Design of a Hydraulic Motor System Driven by Compressed Air
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Proceedings of 1St Agria Conference on Innovative Pneumatic Vehicles – ACIPV 2017
Proceedings of 1st Agria Conference on Innovative Pneumatic Vehicles – ACIPV 2017 May 05, 2017 Eger, Hungary Pneumobil Proceedings of the 1st Agria Conference on Innovative Pneumatic Vehicles – ACIPV 2017 May 05, 2017 Eger, Hungary Edited by Prof.Dr. László Pokorádi Published by Óbuda University, Institute of Mechatronics and Vehicle Engineering ISBN 978-963-449-022-7 Technical Sponsor: Aventics Hungary Kft. Organizer: Óbuda University, Institute of Mechatronics and Vehicle Engineering Honorary Chairs: L. Palkovics, BUTE, Budapest M. Réger, Óbuda University, Budapest Honorary Committee: I. Gödri, Aventics Hungary Kft., Eger Z. Rajnai, Óbuda University, Budapest General Chair: L. Pokorádi, Óbuda University, Budapest Scientific Program Committee Chair: J.Z. Szabó, Óbuda University, Budapest Scientific Program Committee: J. Bihari University of Miskolc Zs. Farkas Budapest University of Technology and Economics L. Fechete, Technical University of Cluj-Napoca W. Fiebig, Wroclaw University of Science and Technology D. Fodor, University of Pannonia Z. Forgó, Sapientia Hungarian University of Transylvania L. Jánosi Szent István University Gy. Juhász, University of Debrecen L. Kelemen, University of Miskolc M. Madissoo, Estonian University of Life Sciences Vilnis. Pirs, Latvian University of Agriculture K. Psiuk, Silesian University of Technology M. Simon, Universitatea Petru Maior T. Szabó Budapest University of Technology and Economics T.I. Tóth University of Szeged Organizing Committee Chair: E. Tamás, Aventics Hungary Kft., Eger Organizing Committee: A. Kriston, Aventics Hungary Kft., Eger F. Bolyki, Aventics Hungary Kft., Eger CONTENTS Gödri I.: Welcome to the Next Generation Pneumatics 1. Tóth, I.T.: Compressed Air, as an Alternative Fuel 17. Kelemen L.: Studying through the Pneumobile Competition 23. Szabó I.P.: Evolution of the Pneumobiles from Szeged 27. -
Industrial Pumps
INDUSTRIAL PUMPS General Catalogue Contents Who we are p. 04 Electric centrifugal pumps Why choose us p. 06 DM - Line introduction p. 74 Global network p. 08 DM 06 p. 76 Our products p. 10 DM 10 p. 77 The main application sectors p. 11 DM 15 p. 78 Conformity p. 14 DM 30 p. 79 Main advantages p. 16 KM 70 p. 80 Patented exchanger p. 18 MB - Line introduction p. 82 Long life diaphragms p. 19 MB 80 p. 83 How does it work? p. 20 MB 100 p. 84 Installations p. 21 MB 110 p. 85 MB 120 p. 86 Air-operated double diaphragm pumps MB 130 p. 87 CUBIC - Line introduction p. 22 MB 140 p. 88 CUBIC MIDGETBOX p. 23 MB 150 p. 89 CUBIC 15 p. 24 MB 155 p. 90 BOXER - Line introduction p. 26 MB 160 p. 91 BOXER 7 p. 27 MB 180 p. 92 BOXER 15 p. 28 IM - Line introduction p. 94 MICROBOXER p. 30 IM 80 p. 95 BOXER 50 / MINIBOXER p. 32 IM 90 p. 96 BOXER 81 / BOXER 90 p. 34 IM 95 p. 97 BOXER 100 p. 36 IM 110 p. 98 BOXER 150 p. 38 IM 120 p. 99 BOXER 251 / BOXER 252 p. 40 IM 130 p. 100 BOXER 522 / BOXER 502 p. 42 IM 140 p. 101 BOXER 503 p. 44 IM 150 p. 102 BOXER FPC 100 p. 46 IM 155 p. 103 RC Remote Control p. 50 IM 160 p. 104 SCUBIC p. 51 IM 180 p. 105 SMICRO p. -
Low Pressure High Torque Quasi Turbine Rotary Air Engine
ISSN: 2319-8753 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Vol. 3, Issue 8, August 2014 Low Pressure High Torque Quasi Turbine Rotary Air Engine K.M. Jagadale 1, Prof V. R. Gambhire2 P.G. Student, Department of Mechanical Engineering, Tatyasaheb Kore Institute of Engineering and Technology, Warananagar, Maharashtra, India1 Associate Professor, Department of Mechanical Engineering, Tatyasaheb Kore Institute of Engineering and Technology, Warananagar, Maharashtra, India 2 ABSTRACT: This paper discusses concept of Quasi turbine (QT) engines and its application in industrial systems and new technologies which are improving their performance. The primary advantages of air engine use come from applications where current technologies are either not appropriate or cannot be scaled down