2014 Commercial Space Transportation Forecasts

Total Page:16

File Type:pdf, Size:1020Kb

2014 Commercial Space Transportation Forecasts Federal Aviation Administration 2014 Commercial Space Transportation Forecasts May 2014 FAA Commercial Space Transportation (AST) and the Commercial Space Transportation Advisory Committee (COMSTAC) • i • 2014 Commercial Space Transportation Forecasts About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover: The Orbital Sciences Corporation’s Antares rocket is seen as it launches from Pad- 0A of the Mid-Atlantic Regional Spaceport at the NASA Wallops Flight Facility in Virginia, Sunday, April 21, 2013. Image Credit: NASA/Bill Ingalls NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration’s Office of Commercial Space Transportation Table of Contents EXECUTIVE SUMMARY . 1 COMSTAC 2014 COMMERCIAL GEOSYNCHRONOUS ORBIT LAUNCH DEMAND FORECAST . 5 SUMMARY . 5 HISTORY OF THE REPORT . .6 FORECAST METHODOLOGY . .7 COMSTAC COMMERCIAL GSO LAUNCH DEMAND FORECAST RESULTS . .8 Addressable vs. Unaddressable. .8 Mass Classes. .9 Dual-Manifesting. 11 Near-Term Demand Forecast. .13 Comparison with Previous COMSTAC Forecasts . .14 COMSTAC DEMAND PROJECTION VS. ACTUAL LAUNCHES REALIZED. 15 Factors That Affect Satellite Launch Realization. 15 Projecting Actual Satellites Launched Using a Realization Factor. 16 FACTORS THAT MAY AFFECT FUTURE DEMAND . .17 Demand for Satellite Services. 17 Globalization . .17 Mobility. 18 Market Segments. 18 Satellite Technologies . 20 Spectrum Limitations and Orbital Slot Limitations . .21 New Applications. 22 On-Orbit Servicing . .23 Competition from LEO Systems. .23 Hosted Payloads. 24 Launch Service Providers. .26 Multiaunch Service Agreements. 27 Cooperation and Partnerships. .27 Geopolitical Influences on Launch Vehicle Demand. .28 Impact of International “Government to Government” Satellite Delivery in Orbit Sales. .28 Regulatory Environment. .29 Financial Markets. 30 Space Insurance. 31 SUPPLEMENTARY QUESTIONNAIRE RESULTS . 31 2014 COMMERCIAL SPACE TRANSPORTATION FORECAST FOR NON- GEOSYNCHRONOUS ORBITS . 34 INTRODUCTION. .34 SUMMARY. 34 NGSO PAYLOAD MARKET SEGMENTS. .39 Commercial Telecommunication Satellites . 39 Commercial Remote Sensing Satellites. .47 Commercial Cargo and Crew Transportation Services. .55 Other Commercially Launched Satellites. .61 Technology Test and Demonstration Launches. .63 MICROSATELLITES. .64 SATELLITE AND LAUNCH FORECAST TRENDS . 68 LAUNCH VEHICLES TYPICALLY USED FOR NGSO MISSIONS. .72 • ii • • iii • 2014 Commercial Space Transportation Forecasts RISK FACTORS THAT AFFECT SATELLITE AND LAUNCH DEMAND . 73 Financial Uncertainty . .73 Political Uncertainty . .73 Technical Uncertainty . 74 APPENDIX 1: HISTORICAL GSO SATELLITES AND LAUNCHES. .76 APPENDIX 2: HISTORICAL NGSO MARKET ASSESSMENTS. .84 APPENDIX 3: VEHICLE SIZES AND ORBITS . 88 APPENDIX 4: MASS CLASSES FOR GSO AND NGSO PAYLOADS . .88 APPENDIX 5: ACRONYMS. .89 List of Tables Table 1. Commercial Space Transportation Payload and Launch Forecasts. .2 Table 2. Forecast Commercial GSO Satellite and Launch Demand. 6 Table 3. 2013 GSO Forecast Team. .6 Table 4. Addressable and Unaddressable Satellites Since 2004 . 8 Table 5. Satellite Mass Class Categorization. .9 Table 6. Total Satellite Mass Launched per Year and Average Mass per Satellite. .9 Table 7. Trends in Satellite Mass Class Distribution . 10 Table 8. Commercial GSO Satellite Near-Term Manifest. 13 Table 9. ITAR-free Satellites . 29 Table 10. Survey Questionnaire Summary. 33 Table 11. Near-Term NGSO Manifest of Identified Primary Payloads. 38 Table 12. Narrowband Systems. 40 Table 13. Wideband Systems . 41 Table 14. Broadband Systems. 41 Table 15. FCC Telecommunication Licenses . 42 Table 16. Commercial Telecommunications Satellite Systems’ Design Life. .46 Table 17. NOAA Remote Sensing Licenses. 48 Table 18. Commercial Remote Sensing Systems. 49 Table 19. NASA Commercial Crew and Cargo Awards. .57 Table 20. Small Satellite Mass Classes . 