Results Summary for CY 2010

Total Page:16

File Type:pdf, Size:1020Kb

Results Summary for CY 2010 Advanced Manufacturing Office IMPACTS Results Summary for CY 2010 March 2013 Table of Contents IMPACTS Table of Contents Executive Summary................................................................. 1 AMO Impacts .......................................................................... 2 Industrial Energy Use Advanced Manufacturing Office Technology Tracking Process Results Appendix A: AMO -Sponsored Technologies Commercially Available .. A-1 Appendix B: AMO Emerging Technologies ............................................. B-1 Appendix C: Historical AMO Technology Successes .............................. C-1 Appendix D: Method of Calculating Results for the IAC Program .......... D-1 Appendix E: Method of Calculating Results for Technology Deployment Program ................................................................................E-1 Appendix F: Method of Calculating Results from DOE’s Combined Heat and Power Activities .............................................................F-1 Appendix G: Methodology for Technology Tracking and Assessment of Benefits ................................................. G-1 ii DOE Advanced Manufacturing Office Executive Summary IMPACTS Manufacturing converts a wide range of raw materials, 713 trillion Btu or $5.12 billion. Cumulatively these net components, and parts into finished goods that meet market benefits correspond to about 10.7 quadrillion Btu or $56.5 expectations. The U.S. Department of Energy’s (DOE’s) billion (in 2010 dollars). Advanced Manufacturing Office (AMO) partners with industry, small business, universities, and other stakeholders This report has seven appendices. Appendix A describes to identify and invest in emerging technologies with the the 98 AMO-supported commercial technologies currently potential to create high-quality domestic manufacturing jobs available, their applications, and benefits. Appendix B lists and enhance the global competitiveness of the United States. the 168 AMO-supported emerging technologies likely to This document offers a 2010 summary of selected impacts be commercialized within two or three years. Appendix C of AMO’s initiatives that are designed to increase energy describes 132 AMO- supported technologies used in past productivity and expand U.S. leadership in clean energy commercial applications. Appendices D and E summarize markets. the benefits of AMO technology deployment activities: the Industrial Assessment Centers and other technology Industry is the largest and most diverse energy-consuming deployment programs. Appendix F summarizes the benefits sector in the U.S. economy. In recent years, the industrial of DOE supported CHP systems. Finally, Appendix G sector used one-third of the energy consumed in the nation, describes the methodology used to assess and track AMO- produced about 1,500 MMT of CO2 per year, contributed supported technologies. 12% to the overall U.S. gross domestic product, and provided nearly 12 million manufacturing jobs. When combined with concerns surrounding energy security, job creation, and global competitiveness, these statistics emphasize the strategic role that improved industrial energy efficiency can have in addressing some of the nation’s most pressing energy, economic, and environmental challenges. Over the past 30 years, AMO has supported more than 600 separate RD&D projects that have produced over 250 commercialized technologies. In 2010 alone, 98 AMO supported commercialized technologies have saved 43.1 trillion Btus. While these energy savings are impressive, industry has reaped even greater benefits from improved productivity, reduced resource consumption, decreased emissions, and enhanced product quality associated with these technological advances. For the period 1992 - 2010, AMO-sponsored projects have resulted in 50 R&D 100 awards and 265 issued patents. Also, many AMO-supported projects have significantly expanded knowledge about complex industrial processes and have laid the foundation for future energy-efficient technologies. Investing in high-risk, high-value RD&D that will reduce industry’s energy requirements while stimulating economic productivity and growth is a