in size, rather there are not such type of systems developed yet. One of the most important things is waste energy recovery in industrial field. As the natural resources are going to exhaust, energy recovery has great importance. This paper represents a quasi turbine rotary air engine having low rpm and works on low pressure and recovers waste energy may be in the form of any gas or steam. The quasi turbine machine is a pressure driven, continuous torque and having symmetrically deformable rotor. This report also focuses on its applications in industrial systems, its multi fuel mode. In this paper different alternative methods discussed to recover waste energy. The quasi turbine rotary air engine is designed and developed through this project work. KEYWORDS: Quasi turbine (QT), Positive displacement rotor, piston less Rotary Machine. I. INTRODUCTION A heat engine is required to convert the recovered heat energy into mechanical energy. -
Preparation of Papers in Two-Column Format
International Conference on Ideas, Impact and Innovation in Mechanical Engineering (ICIIIME 2017) ISSN: 2321-8169 Volume: 5 Issue: 6 1336 – 1341 __________________________________________________________________________________________ A Review on Application of the Quasiturbine Engine as a Replacement for the Standard Piston Engine Akash Ampat, Siddhant Gaidhani2,Sachin Yevale3, Prashant Kharche4 1Student,Department of Mechanical Engineering, Smt. Kashibai Navale College of Engineering, Pune;[email protected], 2Student,Department of Mechanical Engineering, Smt. Kashibai Navale College of Engineering, Pune; [email protected] ABSTRACT This paper reviews the concept of a Quasiturbine (also known as Qurbine) Engine and its potential as a replacement for the standard Piston Engine. The Quasiturbine Rotary Air Engine is a low rpm engine, working on low pressure. For this purpose, a binary system of Quasiturbines is also used. It also discusses the multi-fuel capability of Quasiturbine and how it can be used in vehicle propulsion systems. This piston-less rotary machine is intended to be used where the existing technologies are centuries old and have numerous insurmountable problems. It has been consistently observed that this engine provides a better efficiency, much smaller ratio of unit displacement to engine volume, extremely high power per cycle and reduced emissions. Key words: Quasiturbine, standard piston engine, piston-less rotary engine, deformable rotor. I. INTRODUCTION A. Need and Invention Dr. Gilles Saint-Hilaire, a thermonuclear physicist, after thoroughly studying the limitations of conventional engines, designed the Quasiturbine Engine. The Quasiturbine is a continuous Torque, symmetrically deformable spinning wheel. The Saint-Hilaire family used a modern computer based approach to map the conventional engine characteristics with optimum physical-chemical graphs. -
Scope of Quasi Turbine:A Review Analysis Pranjal Yadav, Amit Tiwari, Anuj Gupta, Sushant Verma, Sandeep Kumar Singh Department of Mechanical Engineering, G
Scope of Quasi Turbine:A Review Analysis Pranjal Yadav, Amit Tiwari, Anuj Gupta, Sushant Verma, Sandeep Kumar Singh Department of Mechanical Engineering, G. L. Bajaj Institute of Technology and Management, India ABSTRACT Piston engine is the main power supply of all kinds of mobile equipment’s, and its power density directly affects the performance of mobile equipment. Compared with electric motor and gas turbine power, the piston engine has a smaller volume, simpler structure, and larger power density etc., therefore it becomes the most common source of power. Present paper provides the review analysis for the Quasi Turbine including its comparison, design analysis and future scope of work. Keywords – Quasiturbine, Rotory Engine I INTRODUCTION Rotary piston engines have the basic characteristics different from traditional piston engine which is that under pressure torque, its piston rotates around the output shaft instead of reciprocating motion in the cylinder. The working process of the cylinders, although in some points it has