University of Adelaide School of Agriculture Food and Wine November 2015 1 Table of Contents Abstract ............................................................................................................................................ 5 Declaration ....................................................................................................................................... 8 Statement of the contributions of jointly authored papers and manuscripts ............................ 9 Acknowledgement ......................................................................................................................... 10 Chapter 1 Introduction ................................................................................................................. 11 1.1 General introduction ........................................................................................................... 12 1.2 The chemistry of tartaric acid ............................................................................................ 16 1.3 Unequal distribution in higher plants ............................................................................... 18 1.4 Tartaric acid in grape and wine ......................................................................................... 21 1.5 Industrial application and production .............................................................................. 21 1.6 Tartaric acid biosynthesis ................................................................................................... 23 1.6.1 The primary TA biosynthetic pathway in grapevine ................................................. 23 1.6.2 TA biosynthetic pathway in Geraniaceae plants ........................................................ 26 1.6.3 TA biosynthetic pathway identified in Legumaceae plants ....................................... 27 1.7 Enzymes responsible for tartaric acid biosynthesis ......................................................... 28 1.8 Gene duplication, protein structural variation and plant phenotypic diversity ............ 31 1.9 Protein structural variation and biological function ........................................................ 33 1.10 Conclusion and aims ......................................................................................................... 34 Chapter 2 New insights into the evolutionary history of plant sorbitol dehydrogenase ......... 38 Chapter 3 Amino acid substitutions at catalytic site of plant sorbitol dehydrogenase lead to a shift in substrate specificity .......................................................................................................... 39 3.1 Introduction ......................................................................................................................... 40 3.2 Methods ................................................................................................................................ 44 3.2.1 Chemicals ...................................................................................................................... 44 3.2.2 Sequence alignment and phylogenetic analyses......................................................... 44 3.2.3 Molecular cloning and transformation ...................................................................... 45 3.2.4 Site-directed mutagenesis ............................................................................................ 46 3.2.5 Recombinant protein purification .............................................................................. 46 3.2.6 Enzyme assay ................................................................................................................ 47 3.3 Results and discussion ........................................................................................................ 48 3.3.1 Bioinformatic analyses ................................................................................................. 48 3.3.2 Molecular cloning and recombinant protein purification ........................................ 51 2 3.3.3 Enzymatic substrate specificity of SDHs .................................................................... 56 3.4 Conclusion........................................................................................................................ 60 3.5 Abbreviations ................................................................................................................... 60 Chapter 4 Identification and structural characterization of a putative 2-keto-L-gulonic acid reductase from Vitis vinifera ......................................................................................................... 62 4.1 Abstract ................................................................................................................................ 64 4.2 Introduction ......................................................................................................................... 64 4.3 Results and Discussion ........................................................................................................ 68 4.3.1 Molecular characteristics of the putative 2-keto-L-gulonate reductase .................. 68 4.3.2 Enzymatic activity of VV2KR ..................................................................................... 71 4.3.3 Crystallization .............................................................................................................. 72 4.3.4 Overall structure .......................................................................................................... 74 4.3.5 Dimer interface ............................................................................................................. 79 4.3.6 Co-enzyme binding ...................................................................................................... 81 4.3.7 The catalytic site of VV2KR and substrate binding .................................................. 86 4.3.8 Substrate docking and substrate specificity ............................................................... 92 4.3.9 The potential role of VV2KR in TA biosynthesis in the grapevine .......................... 96 4.4 Conclusion ........................................................................................................................... 98 4.5 Materials and Methods ....................................................................................................... 98 4.5.1 Identification of a putative 2-keto-L-gulonate reductase gene from grapevine ...... 98 4.5.2 Molecular cloning ......................................................................................................... 99 4.5.3 Recombinant protein expression and purification .................................................... 99 4.5.4 Enzyme kinetic assays ................................................................................................ 100 4.5.5 Protein crystallization ................................................................................................ 101 4.5.6 Data collection, structure determination and refinement ....................................... 101 4.5.7 Substrate docking ....................................................................................................... 102 4.6 Supplementary Figures ..................................................................................................... 103 4.7 Contributions ..................................................................................................................... 107 4.8 Acknowledgement ............................................................................................................. 107 4.9 Abbreviations ..................................................................................................................... 107 Chapter 5 Summary, Future Directions and Conclusions ....................................................... 113 5.1 Summary of Research Outcomes ..................................................................................... 113 5.1.1 Evolutionary origin of the grapevine LIDH ............................................................ 113 5.1.2 Substrate specificity of SDH and its effect on TA biosynthesis in higher plants ... 114 3 5.1.3 Enzymatic and protein structural characterization of VV2KR in grapevine ....... 115 5.2 Discussion and Future Research ...................................................................................... 117 5.2.1 The biological function of the Class II SDHs and TA biosynthesis in higher plants .............................................................................................................................................. 117 5.2.2 In vivo characterization of the putative function of VV2KR in TA biosynthesis in the grapevine ....................................................................................................................... 120 5.2.3 Identification of the other candidate enzymes involved TA biosynthesis pathway .............................................................................................................................................. 123 5.3 Conclusion ........................................................................................................................