primary role for AMO initiatives. Energy is a major input for many key manufacturing industries. In addition to tracking current and cumulative energy savings, AMO monitors other benefits associated with the successfully commercialized technologies resulting from its research partnerships. These benefits include cumulative reductions of various air pollutants including particulates, volatile organic compounds, nitrogen oxides, sulfur oxides, and carbon. In 2010, AMO programs were instrumental in saving industry DOE Advanced Manufacturing Office 1 AMO Impacts IMPACTS Industrial Energy Use The non-energy-intensive industries (3.84 quads) and Industry is the largest and most diverse energy-consuming non-manufacturing industries (agriculture, mining, and sector of the U.S. economy. In recent years, the industrial construction – 3.60 quads combined) accounted for the sector has used one-third of the energy consumed in the remaining energy consumption. Industry used 5.53 quads of the fossil fuels for feedstocks – raw materials for plastics nation, produced about 1,500 MMT of CO2 per year, contributed 12% to the overall U.S. gross domestic product and chemicals – rather than as fuels. Energy expenditures (GDP), and provided nearly 12 million manufacturing jobs. associated with manufacturing account for approximately When combined with concerns surrounding energy security, $230 billion annually. job creation, and global competitiveness, these statistics emphasize the strategic role that improved industrial energy Energy-intensive industries such as forest products, efficiency can play in responding to some of the nation’s most chemicals, petroleum refining, nonmetallic minerals (glass pressing energy, economic, and environmental challenges. and cement, especially), and primary metals account for about 80% of all manufacturing energy use. Many of these In 2010, the industrial sector used 30.14 quads of all types industries are limited in their choice of fuels because the of energy including losses associated with electricity process technologies these industries use require a specific transmission of 6.88 quads (see Figure 1). Petroleum fuel. For example, aluminum production requires large (8.01 quads), natural gas (8.11 quads), and electricity (3.28 amounts of electricity to reduce the alumina to metal. Paper quads delivered) are the three fuels most used by industry, pulping leaves a large amount of residual wood lignin that with coal and renewable energy (predominantly biomass) can be reprocessed for its chemical content and consequently providing another 3.86 quads combined. The industrial supplies the industry with half of its primary energy. This sector consumed a total of 23.26 quads, of which 19.66 quads means that the selection of a number of fuels (and feedstocks) were consumed by manufacturing industries. Of those 19.66 quads, energy-intensive industries consumed 15.82 quads. Electricity Electricity Losses Generation and 6.88 Transmission 10.16 Electricity 3.28 Fuel 3.27 Petroleum 8.01 Feedstocks Manufacturing 4.74 Energy-Intensive 15.82 19.66 Fuel Non-Energy-Intensive Natural 7.70 Gas Fossil Fuels Consumption 3.84 8.11 Feedstocks 17.73 23.26 0.41 Fuel Coal and 1.23 Coke 1.61 Feedstocks 0.38 Non-Manufacturing Renewables 3.60 Renewable 2.25 Source: EIA AER 2010, EIA MECS 2006 Energy 2.25 Figure 1. Industrial Energy Flows (Quads), 2010 2 DOE Advanced Manufacturing Office AMO Impacts IMPACTS used in the industrial sector is a reflection of the specific The energy intensity of the industrial sector has been requirements of the process(es) used to make particular goods declining over the past decade, in part because of investments or commodities. Because of these energy requirements, the in the development of energy-efficient technologies by AMO. industrial sector offers a wide variety of opportunities for Since its peak in 1992, industrial sector energy intensity energy-efficiency improvements that are specific to particular has declined more than 40%, from 15,500 Btu/dollar of real industries. In addition, certain technologies (e.g., boilers and industrial GDP to 8,900 Btu/dollar of real industrial GDP in motors) crosscut many industries. 2010 (see Figure 2). 