its own characteristics, is almost simile as the original reciprocating work cycle in nature. On the one hand, it is freed of the reciprocating inertia force for the privilege of high speed, and on the other hand, to a certain extent, it keeps the economy of traditional piston engine. So, its emergence is the major technological changes on the structure of internal combustion engine [1]. Over the years, like this rotational structure, many kinds of solutions were put forward. By now in addition to Wankel rotary engine, others did not become a formal product 1.1. About Quasi Turbine The QT (QT) is the most compact and efficient tool currently available for compression and expansion of most working fluids. -
Numerical Analysis on Combustion Characteristic of Leaf Spring Rotary Engine
Energies 2015, 8, 8086-8109; doi:10.3390/en8088086 OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Article Numerical Analysis on Combustion Characteristic of Leaf Spring Rotary Engine Yan Zhang, Zhengxing Zuo and Jinxiang Liu * School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; E-Mails: [email protected] (Y.Z.); [email protected] (Z.Z.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +86-10-6891-1392. Academic Editors: Paul Stewart and Chris Bingham Received: 19 March 2015 / Accepted: 17 July 2015 / Published: 4 August 2015 Abstract: The purpose of this paper is to investigate combustion characteristics for rotary engine via numerical studies. A 3D numerical model was developed to study the influence of several operative parameters on combustion characteristics. A novel rotary engine called, “Leaf Spring Rotary Engine”, was used to illustrate the structure and principle of the engine. The aims are to (1) improve the understanding of combustion process, and (2) quantify the influence of rotational speed, excess air ratio, initial pressure and temperature on combustion characteristics. The chamber space changed with crankshaft rotation. Due to the complexity of chamber volume, an equivalent modeling method was presented to simulate the chamber space variation. The numerical simulations were performed by solving the incompressible, multiphase Unsteady Reynolds-Averaged Navier–Stokes Equations via the commercial code FLUENT using a transport equation-based combustion model; a realizable turbulence model and finite-rate/eddy-dissipation model were used to account for the effect of local factors on the combustion characteristics. -
Technical Review on Study of Compressed Air Vehicle (Cav)
International Journal of Automobile Engineering Research & Development (IJAuERD) ISSN 2277-4785 Vol. 3, Issue 1, Mar 2013, 81-90 © TJPRC Pvt. Ltd. TECHNICAL REVIEW ON STUDY OF COMPRESSED AIR VEHICLE (CAV) HEMANT KUMAR NAYAK, DEVANSHU GOSWAMI & VINAY HABLANI Department of Mechanical Engineering, Institute of Technology and Management, Sitholi, Gwalior, MP, India ABSTRACT Diesel and Petrol engine are frequently used by automobiles industries. Their impact on environment is disastrous and can’t be neglected now. In view of above, the need of some alternative fuel has been arises which lead to the development of CAVs (Compressed Air Vehicle). It is an innovative concept of using a pressurized atmospheric air up to a desired pressure to run the engine of vehicles. Manufacturing of such vehicles would be environment friendly as well as put the favorable conditions for the cost. Applications of such compressed air driven engine are in small motor cars, bikes and can be used in the vehicles to be driven for shorter distances. This technology states that, if at 20 degree C, 300 liters tank filled with air at 300 bar carries 51MJ of energy, experimentally proved. Under ideal reversible isothermal conditions, this energy could be entirely converted to mechanical work which helps the piston and finally crankshaft to rotate at desired RPM (revolutions per minute).The result shows the comparison of different properties related to CAV and FE (Fuel Engines). For example emission of toxic gases, running cost, engine efficiency, maintenance, weight aspects etc. KEYWORDS: Compressed Air Vehicle, Fuel Engine, Compressed Air Technology INTRODUCTION Compressed air has been used since the 19th century to power mine locomotives and trams in cities such as Paris and was previously the basis of naval torpedo propulsion. -