Recommended publications
  • Propagating California Wild Grape
    Ratings of rooting systems (left) were best, good, and fair. Almost all types of vine wood yielded good root systems and resulted in vigorous plants. Propagating California wild grape James A. Robbins 0 David W. Burger Easy to start from cuttings, the vine is useful in landscape plantings California native plants are being used fluenced by such factors as date of collec- ing at that time, sap was flowing freely in increasingly in landscape and revegeta- tion, storage conditions, and type of cane the stems. The segments were transport- tion projects, but little information is wood. We conducted a study to investigate ed to Davis in an ice chest and stored in a available on how to propagate them. Cali- the effect of chemical pretreatment, cold room at 43°F (6°C) for three days. fornia wild grape, Vitis californica wood type, and rooting medium on the Before preparing and treating the cut- Benth., is one such plant that would be rooting of dormant hardwood cuttings of tings, we graded the stem wood into seven useful in the revegetation of steep slopes the California wild grape. classes according to stem diameter, stem and embankments. This vigorous, decidu- length, and type of wood (table 1). Al- ous, woody vine, which grows along though this grouping is artificial, these streams throughout the Coast Ranges, Rooting study categories correlated well with the posi- Central Valley, and Sierra Nevada foot- We collected propagation material in tion of wood on the original canes. Thin- hills, can cover large areas in a short mid-March 1985 from wild vines growing nest wood (grade A) would be associated time.
    [Show full text]
  • A Combined Morphological and Molecular Phylogenetic Analysis of Parthenocissus (Vitaceae) and Taxonomic Implications
    Botanical Journal of the Linnean Society, 2012, 168, 43–63. With 9 figures A combined morphological and molecular phylogenetic analysis of Parthenocissus (Vitaceae) and taxonomic implications LIMIN LU1,2, JUN WEN1,3* and ZHIDUAN CHEN1* 1State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China 2Graduate School of Chinese Academy of Sciences, Beijing 100039, China 3Department of Botany, National Museum of Natural History, MRC166, Smithsonian Institution, Washington, D.C. 20013-7012, USA Received 21 June 2010; revised 11 March 2011; accepted for publication 18 August 2011 Parthenocissus (the Virginia creeper genus, Vitaceae) consists of 13 species and shows a disjunct distribution between Asia and North America. We investigated the inflorescence structure, calyx morphology, appendages on the inner side of petals, leaf epidermis, pollen and seed characters throughout the genus. A combined phylogenetic analysis with 27 morphological and 4137 molecular characters was conducted and the result was largely congruent with that of the previous molecular work, but with higher resolution. The combined analysis identified two clades corresponding to the Asian and North American taxa. Parthenocissus feddei was resolved as closely related to the clade containing P. cuspidifera, P. heterophylla and P. semicordata. The four species share synapomorphies of having conspicuously raised veinlets, an obscurely five- (to eight-) lobed calyx, appendages on the inner side of petals covering the entire length of anthers and foveolate pollen exine ornamentation. Within the Old World clade, the pentafoliolate species were weakly supported as more closely related to species with both simple and trifoliolate leaves. Furthermore, the ancestral states of tendril apices, inflorescence structure, appendages on the inner side of petals and exine ornamentation of pollen grains were reconstructed on the molecular strict consensus tree.