16 15 14 13 12 11 10 Thousand Btu/$ Btu/$ IndThousand GDP 9 8 1990 1995 2000 2005 2010 Year Sources: EIA Annual Energy Review, 2010, Table 2.1d and BEA, Value Added for Industry, 1990-1997 and 1998-2010, (Constant $2010) Figure 2. Historical Industrial Energy Intensity DOE Advanced Manufacturing Office 3 AMO Impacts IMPACTS The Advanced Manufacturing Office u Next Generation Materials: Innovative materials AMO is the lead government program working to develop can open new design spaces for high-performance and and deploy new, energy-efficient technologies for the U.S. renewable energy technology manufacturing. Projects manufacturing sector. Programs within AMO are tailored focus on three areas with clear energy, carbon, and to address specific barriers faced by technology developers economic benefits. and manufacturers to ensure that cost-effective technologies are effectively transitioned from fundamental to applied AMO R&D investments move emerging technology along research, developed into commercially available products, the innovation pipeline through what is referred to as a and effectively deployed where they are needed throughout technology’s
Recommended publications
  • Proceedings of 1St Agria Conference on Innovative Pneumatic Vehicles – ACIPV 2017
    Proceedings of 1st Agria Conference on Innovative Pneumatic Vehicles – ACIPV 2017 May 05, 2017 Eger, Hungary Pneumobil Proceedings of the 1st Agria Conference on Innovative Pneumatic Vehicles – ACIPV 2017 May 05, 2017 Eger, Hungary Edited by Prof.Dr. László Pokorádi Published by Óbuda University, Institute of Mechatronics and Vehicle Engineering ISBN 978-963-449-022-7 Technical Sponsor: Aventics Hungary Kft. Organizer: Óbuda University, Institute of Mechatronics and Vehicle Engineering Honorary Chairs: L. Palkovics, BUTE, Budapest M. Réger, Óbuda University, Budapest Honorary Committee: I. Gödri, Aventics Hungary Kft., Eger Z. Rajnai, Óbuda University, Budapest General Chair: L. Pokorádi, Óbuda University, Budapest Scientific Program Committee Chair: J.Z. Szabó, Óbuda University, Budapest Scientific Program Committee: J. Bihari University of Miskolc Zs. Farkas Budapest University of Technology and Economics L. Fechete, Technical University of Cluj-Napoca W. Fiebig, Wroclaw University of Science and Technology D. Fodor, University of Pannonia Z. Forgó, Sapientia Hungarian University of Transylvania L. Jánosi Szent István University Gy. Juhász, University of Debrecen L. Kelemen, University of Miskolc M. Madissoo, Estonian University of Life Sciences Vilnis. Pirs, Latvian University of Agriculture K. Psiuk, Silesian University of Technology M. Simon, Universitatea Petru Maior T. Szabó Budapest University of Technology and Economics T.I. Tóth University of Szeged Organizing Committee Chair: E. Tamás, Aventics Hungary Kft., Eger Organizing Committee: A. Kriston, Aventics Hungary Kft., Eger F. Bolyki, Aventics Hungary Kft., Eger CONTENTS Gödri I.: Welcome to the Next Generation Pneumatics 1. Tóth, I.T.: Compressed Air, as an Alternative Fuel 17. Kelemen L.: Studying through the Pneumobile Competition 23. Szabó I.P.: Evolution of the Pneumobiles from Szeged 27.
    [Show full text]
  • Industrial Pumps
    INDUSTRIAL PUMPS General Catalogue Contents Who we are p. 04 Electric centrifugal pumps Why choose us p. 06 DM - Line introduction p. 74 Global network p. 08 DM 06 p. 76 Our products p. 10 DM 10 p. 77 The main application sectors p. 11 DM 15 p. 78 Conformity p. 14 DM 30 p. 79 Main advantages p. 16 KM 70 p. 80 Patented exchanger p. 18 MB - Line introduction p. 82 Long life diaphragms p. 19 MB 80 p. 83 How does it work? p. 20 MB 100 p. 84 Installations p. 21 MB 110 p. 85 MB 120 p. 86 Air-operated double diaphragm pumps MB 130 p. 87 CUBIC - Line introduction p. 22 MB 140 p. 88 CUBIC MIDGETBOX p. 23 MB 150 p. 89 CUBIC 15 p. 24 MB 155 p. 90 BOXER - Line introduction p. 26 MB 160 p. 91 BOXER 7 p. 27 MB 180 p. 92 BOXER 15 p. 28 IM - Line introduction p. 94 MICROBOXER p. 30 IM 80 p. 95 BOXER 50 / MINIBOXER p. 32 IM 90 p. 96 BOXER 81 / BOXER 90 p. 34 IM 95 p. 97 BOXER 100 p. 36 IM 110 p. 98 BOXER 150 p. 38 IM 120 p. 99 BOXER 251 / BOXER 252 p. 40 IM 130 p. 100 BOXER 522 / BOXER 502 p. 42 IM 140 p. 101 BOXER 503 p. 44 IM 150 p. 102 BOXER FPC 100 p. 46 IM 155 p. 103 RC Remote Control p. 50 IM 160 p. 104 SCUBIC p. 51 IM 180 p. 105 SMICRO p.