65 Table 21. Micro and Smaller Satellites Launch in 2003-2012 . 65 Table 22. Payload and Launch Projections . .67 Table 23. Distribution of Payload Masses in Near-Term Manifest. 69 Table 24. Distribution of Launches among Market Segments. 70 Table 25. Historical Addressable Commercial GSO Satellites Launched. 71 Table 26. Historical Unaddressable Commercial GSO Satellites Launched . 76 Table 27. Historical Payloads and Launches . 83 Table 28. Historical NGSO Payload and Launch Activities. 84 Table 29. Mass Classes for GSO and NGSO Payloads. .85 Table 30. Secondary NGSO Payloads Launched Commercially. 88 • iii • Federal Aviation Administration’s Office of Commercial Space Transportation List of Figures Figure 1. Combined 2013 GSO and NGSO Historical Launches and Launch Forecasts. 1 Figure 2. 2013 GSO Historical Launches and Launch Forecast. .2 Figure 3. Projected NGSO Launches from 2013-2022. 3 Figure 4. Forecast Commercial GSO Satellite and Launch Demand. .5 Figure 5. Addressable and Unaddressable Satellites since 2004. .8 Figure 6. Total Satellite Mass Launched per Year and Average Mass per Satellite. 10 Figure 7. Trends in Satellite Mass Class Distribution . 11 Figure 8. Dual Manifesting and Launch Demand . .12 Figure 9. Comparison of Annual Forecasts: 2004-2013. 14 Figure 10. Realization Factor. .16 Figure 11. Distribution of Forecasted Launched by Payload Segment and Vehicle Size . .35 Figure 12. Commercial NGSO Launch History and Projected Launch Plans. .36 Figure 13. Commercial Telecommunications Launch History and Projected Launch Plans . 39 Figure 14. Publicly Reported Globalstar Annual Revenue. 43 Figure 15. Publicly Reported Iridium Annual Revenue . .44 Figure 16. Publicly Reported ORBCOMM Annual Revenue . .44 Figure 17. Commercial Remote Sensing Launch History and Projected Launch Plans. .47 Figure 18. Commercial Cargo and Crew Transportation Services Launch History and Projected Launch Plans. .55 Figure 19. Forecast of COTS, CRS. and Commercial Crew Missions. .56 Figure 20. Other Commercially Launched Satellites Launch History and Projected Launch Plans . 61 Figure 21. Technology Test and Demonstration Launch History and Projected Launch Plans . 64 Figure 22. Microsatellites and Nanosatellites Launched in 2003-2012. .66 Figure 23. Microsatellites and Nanosatellites Launched by Vehicle, 2003-2012 . .66 Figure 24. Payload Projections. .68 Figure 25. Launch Projections. 69 Figure 26. Launch Vehicle Projections . .71 • iv • • 1 • 2014 Commercial Space Transportation Forecasts EXECUTIVE SUMMARY The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) and the Commercial Space Transportation Advisory Committee (COMSTAC) have prepared forecasts of global demand for commercial space launch services for the 10-year period from 2014 through 2023. The 2014 Commercial Space Transportation Forecasts report is in two sections: • The COMSTAC 2014 Commercial Geosynchronous Orbit (GSO) Launch Demand Forecast, which projects demand for commercial satellites that operate in GSO and the resulting commercial launch demand to GSO; and • The FAA’s 2014 Commercial Space Transportation Forecast for Non- Geosynchronous Orbits (NGSO), which projects commercial launch demand for satellites to NGSO, such as low Earth orbit (LEO), medium Earth orbit (MEO), elliptical (ELI) orbits, and external (EXT) trajectories beyond orbits around the Earth. Together, the COMSTAC and FAA forecasts project an average annual demand of 30.1 commercial space launches worldwide from 2014 through 2023, down from 31.2 launches in the 2013 forecasts. The reports project an average of 16.3 commercial GSO launches and 13.8 NGSO launches for 2014 through 2023. Figure 1 shows the combined 2013 GSO and NGSO Historical Launches and Launch Forecast. Table 1 shows the number of payloads and launches projected from 2014 through 2023. It is important to distinguish between forecast demand and the number of satellites actually launched. Launch vehicle and satellite programs are complex, and susceptible to delays, which generally.