    [Show full text]
  • A Note on Host Diversity of Criconemaspp
    280 Pantnagar Journal of Research [Vol. 17(3), September-December, 2019] Short Communication A note on host diversity of Criconema spp. Y.S. RATHORE ICAR- Indian Institute of Pulses Research, Kanpur- 208 024 (U.P.) Key words: Criconema, host diversity, host range, Nematode Nematode species of the genus Criconema (Tylenchida: showed preference over monocots. Superrosids and Criconemitidae) are widely distributed and parasitize Superasterids were represented by a few host plants only. many plant species from very primitive orders to However, Magnoliids and Gymnosperms substantially advanced ones. They are migratory ectoparasites and feed contributed in the host range of this nematode species. on root tips or along more mature roots. Reports like Though Rosids revealed greater preference over Asterids, Rathore and Ali (2014) and Rathore (2017) reveal that the percent host families and orders were similar in number most nematode species prefer feeding on plants of certain as reflected by similar SAI values. The SAI value was taxonomic group (s). In the present study an attempt has slightly higher for monocots that indicate stronger affinity. been made to precisely trace the host plant affinity of The same was higher for gymnosperms (0.467) in twenty-five Criconema species feeding on diverse plant comparison to Magnolids (0.413) (Table 1). species. Host species of various Criconema species Perusal of taxonomic position of host species in Table 2 reported by Nemaplex (2018) and others in literature were revealed that 68 % of Criconema spp. were monophagous aligned with families and orders following the modern and strictly fed on one host species. Of these, 20 % from system of classification, i.e., APG IV system (2016).
    [Show full text]
  • 1 History of Vitaceae Inferred from Morphology-Based
    HISTORY OF VITACEAE INFERRED FROM MORPHOLOGY-BASED PHYLOGENY AND THE FOSSIL RECORD OF SEEDS By IJU CHEN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2009 1 © 2009 Iju Chen 2 To my parents and my sisters, 2-, 3-, 4-ju 3 ACKNOWLEDGMENTS I thank Dr. Steven Manchester for providing the important fossil information, sharing the beautiful images of the fossils, and reviewing the dissertation. I thank Dr. Walter Judd for providing valuable discussion. I thank Dr. Hongshan Wang, Dr. Dario de Franceschi, Dr. Mary Dettmann, and Dr. Peta Hayes for access to the paleobotanical specimens in museum collections, Dr. Kent Perkins for arranging the herbarium loans, Dr. Suhua Shi for arranging the field trip in China, and Dr. Betsy R. Jackes for lending extant Australian vitaceous seeds and arranging the field trip in Australia. This research is partially supported by National Science Foundation Doctoral Dissertation Improvement Grants award number 0608342. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF TABLES...........................................................................................................................9 LIST OF FIGURES .......................................................................................................................11 ABSTRACT...................................................................................................................................14
    [Show full text]
  • Qty Size Name 9 1G Abies Bracteata 5 1G Acer Circinatum 4 5G Acer
    REGIONAL PARKS BOTANIC GARDEN, TILDEN REGIONAL PARK, BERKELEY, CALIFORNIA Celebrating 77 years of growing California native plants: 1940-2017 **FIRST PRELIMINARY**PLANT SALE LIST **FIRST PRELIMINARY** First Preliminary Plant Sale List 9/29/2017 visit: www.nativeplants.org for the most up to date plant list, updates are posted until 10/6 FALL PLANT SALE OF CALIFORNIA NATIVE PLANTS SATURDAY, October 7, 2017 PUBLIC SALE: 10:00 AM TO 3:00 PM MEMBERS ONLY SALE: 9:00 AM TO 10:00 AM MEMBERSHIPS ARE AVAILABLE AT THE ENTRY TO THE SALE AT 8:30 AM Qty Size Name 9 1G Abies bracteata 5 1G Acer circinatum 4 5G Acer circinatum 7 4" Achillea millefolium 6 1G Achillea millefolium 'Island Pink' 15 4" Achillea millefolium 'Island Pink' 6 1G Actea rubra f. neglecta (white fruits) 15 1G Adiantum aleuticum 30 4" Adiantum capillus-veneris 15 4" Adiantum x tracyi (A. jordanii x A. aleuticum) 5 1G Alnus incana var. tenuifolia 1 1G Alnus rhombifolia 1 1G Ambrosia pumila 13 4" Ambrosia pumila 7 1G Anemopsis californica 6 1G Angelica hendersonii 1 1G Angelica tomentosa 6 1G Apocynum cannabinum 10 1G Aquilegia eximia 11 1G Aquilegia eximia 10 1G Aquilegia formosa 6 1G Aquilegia formosa 1 1G Arctostaphylos andersonii 3 1G Arctostaphylos auriculata 5 1G Arctostaphylos bakeri 10 1G Arctostaphylos bakeri 'Louis Edmunds' 5 1G Arctostaphylos catalinae 1 1G Arctostaphylos columbiana x A. uva-ursi 10 1G Arctostaphylos confertiflora 3 1G Arctostaphylos crustacea subsp. subcordata 3 1G Arctostaphylos cruzensis 1 1G Arctostaphylos densiflora 'James West' 10 1G Arctostaphylos edmundsii 'Big Sur' 2 1G Arctostaphylos edmundsii 'Big Sur' 22 1G Arctostaphylos edmundsii var.
