Precipitation Hardening of the HVOF Sprayed Single-Phase High-Entropy Alloy Crfeconi
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effect of Alloying Elements on Heat Treatment Behavior of Hypoeutectic
Materials Transactions, Vol. 47, No. 1 (2006) pp. 72 to 81 #2006 The Japan Institute of Metals Effect of Alloying Elements on Heat Treatment Behavior of Hypoeutectic High Chromium Cast Iron Sudsakorn Inthidech1;*, Prasonk Sricharoenchai1 and Yasuhiro Matsubara2 1Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok10330, Thailand 2Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok10330, Thailand The relationship between hardness and volume fraction of retained austenite (V ) was investigated in heat-treated 16 mass% and 26 mass%Cr hypoeutectic cast irons with and without addition of a third alloying element of Ni, Cu, Mo and V. In as-hardened state, hardness changed remarkably depending on the V . Overall, Ni and Cu decreased hardness but Mo increased it. Hardness increased in 16 mass%Cr cast iron but decreased in 26 mass%Cr cast iron by V addition. The V increased with Ni, Cu and Mo addition but diminished with V addition in 16 mass%Cr cast iron. In 26 mass%Cr cast iron, Ni and Mo increased the V but Cu and V reduced it. Higher austenitization caused more V . Curves of tempered hardness showed an evident secondary hardening due to precipitation of special carbides and transformation of destabilized austenite into martensite. High tempered hardness was obtained in the specimens with high V in as-hardened state. Maximum tempered hardness (HTmax) was obtained when V was less than 20% and it increased with an increase in Mo content. The HTmax slightly increased with V content in 16 mass%Cr cast iron and decreased in 26 mass%Cr cast iron. -
Effect of Tempering Conditions on Secondary Hardening of Carbides
materials Article Effect of Tempering Conditions on Secondary Hardening of Carbides and Retained Austenite in Spray-Formed M42 High-Speed Steel Bowen Liu 1,*, Tian Qin 2, Wei Xu 1, Chengchang Jia 1,*, Qiuchi Wu 2, Mingying Chen 2 and Zhe Liu 2 1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China; [email protected] 2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; [email protected] (T.Q.); [email protected] (Q.W.); [email protected] (M.C.); [email protected] (Z.L.) * Correspondence: [email protected] (B.L.); [email protected] (C.J.); Tel.: +86-15-210-565-349 (B.L.) Received: 30 October 2019; Accepted: 7 November 2019; Published: 11 November 2019 Abstract: In this study, the effect of tempering conditions on microstructure, grain size, and carbide phase compositions of spray-formed high-speed steel after quenching at 1180 ◦C was studied. The influence of carbide phase, size of carbides, and retained austenite content on secondary hardening of the steel was analyzed by field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), electron backscattered diffraction (EBSD), and differential scanning calorimetry (DSC); the hardness, microhardness of carbide, and bending strength were tested. The results show that M3C, M6C, M7C3, and MC carbides may precipitate at different tempering temperatures and the transformation of the retained austenite can be controlled by tempering. The phase composition of carbides, microstructure, and retained austenite content strongly influences the performance characteristics of M42 high-speed steel after tempering. -
Ultra-Fast Boriding for Improved Energy Efficiency and Reduced Emissions in Materials Processing Industries
ANL/ESD/12-16 Ultra-fast Boriding for Improved Energy Efficiency and Reduced Emissions in Materials Processing Industries. Final Report. Project Period: 9/30/2008 – 9/30/2011 (extended to 12/31/2011) Energy Systems Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone (865) 576-8401 fax (865) 576-5728 [email protected] Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. -
The Discovery of Strong Aluminum
METALS HISTORY The Discovery of Strong Aluminum Charles R. Simcoe ow did aluminum, a metal that is light Interest in Wilm’s alloy spread throughout Watseka, Ill. H in weight (only one-third as heavy as the metal-making world. Samples of the alloy steel) and in its unalloyed form is were obtained, and studies were undertaken on The discovery among the weakest of all metals, become the the hardening mechanism at the United States structural material of modern airplanes? This Bureau of Standards in Washington, D.C. The of age story started in the very early 1900s, the in- research was performed by Paul Merica, hardening of fancy of the aluminum industry. At this time, Howard Scott, and R.G. Waltenberg, and they aluminum was the aluminum market was mostly in cooking would become famous as the next major con- a seminal utensils, pots, and pans. The leap from such tributors to the amazing story of age harden- small, mundane beginnings to building Zep- ing. They found that nature had held a secret event in the pelins in a few years, Douglas DC-3s in 25 on a method of hardening metals, and that history of years, and Boeing 747s in 60 years is a remark- Wilm’s alloy was just a single example of a uni- metals. able feat of engineering. versal behavior that was undiscovered since an- Read the The first character in this drama was a Ger- cient man had learned to make alloys during complete man engineer by the name of Alfred Wilm. He the age of bronze. -