Recommended publications
  • MEDIA RELEASE Asiasat 8 Successfully Lifts Off
    MEDIA RELEASE AsiaSat 8 Successfully Lifts Off Hong Kong, 5 August 2014 – AsiaSat 8 aboard a SpaceX Falcon 9 launch vehicle successfully lifted off from the Cape Canaveral Air Force Station in Florida, U.S.A. at Hong Kong Time 4:00 p.m. (4:00 a.m. EDT or Cape Canaveral local time) on the 5th of August. The spacecraft successfully separated from the launch vehicle 32 minutes after liftoff. AsiaSat has acquired the first signals from the satellite in Hong Kong 54 minutes after launch. Over the next few days, AsiaSat 8 will move into the geostationary orbit, some 36,000 km above the Equator. “We are excited that the AsiaSat 8 launch has achieved this significant milestone. This is our first launch with SpaceX, we would like to thank them for their excellent work and effort in making today’s launch a success. In the coming weeks, we will work closely with Space Systems/Loral, our long-term partner, on the post-launch maneuvers and in-orbit testing of AsiaSat 8,” said William Wade, President and Chief Executive Officer of AsiaSat. “The addition of AsiaSat 8 to our existing fleet of four in-orbit satellites will expand our fleet capacity and enable us to serve a wider range of customers for advanced satellite services, from DTH, data broadcasting to broadband services.” AsiaSat 8 is a Space Systems/Loral 1300 series satellite, and has a design life of 15 years. With 24 Ku-band transponders and a Ka-band payload, AsiaSat 8 will co-locate with AsiaSat 7, where AsiaSat has established networks for service since 1990.
    [Show full text]
  • Orbital Lifetime Predictions
    Orbital LIFETIME PREDICTIONS An ASSESSMENT OF model-based BALLISTIC COEFfiCIENT ESTIMATIONS AND ADJUSTMENT FOR TEMPORAL DRAG co- EFfiCIENT VARIATIONS M.R. HaneVEER MSc Thesis Aerospace Engineering Orbital lifetime predictions An assessment of model-based ballistic coecient estimations and adjustment for temporal drag coecient variations by M.R. Haneveer to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Thursday June 1, 2017 at 14:00 PM. Student number: 4077334 Project duration: September 1, 2016 – June 1, 2017 Thesis committee: Dr. ir. E. N. Doornbos, TU Delft, supervisor Dr. ir. E. J. O. Schrama, TU Delft ir. K. J. Cowan MBA TU Delft An electronic version of this thesis is available at http://repository.tudelft.nl/. Summary Objects in Low Earth Orbit (LEO) experience low levels of drag due to the interaction with the outer layers of Earth’s atmosphere. The atmospheric drag reduces the velocity of the object, resulting in a gradual decrease in altitude. With each decayed kilometer the object enters denser portions of the atmosphere accelerating the orbit decay until eventually the object cannot sustain a stable orbit anymore and either crashes onto Earth’s surface or burns up in its atmosphere. The capability of predicting the time an object stays in orbit, whether that object is space junk or a satellite, allows for an estimate of its orbital lifetime - an estimate satellite op- erators work with to schedule science missions and commercial services, as well as use to prove compliance with international agreements stating no passively controlled object is to orbit in LEO longer than 25 years.