    [Show full text]
  • Rare Plant Survey of San Juan Public Lands, Colorado
    Rare Plant Survey of San Juan Public Lands, Colorado 2005 Prepared by Colorado Natural Heritage Program 254 General Services Building Colorado State University Fort Collins CO 80523 Rare Plant Survey of San Juan Public Lands, Colorado 2005 Prepared by Peggy Lyon and Julia Hanson Colorado Natural Heritage Program 254 General Services Building Colorado State University Fort Collins CO 80523 December 2005 Cover: Imperiled (G1 and G2) plants of the San Juan Public Lands, top left to bottom right: Lesquerella pruinosa, Draba graminea, Cryptantha gypsophila, Machaeranthera coloradoensis, Astragalus naturitensis, Physaria pulvinata, Ipomopsis polyantha, Townsendia glabella, Townsendia rothrockii. Executive Summary This survey was a continuation of several years of rare plant survey on San Juan Public Lands. Funding for the project was provided by San Juan National Forest and the San Juan Resource Area of the Bureau of Land Management. Previous rare plant surveys on San Juan Public Lands by CNHP were conducted in conjunction with county wide surveys of La Plata, Archuleta, San Juan and San Miguel counties, with partial funding from Great Outdoors Colorado (GOCO); and in 2004, public lands only in Dolores and Montezuma counties, funded entirely by the San Juan Public Lands. Funding for 2005 was again provided by San Juan Public Lands. The primary emphases for field work in 2005 were: 1. revisit and update information on rare plant occurrences of agency sensitive species in the Colorado Natural Heritage Program (CNHP) database that were last observed prior to 2000, in order to have the most current information available for informing the revision of the Resource Management Plan for the San Juan Public Lands (BLM and San Juan National Forest); 2.
    [Show full text]
  • Prolonged Stigma and Flower Lifespan in Females of the Gynodioecious Plant Geranium Sylvaticum
    This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Elzinga, Jelmer Anne; Varga, Sandra Title: Prolonged stigma and flower lifespan in females of the gynodioecious plant Geranium sylvaticum Year: 2017 Version: Please cite the original version: Elzinga, J. A., & Varga, S. (2017). Prolonged stigma and flower lifespan in females of the gynodioecious plant Geranium sylvaticum. Flora, 226, 72-81. https://doi.org/10.1016/j.flora.2016.11.007 All material supplied via JYX is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user. Accepted Manuscript Title: Prolonged stigma and flower lifespan in females of the gynodioecious plant Geranium sylvaticum Author: Jelmer A. Elzinga Sandra Varga PII: S0367-2530(16)30169-4 DOI: http://dx.doi.org/doi:10.1016/j.flora.2016.11.007 Reference: FLORA 51034 To appear in: Received date: 3-8-2016 Revised date: 8-11-2016 Accepted date: 9-11-2016 Please cite this article as: Elzinga, Jelmer A., Varga, Sandra, Prolonged stigma and flower lifespan in females of the gynodioecious plant Geranium sylvaticum.Flora http://dx.doi.org/10.1016/j.flora.2016.11.007 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Number 3, Spring 1998 Director’S Letter
    Planning and planting for a better world Friends of the JC Raulston Arboretum Newsletter Number 3, Spring 1998 Director’s Letter Spring greetings from the JC Raulston Arboretum! This garden- ing season is in full swing, and the Arboretum is the place to be. Emergence is the word! Flowers and foliage are emerging every- where. We had a magnificent late winter and early spring. The Cornus mas ‘Spring Glow’ located in the paradise garden was exquisite this year. The bright yellow flowers are bright and persistent, and the Students from a Wake Tech Community College Photography Class find exfoliating bark and attractive habit plenty to photograph on a February day in the Arboretum. make it a winner. It’s no wonder that JC was so excited about this done soon. Make sure you check of themselves than is expected to seedling selection from the field out many of the special gardens in keep things moving forward. I, for nursery. We are looking to propa- the Arboretum. Our volunteer one, am thankful for each and every gate numerous plants this spring in curators are busy planting and one of them. hopes of getting it into the trade. preparing those gardens for The magnolias were looking another season. Many thanks to all Lastly, when you visit the garden I fantastic until we had three days in our volunteers who work so very would challenge you to find the a row of temperatures in the low hard in the garden. It shows! Euscaphis japonicus. We had a twenties. There was plenty of Another reminder — from April to beautiful seven-foot specimen tree damage to open flowers, but the October, on Sunday’s at 2:00 p.m.