Development of Guidelines for Warm Forging of Steel Parts
Development of Guidelines for Warm Forging of Steel Parts THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Niranjan Rajagopal, B.Tech Graduate Program in Industrial and Systems Engineering The Ohio State University 2014 Master's Examination Committee: Dr.Taylan Altan, Advisor Dr.Jerald Brevick Copyright by Niranjan Rajagopal 2014 ABSTRACT Warm forging of steel is an alternative to the conventional hot forging technology and cold forging technology. It offers several advantages like no flash, reduced decarburization, no scale, better surface finish, tight tolerances and reduced energy when compared to hot forging and better formability, lower forming pressures and higher deformation ratios when compared to cold forging. A system approach to warm forging has been considered. Various aspects of warm forging process such as billet, tooling, billet/die interface, deformation zone/forging mechanics, presses for warm forging, warm forged products, economics of warm forging and environment & ecology have been presented in detail. A case study of forging of a hollow shaft has been discussed. A comparison of forging loads and energy required to forge the hollow shaft using cold, warm and hot forging process has been presented. ii DEDICATION This document is dedicated to my family. iii ACKNOWLEDGEMENTS I am grateful to my advisor, Prof. Taylan Altan for accepting me in his research group, Engineering Research Center for Net Shape Manufacturing (ERC/NSM) and allowing me to do thesis under his supervision. The support of Dr. Jerald Brevick along with other professors at The Ohio State University was also very important in my academic and professional development. -
Evaluation of the Mechanical Properties After Thermal Treatment of a Structural Hot Rolled Multiphase Steel(·)
REVISTA DE METALURGIA, 43 (6) NOVIEMBRE-DICIEMBRE, 448-457, 2007 ISSN: 0034-8570 Evaluation of the mechanical properties after thermal treatment of a structural hot rolled multiphase steel(·) J. Asensio-Lozano* and J.T. Panta-Mesones** Abstract The present paper corresponds to the experimental study conducted on a hot rolled (HR) multiphase (MP) steel, in which hardness, tensile and toughness properties were measured after the application of a series of subcritical and intercritical heat treatments (HT) to the hot rolled stock. The aforementioned values were compared to the corresponding ones in the as-rolled state and after normalizing. The microstructure in the longitudinal plane of the strip was analyzed by light optical microscopy in the as-rolled state and in the HT samples. Longitudinal (L) and transverse (T) tensile and toughness specimens were cut to characterize every condition studied. Toughness properties were evaluated by means of Charpy V-notch tests conducted at 20 °C, 0 °C, –20 °C, –40 °C, –60 °C and –80 °C . It was observed that the yield stress increased with the increase in the heat treatment temperature in the subcritical range, while the tensile strength decreased slightly over the same range of temperatures. Uniform and total elongation only showed a slight improvement when the treatment was conducted at 620 °C and 700 °C, while the best toughness response corresponded to the sample treated at 500 °C for operating temperatures comprised between –40 °C and room temperature (RT). Keywords Multiphase steels. Heat treatment. Tempering. Normalizing. Mechanical properties. Hardness. Tension test. Charpy impact toughness. Evaluación de las propiedades mecánicas tras tratamiento térmico de un acero multifase estructural laminado en caliente Resumen El presente estudio corresponde al trabajo experimental desarrollado en un acero multifase laminado en caliente, en el que se evaluaron las propiedades de dureza, tracción y tenacidad a impacto, tras realizar tratamientos térmicos subcríticos e intercríticos al material laminado en caliente. -
Final Exam Questions Generated by the Class