    [Show full text]
  • 3640 H 28066 Mpeg2/Fta (Gak Di Acak) Ariana National Satelit
    Thaicom 5/6A at 78.5°E (Arah Barat dari Palapa D) 3640 H 28066 Mpeg2/Fta (gak di acak) Ariana National Satelit: Insat 3a (93,5 BT) 4141 V 5150 (C Band) Mpeg2/Fta Beam menjangkau seluruh Indonesia Ke arah barat dari Palapa D, sebelum Measat 3 Telkom 1 (108,5 °E) 3776 H 4280 MPEG2/FTA/BISS HeilongjiangTV (Full Match) Chinasat 6A (125 BT) - Arah Timur dari Palapa D dan Chinasat 6B 3983 H 6880 MPEG2/FTA XJTV5 (Full Match) Chinasat 6A (125 BT) - Arah Timur dari Palapa D dan Chinasat 6B 4121 H 27500 MPEG2/FTA CCTV1 dengan frekuensi : 03840 SymbolRate: 27500 polaritas : H CCTV1 dengan frekuensi 3840 SR 27500 pol H akan menyiarkan bergantian dengan CCT V7 ( frekuensi sama) ?#?SATELIT? & CHANNEL Satelit: ST 2 (88.0°E) ID: SCC TV3 (Iran) 3587 H 12500 (C Band) 11050 V 30000 (Ku Band) MPEG4/SD/BISS SID: 0103/0068 KEY: 1111 1111 1111 1111 Satelit: ST 2 (88.0°E) ID: SCC Varzesh (Ku Band) (Iran) 11050 V 30000 MPEG4/SD/BISS SID: 0116/0117/0075 KEY: 1111 1111 1111 11i11 Satelit: Telkom 1 (108 BT) RTTL (Timor Leste) 3775 H 4280 (C Band) MPEG2/SD/FTA/BISS Satelit: Measat 3 (91,5 BT) TV1 (Malaysia) 3918 H 18385 MPEG4/SD/HD/FTA Satelit: Insat 3a (93,5 BT) Ariana (Afghanistan) 4141 V 5151 (C Band) MPEG2/SD/FTA Satelit: Chinasat 6b (115,5 BT) CCTV 1 (China) 3840 H 27500 (C Band) MPEG2/SD/FTA Satelit: Chinasat 6a (125 BT) CCTV 1 (China) 4080 H 27500 (C Band) MPEG2/SD/FTA Satelit: Chinasat 6a (125 BT) XJTV 5 (China) 4120 H 27500 (C Band) MPEG2/SD/FTA Satelit: Optus D1 (160.0°E) ID: SBS One HD 12390 H 12600 (Ku Band) (MPEG4/HD/FTA) Satelit: Thaicom5 (78,5 BT) CH8 SD, CH8 HD (Thailand) 3800 H 30000 MPEG2/SD/BISS(CH8 HD, Mpeg4/HD/BISS Satelit: Thaicom5 (78,5 BT) BBTV Ch 7 SD, BBTV Ch 7 HD (Thailand) -BBTV Ch 7 SD 3725 H 4700 -BBTV Ch 7 HD 3835 H 8000 MPEG4/HD/BISS 1.