    [Show full text]
  • Pelargoniums an Herb Society of America Guide
    Pelargoniums An Herb Society of America Guide The Herb Society of America 9019 Kirtland Chardon Rd. Kirtland, Ohio 44094 © 2006 The Herb Society of America Pelargoniums: An Herb Society of America Guide Table of Contents Introduction …………………………………………………………….…. 3 Contributors & Acknowledgements ……………………………………… 3 Description & Taxonomy ..………………………………………………... 8 Chemistry …………………………………………………………………. 10 Nutrition …………………………………………………………………... 10 History & Folklore ………………………………………………………… 10 Literature & Art …………………………………………………………… 12 Cultivation ………………………………………………………………… 13 Pests & Diseases …………………………………………………………... 19 Pruning & Harvesting ……………………………………………………… 20 Preserving & Storing ………………………………………………………. 21 Uses ………………………………………………………………………... 21 - Culinary Uses ………………………………………………… 21 - Recipes ………………………………………………… 23 - Craft Uses ……………………………………………………. 40 - Cosmetic Uses ……………………………………………….. 41 - Recipes ……………………………………………….. 42 - Medicinal & Ethnobotanical Uses & Aromatherapy ………... 43 - Garden Uses ………………………………………………….. 47 - Other Uses …………………………………………………... 48 Species Highlights …..……………………………………………………… 49 Cultivar Examples …………………………………………………………. 57 Literature Citations & References ………………………………………... 62 HSA Library Pelargonium Resources …...………………………………… 68 © The Herb Society of America - 9019 Kirtland Chardon Rd., Kirtland, OH, 44094 - (440) 256-0514 - http://www.herbsociety.org 2 Pelargoniums: An Herb Society of America Guide Introduction Mission: The Herb Society of America is dedicated to promoting the knowledge, use and delight of
    [Show full text]
  • List of Plants for Great Sand Dunes National Park and Preserve
    Great Sand Dunes National Park and Preserve Plant Checklist DRAFT as of 29 November 2005 FERNS AND FERN ALLIES Equisetaceae (Horsetail Family) Vascular Plant Equisetales Equisetaceae Equisetum arvense Present in Park Rare Native Field horsetail Vascular Plant Equisetales Equisetaceae Equisetum laevigatum Present in Park Unknown Native Scouring-rush Polypodiaceae (Fern Family) Vascular Plant Polypodiales Dryopteridaceae Cystopteris fragilis Present in Park Uncommon Native Brittle bladderfern Vascular Plant Polypodiales Dryopteridaceae Woodsia oregana Present in Park Uncommon Native Oregon woodsia Pteridaceae (Maidenhair Fern Family) Vascular Plant Polypodiales Pteridaceae Argyrochosma fendleri Present in Park Unknown Native Zigzag fern Vascular Plant Polypodiales Pteridaceae Cheilanthes feei Present in Park Uncommon Native Slender lip fern Vascular Plant Polypodiales Pteridaceae Cryptogramma acrostichoides Present in Park Unknown Native American rockbrake Selaginellaceae (Spikemoss Family) Vascular Plant Selaginellales Selaginellaceae Selaginella densa Present in Park Rare Native Lesser spikemoss Vascular Plant Selaginellales Selaginellaceae Selaginella weatherbiana Present in Park Unknown Native Weatherby's clubmoss CONIFERS Cupressaceae (Cypress family) Vascular Plant Pinales Cupressaceae Juniperus scopulorum Present in Park Unknown Native Rocky Mountain juniper Pinaceae (Pine Family) Vascular Plant Pinales Pinaceae Abies concolor var. concolor Present in Park Rare Native White fir Vascular Plant Pinales Pinaceae Abies lasiocarpa Present