    [Show full text]
  • Ultra-Fast Boriding for Improved Energy Efficiency and Reduced Emissions in Materials Processing Industries
    ANL/ESD/12-16 Ultra-fast Boriding for Improved Energy Efficiency and Reduced Emissions in Materials Processing Industries. Final Report. Project Period: 9/30/2008 – 9/30/2011 (extended to 12/31/2011) Energy Systems Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone (865) 576-8401 fax (865) 576-5728 [email protected] Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.
    [Show full text]
  • Technical Review on Study of Compressed Air Vehicle (Cav)
    International Journal of Automobile Engineering Research & Development (IJAuERD) ISSN 2277-4785 Vol. 3, Issue 1, Mar 2013, 81-90 © TJPRC Pvt. Ltd. TECHNICAL REVIEW ON STUDY OF COMPRESSED AIR VEHICLE (CAV) HEMANT KUMAR NAYAK, DEVANSHU GOSWAMI & VINAY HABLANI Department of Mechanical Engineering, Institute of Technology and Management, Sitholi, Gwalior, MP, India ABSTRACT Diesel and Petrol engine are frequently used by automobiles industries. Their impact on environment is disastrous and can’t be neglected now. In view of above, the need of some alternative fuel has been arises which lead to the development of CAVs (Compressed Air Vehicle). It is an innovative concept of using a pressurized atmospheric air up to a desired pressure to run the engine of vehicles. Manufacturing of such vehicles would be environment friendly as well as put the favorable conditions for the cost. Applications of such compressed air driven engine are in small motor cars, bikes and can be used in the vehicles to be driven for shorter distances. This technology states that, if at 20 degree C, 300 liters tank filled with air at 300 bar carries 51MJ of energy, experimentally proved. Under ideal reversible isothermal conditions, this energy could be entirely converted to mechanical work which helps the piston and finally crankshaft to rotate at desired RPM (revolutions per minute).The result shows the comparison of different properties related to CAV and FE (Fuel Engines). For example emission of toxic gases, running cost, engine efficiency, maintenance, weight aspects etc. KEYWORDS: Compressed Air Vehicle, Fuel Engine, Compressed Air Technology INTRODUCTION Compressed air has been used since the 19th century to power mine locomotives and trams in cities such as Paris and was previously the basis of naval torpedo propulsion.
    [Show full text]
  • Reelcraft Hose, Cord and Cable Reel Catalog
    Reel Catalog Hose, cord and cable reels reelcraft.com Why use hose reels? Why use hose reels? Because they make hazards will decrease, which saves lost work hose handling more efficient and safer. Your time, medical bills and higher insurance. hoses, cables and cords will last up to five You also save the expense and time to times longer. You will improve hose replace expensive hoses, cables and cords management, which decreases labor costs. that get run over by fork lifts and other Your chances of injuries from tripping vehicles. Series TW7000 Five reasons why hose reels add value Truck courtesy of E&B Paving, Anderson IN Improve efficiency Increase safety Minimize leakages Reduce hose wear Increase productivity Hoses, cable and cords are Reduce tripping accidents Reduce costs of air Hose and cords on reels can No more tangled hoses where you want/need them. and lost work time. and water leakages. last up to five times longer. improves efficiency. OSHA says reduce your trips and falls “There are many situations that may cause other wires out of the way.” OSHA’s “Fall slips, trips and falls. The controls needed Prevention Tips” include, “Practice good to prevent these hazards are usually housekeeping. Keep cords, welding leads obvious, but too often ignored, such as... and air hoses out of walkways or adjacent coiling up extension cords, lines and hoses work areas." when not in use and keeping electrical and Source: www.osha.gov Same-day quick ship program offers fastest service Because we are centrally located in the US and have three North American warehouses, upon request, we can quickly ship our standard products the same day for domestic orders of five or fewer standard models.