Reelcraft Hose, Cord and Cable Reel Catalog
Reel Catalog Hose, cord and cable reels reelcraft.com Why use hose reels? Why use hose reels? Because they make hazards will decrease, which saves lost work hose handling more efficient and safer. Your time, medical bills and higher insurance. hoses, cables and cords will last up to five You also save the expense and time to times longer. You will improve hose replace expensive hoses, cables and cords management, which decreases labor costs. that get run over by fork lifts and other Your chances of injuries from tripping vehicles. Series TW7000 Five reasons why hose reels add value Truck courtesy of E&B Paving, Anderson IN Improve efficiency Increase safety Minimize leakages Reduce hose wear Increase productivity Hoses, cable and cords are Reduce tripping accidents Reduce costs of air Hose and cords on reels can No more tangled hoses where you want/need them. and lost work time. and water leakages. last up to five times longer. improves efficiency. OSHA says reduce your trips and falls “There are many situations that may cause other wires out of the way.” OSHA’s “Fall slips, trips and falls. The controls needed Prevention Tips” include, “Practice good to prevent these hazards are usually housekeeping. Keep cords, welding leads obvious, but too often ignored, such as... and air hoses out of walkways or adjacent coiling up extension cords, lines and hoses work areas." when not in use and keeping electrical and Source: www.osha.gov Same-day quick ship program offers fastest service Because we are centrally located in the US and have three North American warehouses, upon request, we can quickly ship our standard products the same day for domestic orders of five or fewer standard models. -
Energy Management Strategies for a Pneumatic-Hybrid Engine Based On
Energy Management Strategies for a Pneumatic-Hybrid Engine Based on Sliding Window Pattern Recognition Andrej Ivanco, Guillaume Colin, Yann Chamaillard, Alain Charlet, Pascal Higelin To cite this version: Andrej Ivanco, Guillaume Colin, Yann Chamaillard, Alain Charlet, Pascal Higelin. Energy Manage- ment Strategies for a Pneumatic-Hybrid Engine Based on Sliding Window Pattern Recognition. Oil & Gas Science and Technology - Revue d’IFP Energies nouvelles, Institut Français du Pétrole, 2010, 65 (1), pp.179-190. 10.2516/ogst/2009045. hal-00616601 HAL Id: hal-00616601 https://hal.archives-ouvertes.fr/hal-00616601 Submitted on 28 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 15_ogst09032 18/02/10 11:51 Page 179 Oil & Gas Science and Technology – Rev. IFP, Vol. 65 (2010), No. 1, pp. 179-190 Copyright © 2009, Institut français du pétrole DOI: 10.2516/ogst/2009045 IFP International Conference Rencontres Scientifiques de l’IFP Advances in Hybrid Powertrains Évolution des motorisations hybrides Energy Management Strategies for a Pneumatic-Hybrid -
Characteristics of Pneumatic Motors 2 TECNOLOGIE SPECIALI APPLICATE
teCnoLoGie speCiaLi appLiCate pneumatiC motors CharaCteristiCs of pneumatiC motors 2 teCnoLoGie speCiaLi appLiCate inDiCe tsa Special technologies applied 2 CharaCteristiCs of pneumatiC motors 3 POWER 3 SPEED 3 SPEED 3 TORQUE AT MAXIMUM SPEED 3 STARTING TORQUE 3 STALL TORQUE 3 WaYs of ChanGinG THE MOTOR’s PERFORMANCE 4 PRESSURE REGULATING 4 FLOW REGULATING 4 inLet air ConDitions 4 CONSUMPTION 4 AIR QUALITY 4 air pipeLine Limitations 5 pneumatiC DiaGram (power – motor control) 5 pneumatiC aCCessories 36 air treatment units 36 manuaL or pneumatiC ControL VaLVes 37 siLenCers 38 DissoLator / siLenCer fiLter 39 our proDuCts 40 CharaCteristiCs of pneumatiC motors 1 tsa speCiaL appLieD teChnoLoGies tsa founded in 1984, for over 30 years has been designing, manufacturing and distributing pneumatic motors, articulated arms for torque reaction, assembling systems and special equipment. Its technical