    [Show full text]
  • Cubesat Data Analysis Revision
    371-XXXXX Revision - CubeSat Data Analysis Revision - November 2015 Prepared by: GSFC/Code 371 National Aeronautics and Goddard Space Flight Center Space Administration Greenbelt, Maryland 20771 371-XXXXX Revision - Signature Page Prepared by: ___________________ _____ Mark Kaminskiy Date Reliability Engineer ARES Corporation Accepted by: _______________________ _____ Nasir Kashem Date Reliability Lead NASA/GSFC Code 371 1 371-XXXXX Revision - DOCUMENT CHANGE RECORD REV DATE DESCRIPTION OF CHANGE LEVEL APPROVED - Baseline Release 2 371-XXXXX Revision - Table of Contents 1 Introduction 4 2 Statement of Work 5 3 Database 5 4 Distributions by Satellite Classes, Users, Mass, and Volume 7 4.1 Distribution by satellite classes 7 4.2 Distribution by satellite users 8 4.3 CubeSat Distribution by mass 8 4.4 CubeSat Distribution by volume 8 5 Annual Number of CubeSats Launched 9 6 Reliability Data Analysis 10 6.1 Introducing “Time to Event” variable 10 6.2 Probability of a Successful Launch 10 6.3 Estimation of Probability of Mission Success after Successful Launch. Kaplan-Meier Nonparametric Estimate and Weibull Distribution. 10 6.3.1 Kaplan-Meier Estimate 10 6.3.2 Weibull Distribution Estimation 11 6.4 Estimation of Probability of mission success after successful launch as a function of time and satellite mass using Weibull Regression 13 6.4.1 Weibull Regression 13 6.4.2 Data used for estimation of the model parameters 13 6.4.3 Comparison of the Kaplan-Meier estimates of the Reliability function and the estimates based on the Weibull regression 16 7 Conclusion 17 8 Acknowledgement 18 9 References 18 10 Appendix 19 Table of Figures Figure 4-1 CubeSats distribution by mass ....................................................................................................
    [Show full text]
  • Satellite Systems
    Chapter 18 REST-OF-WORLD (ROW) SATELLITE SYSTEMS For the longest time, space exploration was an exclusive club comprised of only two members, the United States and the Former Soviet Union. That has now changed due to a number of factors, among the more dominant being economics, advanced and improved technologies and national imperatives. Today, the number of nations with space programs has risen to over 40 and will continue to grow as the costs of spacelift and technology continue to decrease. RUSSIAN SATELLITE SYSTEMS The satellite section of the Russian In the post-Soviet era, Russia contin- space program continues to be predomi- ues its efforts to improve both its military nantly government in character, with and commercial space capabilities. most satellites dedicated either to civil/ These enhancements encompass both military applications (such as communi- orbital assets and ground-based space cations and meteorology) or exclusive support facilities. Russia has done some military missions (such as reconnaissance restructuring of its operating principles and targeting). A large portion of the regarding space. While these efforts have Russian space program is kept running by attempted not to detract from space-based launch services, boosters and launch support to military missions, economic sites, paid for by foreign commercial issues and costs have lead to a lowering companies. of Russian space-based capabilities in The most obvious change in Russian both orbital assets and ground station space activity in recent years has been the capabilities. decrease in space launches and corre- The influence of Glasnost on Russia's sponding payloads. Many of these space programs has been significant, but launches are for foreign payloads, not public announcements regarding space Russian.
    [Show full text]
  • GB-ASTRA 3B-Comsatbw-21Mai V
    A BOOST FOR SPACE COMMUNICATIONS SATELLITES For its first launch of the year, Arianespace will orbit two communications satellites: ASTRA 3B for the Luxembourg-based operator SES ASTRA, and COMSATBw-2 for Astrium as part of a contract with the German Ministry of Defense. The choice of Arianespace by leading space communications operators and manufacturers is clear international recognition of the company’s excellence in launch services. Because of its reliability and availability, the Arianespace launch system continues to set the global standard. Ariane 5 is the only commercial satellite launcher now on the market capable of simultaneously launching two payloads. Over the last two decades, Arianespace and SES have developed an exceptional relationship. ASTRA 3B will be the 33rd satellite from the SES group (Euronext Paris and Luxembourg Bourse: SESG) to have chosen the European launcher. SES ASTRA operates the leading direct-to-home TV broadcast system in Europe, serving more than 125 million households via DTH and cable networks. ASTRA 3B was built by Astrium using a Eurostar E 3000 platform, and will weigh approximately 5,500 kg at launch. Fitted with 60 active Ku-band transponders and four Ka-band transponders, ASTRA 3B will be positioned at 23.5 degrees East. It will deliver high-power broadcast services across all of Europe, and offers a design life of 15 years. Astrium chose Arianespace for the launch of two military communications satellites, COMSATBw-1 and COMSATBw-2, as part of a satellite communications system supplied to the German Ministry of Defense. The first satellite in this family, COMSATBw-1, was launched by Arianespace in October 2009.