    [Show full text]
  • Energy Management Strategies for a Pneumatic-Hybrid Engine Based On
    Energy Management Strategies for a Pneumatic-Hybrid Engine Based on Sliding Window Pattern Recognition Andrej Ivanco, Guillaume Colin, Yann Chamaillard, Alain Charlet, Pascal Higelin To cite this version: Andrej Ivanco, Guillaume Colin, Yann Chamaillard, Alain Charlet, Pascal Higelin. Energy Manage- ment Strategies for a Pneumatic-Hybrid Engine Based on Sliding Window Pattern Recognition. Oil & Gas Science and Technology - Revue d’IFP Energies nouvelles, Institut Français du Pétrole, 2010, 65 (1), pp.179-190. 10.2516/ogst/2009045. hal-00616601 HAL Id: hal-00616601 https://hal.archives-ouvertes.fr/hal-00616601 Submitted on 28 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 15_ogst09032 18/02/10 11:51 Page 179 Oil & Gas Science and Technology – Rev. IFP, Vol. 65 (2010), No. 1, pp. 179-190 Copyright © 2009, Institut français du pétrole DOI: 10.2516/ogst/2009045 IFP International Conference Rencontres Scientifiques de l’IFP Advances in Hybrid Powertrains Évolution des motorisations hybrides Energy Management Strategies for a Pneumatic-Hybrid
    [Show full text]
  • Characteristics of Pneumatic Motors 2 TECNOLOGIE SPECIALI APPLICATE
    teCnoLoGie speCiaLi appLiCate pneumatiC motors CharaCteristiCs of pneumatiC motors 2 teCnoLoGie speCiaLi appLiCate inDiCe tsa Special technologies applied 2 CharaCteristiCs of pneumatiC motors 3 POWER 3 SPEED 3 SPEED 3 TORQUE AT MAXIMUM SPEED 3 STARTING TORQUE 3 STALL TORQUE 3 WaYs of ChanGinG THE MOTOR’s PERFORMANCE 4 PRESSURE REGULATING 4 FLOW REGULATING 4 inLet air ConDitions 4 CONSUMPTION 4 AIR QUALITY 4 air pipeLine Limitations 5 pneumatiC DiaGram (power – motor control) 5 pneumatiC aCCessories 36 air treatment units 36 manuaL or pneumatiC ControL VaLVes 37 siLenCers 38 DissoLator / siLenCer fiLter 39 our proDuCts 40 CharaCteristiCs of pneumatiC motors 1 tsa speCiaL appLieD teChnoLoGies tsa founded in 1984, for over 30 years has been designing, manufacturing and distributing pneumatic motors, articulated arms for torque reaction, assembling systems and special equipment. Its technical design office is in charge of studying all of the required characteristics to guarantee maximum reliability and high productivity, according to modern ergonomic principles. Product quality and safety are now a consolidated standard for TSA. Just-in-time deliveries, a wide, flexible range of products, including diversified motors and arms, an efficient spare parts warehouse and effective before- and after sales: these are the services offered by TSA to its customers. Thanks to its constant commitment and to the professionalism of its technicians, tsa has gained the trust of major companies on the market. Its aim is to meet customer requirements in all respects: quAlITy, PerformAnce And coST effecTIveneSS. 2 teCnoLoGie speCiaLi appLiCate CharaCteristiCs of pneumatiC motors The outlet power of a pneumatic motor varies poWer depending on its speed and torque.