Final Exam Questions Generated by the Class Module 8 – Iron and Steel Describe some of the business practices that Carnegie employed that allowed him to take command of the steel industry. Hard driving, vertical integration, price making Which of the following was/is NOT a method used to make steel? A. Puddling B. Bessemer process C. Basic oxygen process D. Arc melting E. None of the above What are the three forms of iron, and what is the associated carbon content of each? Wrought <.2% Steel .2-2.3% Cast Iron 2.3-4.2% How did Andrew Carnegie use vertical integration to gain control of the steel market? Controlled the entire steel making process from mining to final product Who created the best steel for several hundred years while making swords during the 1500’s? A. Syria B. Egypt C. Japan D. England Describe the difference between forging and casting. When forging, you beat and hammer the material into the desired shape. When casting, you pour liquid into a mold to shape it. Describe the difference between steel and wrought iron. Steel has less carbon Which of the following forms of iron has a low melting point and is not forgeable? A. Steel B. Pig Iron C. Wrought Iron D. None of the Above What two developments ushered in the transition from the Bronze Age to the Iron Age? More iron ore and greater ability to change its properties using readily available alloying agent (carbon) 1 Final Exam Questions Generated by the Class What is the difference between ferrite and austenite? A. -
Precipitation Hardening of Metal Alloys
Precipitation Hardening of Metal Alloys Precipitation hardening, or age hardening, provides to look; following Merica, new age-hardening alloys one of the most widely used mechanisms for the came in a flood.” strengthening of metal alloys. The fundamental under- The importance of the theoretical suggestion for the standing and basis for this technique was established in development of new alloys is clear from the historical early work at the U. S. Bureau of Standards on an alloy record [5]. At the end of the 19th century, cast iron was known as Duralumin [1,2]. Duralumin is an aluminum the only important commercial alloy not already known alloy containing copper and magnesium with small to western technology at the time of the Romans. When amounts of iron and silicon. In an attempt to understand age hardening of aluminum was discovered accidentally the dramatic strengthening of this alloy, Paul D. Merica by Wilm [6], during the years 1903-1911, it quickly and his coworkers studied both the effect of various heat became an important commercial alloy under the trade treatments on the hardness of the alloy and the influence name Duralumin. of chemical composition on the hardness. Among the The two NBS studies published in 1919 explored both most significant of their findings was the observation the application of phase diagrams to the phenomenon that the solubility of CuAl2 in aluminum increased with and the consequences of various heat treatments on the increasing temperature. Although the specific phases subsequent time evolution of mechanical properties. responsible for the hardening turned out to be too small The latter study tentatively concluded that age harden- to be observed directly, optical examination of the ing of aluminum was a room-temperature precipitation microstructures provided an identification of several of phenomenon and suggested that it should be possible for the other phases that were present. -
Chapter 11: Metal Alloys Applications and Processing
Chapter 11: Metal Alloys Applications and Processing ISSUES TO ADDRESS... • How are metal alloys classified and how are they used? • What are some of the common fabrication techniques? • How do properties vary throughout a piece of material that has been quenched, for example? • How can properties be modified by post heat treatment? Chapter 11 - 1 Taxonomy of Metals Metal Alloys Adapted from Ferrous Nonferrous Fig. 11.1, Callister 7e. SteelsSteels CastCast Irons Irons Cu Al Mg Ti <1.4<1.4wt%Cwt% C 33-4.54.5wt%Cwt% C T(°C) microstructure: 1600 ferrite, graphite δ cementite 1400 L γ+L Adapted from Fig. 9.24,Callister 7e. 1200 (Fig. 9.24 adapted from Binary Alloy γ 1148°C L+Fe3C Phase Diagrams, 2nd ed., austenite Eutectic: 1000 4.30 Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.) γ+Fe3C α800 727°C Fe3C ferrite Eutectoid: cementite 600 0.76 α+Fe3C 400 0 1 2 3 4 5 6 6.7 (Fe) Co , wt% C Chapter 11 - 2 Steels Low Alloy High Alloy low carbon Med carbon high carbon <0.25wt%C 0.25-0.6wt%C 0.6-1.4wt%C heat austenitic Name plain HSLA plain plain tool treatable stainless Cr,V Cr, Ni Cr, V, Additions none none none Cr, Ni, Mo Ni, Mo Mo Mo, W Example 1010 4310 1040 4340 1095 4190 304 Hardenability 0 + + ++ ++ +++ 0 TS - 0 + ++ + ++ 0 EL + + 0 - - -- ++ Uses auto bridges crank pistons wear drills high T struc. towers shafts gears applic. saws applic. sheet press. -
Development of Precipitation Hardening Parameters for High Strength Alloy AA 7068