design office is in charge of studying all of the required characteristics to guarantee maximum reliability and high productivity, according to modern ergonomic principles. Product quality and safety are now a consolidated standard for TSA. Just-in-time deliveries, a wide, flexible range of products, including diversified motors and arms, an efficient spare parts warehouse and effective before- and after sales: these are the services offered by TSA to its customers. Thanks to its constant commitment and to the professionalism of its technicians, tsa has gained the trust of major companies on the market. Its aim is to meet customer requirements in all respects: quAlITy, PerformAnce And coST effecTIveneSS. 2 teCnoLoGie speCiaLi appLiCate CharaCteristiCs of pneumatiC motors The outlet power of a pneumatic motor varies poWer depending on its speed and torque. -
Quasiturbine Rotor Development Optimization
Quasiturbine Rotor Development Optimization MOHAMMED AKRAM MOHAMMED A thesis submitted in fulfillment of the requirement for the award of the Degree of Master in Mechanical Engineering Faculty of Mechanical and Manufacturing Engineering Universiti Tun Hussein Onn Malaysia June 2014 v ABSTRACT The Quasiturbine compressor is still in developing level and its have more advantages if compare with wankel and reciprocating compressors. Quasiturbine was separated in two main important components which they are housing and rotor .Quasiturbine rotor contains a number of parts such as blades, seal, support plate and mechanism .This research focus on modeling and simulation for Quasiturbine seal to improve it and reduce the wear by using motion analysis tool and simulation tool box in Solidworks 2014 software .This study has simulated the existing design and proposed design of seal with use Aluminum (1060 alloy ) as a material of seal for both cases . In addition it has been simulated three different materials for the proposed design of seal (Aluminum, ductile iron , steel ) .The proposed design of seal was selected as better design than the existing one when compared the distribution of von Mises stress and the percentage of deformation for both cases . According to the results of the three mateials that tested by simulation for the proposed design , ductile iron is the most suitable materials from the three tested materials for Quasiturbine seal . vi CONTENTS TITLE i DECLARATION ii DEDICATION iii ACKNOWLEDGEMENT iv ABSTRACT v CONTENTS vi LIST -
Review of Quasi-Turbine Engine
ISSN(Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Vol. 5, Issue 10, October 2016 Review of Quasi-Turbine Engine Yogesh Khedkar1, Prof.Sushant Pande2 P.G. Student, Department of Mechanical Engineering, D Y Patil College of Engineering, Akurdi, Pune, India1 Assistant Professor, Department of Mechanical Engineering, D Y Patil College of Engineering, Akurdi, Pune, India2 ABSTRACT: The Quasi turbine engine is a multi-fuel, continuous torque rotary engine.It a next step in the world of Engine research is to run engine on air or any other fuel. Turbine characteristics help achieving this goal. The quasi turbine turbo-machine is a pressure driven, continuous torque and symmetrically deformable spinning wheel. The Quasi turbine is a compact, low weight and high torque machine with top efficiency, especially in power modulation applications. One of the most important things is waste energy recovery in industrial field. As the natural resources are going to exhaust, energy recovery has great importance. A quasi turbine rotary air engine having low rpm and works on low pressure recovers waste energy may be in the form of any gas or steam. This paper discusses concept of quasi turbine air and combustion engines also the comparison between the quasi turbine engine and the other engines. KEYWORDS: Quasi turbine (QT), Positive displacement rotor, piston less Rotary Machine. I. INTRODUCTION The Quasi-turbine is a new engine technology that was invented in 1990 and patented in 1996.The concept of quasi turbine rotary air engine was first introduced by Gilles Saint-Hilaire and etal.