    [Show full text]
  • Federal Register/Vol. 85, No. 103/Thursday, May 28, 2020
    32256 Federal Register / Vol. 85, No. 103 / Thursday, May 28, 2020 / Proposed Rules FEDERAL COMMUNICATIONS closes-headquarters-open-window-and- presentation of data or arguments COMMISSION changes-hand-delivery-policy. already reflected in the presenter’s 7. During the time the Commission’s written comments, memoranda, or other 47 CFR Part 1 building is closed to the general public filings in the proceeding, the presenter [MD Docket Nos. 19–105; MD Docket Nos. and until further notice, if more than may provide citations to such data or 20–105; FCC 20–64; FRS 16780] one docket or rulemaking number arguments in his or her prior comments, appears in the caption of a proceeding, memoranda, or other filings (specifying Assessment and Collection of paper filers need not submit two the relevant page and/or paragraph Regulatory Fees for Fiscal Year 2020. additional copies for each additional numbers where such data or arguments docket or rulemaking number; an can be found) in lieu of summarizing AGENCY: Federal Communications original and one copy are sufficient. them in the memorandum. Documents Commission. For detailed instructions for shown or given to Commission staff ACTION: Notice of proposed rulemaking. submitting comments and additional during ex parte meetings are deemed to be written ex parte presentations and SUMMARY: In this document, the Federal information on the rulemaking process, must be filed consistent with section Communications Commission see the SUPPLEMENTARY INFORMATION 1.1206(b) of the Commission’s rules. In (Commission) seeks comment on several section of this document. proceedings governed by section 1.49(f) proposals that will impact FY 2020 FOR FURTHER INFORMATION CONTACT: of the Commission’s rules or for which regulatory fees.
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • 1998 Year in Review
    Associate Administrator for Commercial Space Transportation (AST) January 1999 COMMERCIAL SPACE TRANSPORTATION: 1998 YEAR IN REVIEW Cover Photo Credits (from left): International Launch Services (1998). Image is of the Atlas 2AS launch on June 18, 1998, from Cape Canaveral Air Station. It successfully orbited the Intelsat 805 communications satellite for Intelsat. Boeing Corporation (1998). Image is of the Delta 2 7920 launch on September 8, 1998, from Vandenberg Air Force Base. It successfully orbited five Iridium communications satellites for Iridium LLP. Lockheed Martin Corporation (1998). Image is of the Athena 2 awaiting its maiden launch on January 6, 1998, from Spaceport Florida. It successfully deployed the NASA Lunar Prospector. Orbital Sciences Corporation (1998). Image is of the Taurus 1 launch from Vandenberg Air Force Base on February 10, 1998. It successfully orbited the Geosat Follow-On 1 military remote sensing satellite for the Department of Defense, two Orbcomm satellites and the Celestis 2 funerary payload for Celestis Corporation. Orbital Sciences Corporation (1998). Image is of the Pegasus XL launch on December 5, 1998, from Vandenberg Air Force Base. It successfully orbited the Sub-millimeter Wave Astronomy Satellite for the Smithsonian Astrophysical Observatory. 1998 YEAR IN REVIEW INTRODUCTION INTRODUCTION In 1998, U.S. launch service providers conducted In addition, 1998 saw continuing demand for 22 launches licensed by the Federal Aviation launches to deploy the world’s first low Earth Administration (FAA), an increase of 29 percent orbit (LEO) communication systems. In 1998, over the 17 launches conducted in 1997. Of there were 17 commercial launches to LEO, 14 these 22, 17 were for commercial or international of which were for the Iridium, Globalstar, and customers, resulting in a 47 percent share of the Orbcomm LEO communications constellations.