    [Show full text]
  • Development of Guidelines for Warm Forging of Steel Parts
    Development of Guidelines for Warm Forging of Steel Parts THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Niranjan Rajagopal, B.Tech Graduate Program in Industrial and Systems Engineering The Ohio State University 2014 Master's Examination Committee: Dr.Taylan Altan, Advisor Dr.Jerald Brevick Copyright by Niranjan Rajagopal 2014 ABSTRACT Warm forging of steel is an alternative to the conventional hot forging technology and cold forging technology. It offers several advantages like no flash, reduced decarburization, no scale, better surface finish, tight tolerances and reduced energy when compared to hot forging and better formability, lower forming pressures and higher deformation ratios when compared to cold forging. A system approach to warm forging has been considered. Various aspects of warm forging process such as billet, tooling, billet/die interface, deformation zone/forging mechanics, presses for warm forging, warm forged products, economics of warm forging and environment & ecology have been presented in detail. A case study of forging of a hollow shaft has been discussed. A comparison of forging loads and energy required to forge the hollow shaft using cold, warm and hot forging process has been presented. ii DEDICATION This document is dedicated to my family. iii ACKNOWLEDGEMENTS I am grateful to my advisor, Prof. Taylan Altan for accepting me in his research group, Engineering Research Center for Net Shape Manufacturing (ERC/NSM) and allowing me to do thesis under his supervision. The support of Dr. Jerald Brevick along with other professors at The Ohio State University was also very important in my academic and professional development.
    [Show full text]
  • Compressed Air Retrofit Kit for Existing Motor Vehicles
    Proceedings of the World Congress on Engineering 2013 Vol III, WCE 2013, July 3 - 5, 2013, London, U.K. Compressed Air Retrofit Kit for Existing Motor Vehicles Naveen Kumar, Utsav Banka, Manas Chitransh, Jayati Takkar, Vasu Kumar, Unish Gupta, Sushant Singh Abstract—Keeping in view the climate change, the Peak oil is the point in time when the maximum rate of dependence on petroleum reserves as the primary energy petroleum extraction is reached, after which the rate of source, and volatile fuel prices, it is imperative to explore production is expected to enter terminal decline. The oil possible opportunities in unconventional alternative-fuel crisis will begin when demand for oil consistently begins to technologies. One of the choices available is the Compressed Air Vehicle (CAV), or air car, powered by a pneumatic motor exceed supply. After the peak, demand and supply can no and on-board high-pressure gas tank. While proponents claim longer match. Keeping in view the discerning climate crisis, CAVs offer environmental and economic benefits like zero the dependence on petroleum reserves as the primary energy emissions (in fact, the exhaust air is cleaner than the ambient source, and volatile fuel prices, we have to explore possible air because of the filters used) and the cold exhaust being used opportunities in unconventional alternative-fuel for the air conditioning system, the technology has not been technologies. Compressed air as an alternative fuel can offer subject to more rigorous analysis. Also, in a compressed air engine, air alone can be used as the fuel, or it can be used in a solution to most of the aforementioned problems.
    [Show full text]
  • Tank Truck Equipment
    Sofia 1528, No.3 Poruchik Nedelcho Bonchev Str., fl.5 Page. 2 / 77 T.+359 2 973 2370, +359 2 973 2665, F.: +359 2 973 2665 email: [email protected], www.daisglobal.eu Sofia 1528, No.3 Poruchik Nedelcho Bonchev Str., fl.5 Page. 3 / 77 T.+359 2 973 2370, +359 2 973 2665, F.: +359 2 973 2665 email: [email protected], www.daisglobal.eu TABLE OF CONTENTS I. TANK TRUCK EQUIPMENT ............................................................... 5 1.1. TRAILERS, SEMITRAILERS and RIGIT TANKS for fuels ............................. 6 1.2. Manhole covers .................................................................................. 7 1.3. Pneumatic control units ....................................................................... 9 1.4. Adapters and fittings for Bottom loading .............................................. 10 1.5. Super light ball valves ....................................................................... 12 1.6. Foot valves ...................................................................................... 12 1.7. Nozzles and parts ............................................................................. 14 1.8. Vapour recovery adapters and valves .................................................. 16 1.9. Overfill protection system LIBERTY ..................................................... 18 1.10. Compensators, sight flow, DDC .......................................................... 19 1.11. SAFETY AND CONTROL SYSTEM SCS ................................................... 21 1.12. HOSES ...........................................................................................