materials Article Development of Precipitation Hardening Parameters for High Strength Alloy AA 7068 Julia Osten 1, Benjamin Milkereit 1,2 , Michael Reich 1,*, Bin Yang 1, Armin Springer 3, Karina Nowak 4 and Olaf Kessler 1,2 1 Materials Science, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig-Weg 2, 18059 Rostock, Germany; werkstoff[email protected] (J.O.); [email protected] (B.M.); [email protected] (B.Y.); [email protected] (O.K.) 2 Competence Centre ◦CALOR, Department Life, Light & Matter, Faculty of Interdisciplinary Research, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany 3 Electron Microscopic Centre, University Medical Centre Rostock, Strempelstraße 14, 18057 Rostock, Germany; [email protected] 4 Fraunhofer Research Institution for Large Structures in Production Engineering IGP, Albert Einstein-Str. 30, 18059 Rostock, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-381-498-9490 Received: 19 December 2019; Accepted: 5 February 2020; Published: 19 February 2020 Abstract: The mechanical properties after age hardening heat treatment and the kinetics of related phase transformations of high strength AlZnMgCu alloy AA 7068 were investigated. The experimental work includes differential scanning calorimetry (DSC), differential fast scanning calorimetry (DFSC), sophisticated differential dilatometry (DIL), scanning electron microscopy (SEM), as well as hardness and tensile tests. For the kinetic analysis of quench induced precipitation by dilatometry new metrological methods and evaluation procedures were established. Using DSC, dissolution behaviour during heating to solution annealing temperature was investigated. These experiments allowed for identification of the appropriate temperature and duration for the solution heat treatment. -
Precipitation Behavior of Carbides in H13 Hot Work Die Steel and Its Strengthening During Tempering
metals Article Precipitation Behavior of Carbides in H13 Hot Work Die Steel and Its Strengthening during Tempering Angang Ning 1, Wenwen Mao 2, Xichun Chen 3, Hanjie Guo 2,* and Jing Guo 2 1 School of Material Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; [email protected] 2 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China; [email protected] (W.M.); [email protected] (J.G.) 3 Department of High Temperature Materials, Central Iron and Steel Research Institute, Beijing 100094, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-6233-4964 Academic Editor: Robert Tuttle Received: 6 December 2016; Accepted: 18 February 2017; Published: 23 February 2017 Abstract: The properties of carbides, such as morphology, size, and type, in H13 hot work die steel were studied with optical microscopy, transmission electron microscopy, electron diffraction, and energy dispersive X-ray analysis; their size distribution and quantity after tempering, at different positions within the ingot, were analyzed using Image-Pro Plus software. Thermodynamic calculations were also performed for these carbides. The microstructures near the ingot surface were homogeneous and had slender martensite laths. Two kinds of carbide precipitates have been detected in H13: (1) MC and M6C, generally smaller than 200 nm; and (2) M23C6, usually larger than 200 nm. MC and M6C play the key role in precipitation hardening. These are the most frequent carbides precipitating at the halfway point from the center of the ingot, and the least frequent at the surface. From the center of the ingot to its surface, the size and volume fraction of the carbides decrease, and the toughness improves, while the contribution of the carbides to the yield strength increases. -
Preliminary Program
PRELIMINARY PROGRAM MONDAY, 26 June 2017 16.00-18.00 : Opening of the registration 18.00-19.00 : Welcome event & Cocktail TUESDAY, 27 June 2017 ROOM A 08.00 REGISTRATION 09.00 Opening Ceremony by A3TS President and IFHTSE President. KEYNOTES LECTURES 09.20 Landing Gear Technologies : From The Beginning To Tomorrow P. Taylor - Safran Landing Systems - Oloron Sainte Marie (France) 10.00 Materials Engineering for Automotive challenges Y. Chastel - Groupe Renault – Guyancourt (France) 10.40 Focused Ion Beam methods for micro-scale residual stress assessment E. Bemporad - University Roma 3 - Rome (Italy) 11.20 Thermochemical Surface Engineering: A Playground for Science and Innovation M.A.J. Somers - Technical University of Denmark - Kongens Lyngby (Denmark) 12.00 END OF THE KEYNOTES LECTURES 12.30 LUNCH ROOM A ROOM B SESSION S1: FUNDAMENTAL AND PROPERTIES SESSION S9 : MODELING 14.00 Thermochemical treatments applications for helicopter gas turbine engines Prediction of grain size evolution during thermal and thermomechanical treatments at C. Vernault, Safran Helicopter Engines - Bordes (France) the mesoscopic scale: numerical improvements and industrial examples A. Settefrati 1, B. Scholtes 1, N. Bozzolo 2, E. Perchat 1, M. Bernacki 2 1Transvalor SA - Mougins (France), 2Mines ParisTech, PSL Research University, CEMEF - Sophia Antipolis (France) 14.20 Influence of the microstructure on local deformations of a homogeneously nitrided steel Numerical modelling of heat treated welded joint F. Godet 1, L. Barrallier 2, S. Jégou 2, S. Thibault 3 B. Smoljan, D. Iljkic, L. Štic, S. Smokvina Hanza, N. Tomašic Faculty of Engineering, 1IRT-M2P - Metz (France), 2MSMP Laboratory - Aix-En-Provence (France), 3SAFRAN TECH - University of Rijeka - Rijeka (Croatia) Magny-Les-Hameaux (France) 14.40 TEM investigation of the semi-coherent precipitation in a nitrided Fe-3Cr alloy Experimental Study and Modelling of Phase Transformation Kinetics During Austenite O.