    [Show full text]
  • Small Satellite Launchers
    SMALL SATELLITE LAUNCHERS NewSpace Index 2020/04/20 Current status and time from development start to the first successful or planned orbital launch NEWSPACE.IM Northrop Grumman Pegasus 1990 Scorpius Space Launch Demi-Sprite ? Makeyev OKB Shtil 1998 Interorbital Systems NEPTUNE N1 ? SpaceX Falcon 1e 2008 Interstellar Technologies Zero 2021 MT Aerospace MTA, WARR, Daneo ? Rocket Lab Electron 2017 Nammo North Star 2020 CTA VLM 2020 Acrux Montenegro ? Frontier Astronautics ? ? Earth to Sky ? 2021 Zero 2 Infinity Bloostar ? CASIC / ExPace Kuaizhou-1A (Fei Tian 1) 2017 SpaceLS Prometheus-1 ? MISHAAL Aerospace M-OV ? CONAE Tronador II 2020 TLON Space Aventura I ? Rocketcrafters Intrepid-1 2020 ARCA Space Haas 2CA ? Aerojet Rocketdyne SPARK / Super Strypi 2015 Generation Orbit GoLauncher 2 ? PLD Space Miura 5 (Arion 2) 2021 Swiss Space Systems SOAR 2018 Heliaq ALV-2 ? Gilmour Space Eris-S 2021 Roketsan UFS 2023 Independence-X DNLV 2021 Beyond Earth ? ? Bagaveev Corporation Bagaveev ? Open Space Orbital Neutrino I ? LIA Aerospace Procyon 2026 JAXA SS-520-4 2017 Swedish Space Corporation Rainbow 2021 SpinLaunch ? 2022 Pipeline2Space ? ? Perigee Blue Whale 2020 Link Space New Line 1 2021 Lin Industrial Taymyr-1A ? Leaf Space Primo ? Firefly 2020 Exos Aerospace Jaguar ? Cubecab Cab-3A 2022 Celestia Aerospace Space Arrow CM ? bluShift Aerospace Red Dwarf 2022 Black Arrow Black Arrow 2 ? Tranquility Aerospace Devon Two ? Masterra Space MINSAT-2000 2021 LEO Launcher & Logistics ? ? ISRO SSLV (PSLV Light) 2020 Wagner Industries Konshu ? VSAT ? ? VALT
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2012
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2012 February 2013 About FAA About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2013) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration’s Office of Commercial Space Transportation Dear Colleague, 2012 was a very active year for the entire commercial space industry. In addition to all of the dramatic space transportation events, including the first-ever commercial mission flown to and from the International Space Station, the year was also a very busy one from the government’s perspective. It is clear that the level and pace of activity is beginning to increase significantly.
    [Show full text]
  • 1 Before the Federal Communications Commission Washington, D.C
    Federal Communications Commission DA 06-4 Before the Federal Communications Commission Washington, D.C. 20554 In the Matter of ) ) AFRISPACE, INC. ) IB File No. SAT-LOA-20050311- ) 00061 Application for Authority to Launch and ) Operate a Replacement Satellite, AfriStar-2, ) Call Sign: S2666 at 21° E.L. and to Co-locate It with AfriStar-1 ) ) ORDER AND AUTHORIZATION Adopted: January 03, 2006 Released: January 03, 2006 By the Chief, International Bureau: I. INTRODUCTION 1. By this Order, we authorize AfriSpace, Inc. (AfriSpace)1 to launch and operate the AfriStar-2 satellite in the geostationary-satellite orbit (GSO) at the 21° East Longitude (E.L.) orbital location. AfriStar-2 is controlled from the United States and is capable of providing Broadcasting-Satellite Service (sound) (BSS (sound)) to Africa and Europe on a non-common carrier basis. We authorize AfriStar-2 to operate downlinks within 2.6 megahertz of spectrum in each polarization with a center frequency of 1479.5 MHz. We also authorize AfriSpace to utilize feeder links and telecommand links for the AfriStar-2 satellite in the 7025-7075 MHz frequency band, to operate its telemetry link for the AfriStar-2 satellite at a center frequency of 1491.7 MHz, and to co-locate the AfriStar-2 satellite at 21° E.L. with the AfriStar-1 satellite currently in orbit. In addition, we grant AfriSpace a waiver of the Commission’s rule regarding transponder saturation flux densities for the AfriStar-2 satellite.2 These authorizations give AfriSpace the capability to continue to provide service to existing customers despite unanticipated technical difficulties experienced by the AfriStar-1 satellite and to serve new customers, conditioned on AfriSpace complying with the applicable laws, regulations, rules, and licensing procedures of any countries it proposes to serve.
    [Show full text]