    [Show full text]
  • Preliminary Program
    PRELIMINARY PROGRAM MONDAY, 26 June 2017 16.00-18.00 : Opening of the registration 18.00-19.00 : Welcome event & Cocktail TUESDAY, 27 June 2017 ROOM A 08.00 REGISTRATION 09.00 Opening Ceremony by A3TS President and IFHTSE President. KEYNOTES LECTURES 09.20 Landing Gear Technologies : From The Beginning To Tomorrow P. Taylor - Safran Landing Systems - Oloron Sainte Marie (France) 10.00 Materials Engineering for Automotive challenges Y. Chastel - Groupe Renault – Guyancourt (France) 10.40 Focused Ion Beam methods for micro-scale residual stress assessment E. Bemporad - University Roma 3 - Rome (Italy) 11.20 Thermochemical Surface Engineering: A Playground for Science and Innovation M.A.J. Somers - Technical University of Denmark - Kongens Lyngby (Denmark) 12.00 END OF THE KEYNOTES LECTURES 12.30 LUNCH ROOM A ROOM B SESSION S1: FUNDAMENTAL AND PROPERTIES SESSION S9 : MODELING 14.00 Thermochemical treatments applications for helicopter gas turbine engines Prediction of grain size evolution during thermal and thermomechanical treatments at C. Vernault, Safran Helicopter Engines - Bordes (France) the mesoscopic scale: numerical improvements and industrial examples A. Settefrati 1, B. Scholtes 1, N. Bozzolo 2, E. Perchat 1, M. Bernacki 2 1Transvalor SA - Mougins (France), 2Mines ParisTech, PSL Research University, CEMEF - Sophia Antipolis (France) 14.20 Influence of the microstructure on local deformations of a homogeneously nitrided steel Numerical modelling of heat treated welded joint F. Godet 1, L. Barrallier 2, S. Jégou 2, S. Thibault 3 B. Smoljan, D. Iljkic, L. Štic, S. Smokvina Hanza, N. Tomašic Faculty of Engineering, 1IRT-M2P - Metz (France), 2MSMP Laboratory - Aix-En-Provence (France), 3SAFRAN TECH - University of Rijeka - Rijeka (Croatia) Magny-Les-Hameaux (France) 14.40 TEM investigation of the semi-coherent precipitation in a nitrided Fe-3Cr alloy Experimental Study and Modelling of Phase Transformation Kinetics During Austenite O.
    [Show full text]
  • Hard Surface Layers by Pack Boriding and Gaseous Thermo-Reactive Deposition and Diffusion Treatments
    Downloaded from orbit.dtu.dk on: Oct 04, 2021 Hard Surface Layers by Pack Boriding and Gaseous Thermo-Reactive Deposition and Diffusion Treatments Christiansen, Thomas Lundin; Bottoli, Federico; Dahl, Kristian Vinter; Gammeltoft-Hansen, N. B.; Laursen, M. B.; Somers, Marcel A. J. Published in: Materials Performance and Characterization Link to article, DOI: 10.1520/MPC20160106 Publication date: 2017 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Christiansen, T. L., Bottoli, F., Dahl, K. V., Gammeltoft-Hansen, N. B., Laursen, M. B., & Somers, M. A. J. (2017). Hard Surface Layers by Pack Boriding and Gaseous Thermo-Reactive Deposition and Diffusion Treatments. Materials Performance and Characterization, 6(4), 1-17. https://doi.org/10.1520/MPC20160106 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Hard surface layers by pack boriding and gaseous thermo-reactive deposition and diffusion treatments Thomas L. Christiansen1*, Federico Bottoli1, Kristian V.
    [Show full text]