    [Show full text]
  • Plant List 2021-08-25 (12:18)
    Plant List 2021-09-24 (14:25) Plant Plant Name Botanical Name in Price Stock Per Unit AFRICAN DREAM ROOT - 1 Silene capensis Yes R92 AFRICAN DREAM ROOT - 2 Silene undulata Yes R92 AFRICAN POTATO Hypoxis hemerocallidea Yes R89 AFRICAN POTATO - SILVER-LEAFED STAR FLOWER Hypoxis rigidula Yes R89 AGASTACHE - GOLDEN JUBILEE Agastache foeniculum No R52 AGASTACHE - HYSSOP, WRINKLED GIANT HYSSOP Agastache rugosa Yes R59 AGASTACHE - LICORICE MINT HYSSOP Agastache rupestris No R59 AGASTACHE - PINK POP Agastache astromontana No R54 AGRIMONY Agrimonia eupatoria No R54 AJWAIN Trachyspermum ammi No R49 ALFALFA Medicago sativa Yes R59 ALOE VERA - ORANGE FLOWER A. barbadensis Yes R59 ALOE VERA - YELLOW FLOWER syn A. barbadensis 'Miller' No R59 AMARANTH - ‘LOVE-LIES-BLEEDING’ Amaranthus caudatus No R49 AMARANTH - CHINESE SPINACH Amaranthus species No R49 AMARANTH - GOLDEN GIANT Amaranthus cruentas No R49 AMARANTH - RED LEAF Amaranthus cruentas No R49 ARTICHOKE - GREEN GLOBE Cynara scolymus Yes R54 ARTICHOKE - JERUSALEM Helianthus tuberosus Yes R64 ARTICHOKE - PURPLE GLOBE Cynara scolymus No R54 ASHWAGANDA, INDIAN GINSENG Withania somniferia Yes R59 ASPARAGUS - GARDEN Asparagus officinalis Yes R54 BALLOON FLOWER - PURPLE Platycodon grandiflorus 'Apoyama' Yes R59 BALLOON FLOWER - WHITE Platycodon grandiflorus var. Albus No R59 BASIL - CAMPHOR Ocimum kilimandscharicum Yes R59 BASIL HOLY - GREEN TULSI, RAM TULSI Ocimum Sanctum Yes R54 BASIL HOLY - TULSI KAPOOR Ocimum sanctum Linn. No R54 BASIL HOLY - TULSI TEMPERATE Ocimum africanum No R54 BASIL HOLY - TULSI
    [Show full text]
  • Plant List for Lawn Removal
    VERY LOW WATER USE PLANTS Trees * Aesculus californica California buckeye * Cercis occidentalis western redbud * Fremontodendron spp. flannel bush * Pinus abiniana foothill pine * Quercus agrifolia coast live oak * Quercus wislizeni interior live oak Shrubs * Adenostoma fasciciulatum chamise * Arctostaphylos spp. manzanita * Artemesia californica California sagebrush * Ceanothus spp wild lilac * Cercocarpus betuloides mountain mahogany * Amelanchier alnifolia service berry * Dendromecon spp. bush poppy * Heteromeles arbutifolia toyon * Mahonia nevinii Nevin mahonia Perennials * Artemesia tridentata big sagebrush Ballota pseudodictamnus Grecian horehouond * Monardella villosa coyote mint * Nasella needlegrass Penstemon centranthifolius "Scarlet * scarlet bugler penstemon Bugler" * Romneay coulteri Matilija poppy * Salvia apiana white sage * Sisyrinchium bellum blue-eyed grass * Trichostema lanatum woolly blue curls Edibles Olea europaea olive Opunita spp. prickly pear/cholla Cactus and Succulents Cephalocereus spp. old man cactus Echinocactus barrel cactus Graptopetalum spp graptopetalum Bunch Grasses * Bouteloua curtipendula sideoats gramma * Festuca idahoensis Idaho fescue * Leymus condensatus 'Canyon Prince' giant wild rye Bulbs Amaryllis belladona naked lady * Brodiaea spp. brodiaea Colchicum agrippium autumn crocus Muscari macrocarpum grape hyacinth Narcissus spp. daffodil Scilla hughii bluebell Scilla peruviana Peruvian lily Annuals Dimorphotheca spp. African daisy * Eschscholzia californica California poppy Mirabilis jalapa four
    [Show full text]