Visualizing Diversity and Distribution Patterns for Microbial Communities in Vernal Pools

Total Page:16

File Type:pdf, Size:1020Kb

Visualizing Diversity and Distribution Patterns for Microbial Communities in Vernal Pools Visualizing Diversity and Distribution Patterns for Microbial Communities in Vernal Pools JORGE A. MONTIEL School of Engineering, Environmental Systems University of California, Merced, CA 95340 [email protected] MICHAEL J. BEMAN, A. CAROLIN FRANK and JASON P. SEXTON School of Natural Science University of California, Merced, CA 95340 ABSTRACT. In this review, we propose research focused on the study of microbial groups (archaea, bacteria, fungi, protista) within vernal pools, which are well-delimited ecosystems but can vary in many environmental characteristics. In order to understand the diversity and community composi- tion of microorganisms within vernal pools, we suggest research based on the following questions: 1) Do microbial communities vary by distance? 2) How do microbial communities vary across the Californian Mediterranean region? 3) How much of the variance in communities is explained by biogeographic scale? The distribution of vernal pools across the Californian Mediterranean region provides a suitable geographical extent to characterize biogeographical patterns such as distance decay and/or a latitudinal diversity gradient. Finally, since vernal pools tend to become terrestrial habitats after inundation, we explore these questions: 4) How do aquatic vernal pool communities compare with post-aquatic or terrestrial vernal pool communities? 5) Is any existing overlap indica- tive of taxa exchange? Our methods comprise the analysis of eDNA using high-throughput se- quencing and the estimation of different diversity metrics. Vernal pools are understudied in terms of microorganisms, yet this natural component may be important for ecological equilibrium and resilience at local and global scales. [Abstract edited after publication.] CITATION. Montiel, J.A., M.J. Beman, A.C. Frank, and J.P. Sexton. 2019. Visualizing diversity and distribution patterns for microbial communities in vernal pools. Pages 153-168 in R.A. Schlising, E.E. Gottschalk Fisher, G.M. Guilliams, and B. Castro (Editors), Vernal Pool Landscapes: Past Pre- sent and Future. Studies from the Herbarium Number 20, California State University, Chico, CA. INTRODUCTION microbial organisms can live associated with larger organisms as symbionts, having pro- Unlike plants and animals, microorganisms are found effects over the host’s life cycle, and as not commonly the subject of discussion in ver- a consequence, influencing ecosystem pro- nal pools studies; yet microorganisms are likely cesses (Kerney et al., 2011; Pita et al., 2018). essential components of the ecosystem. Despite After almost a hundred years of recognition of their size, microorganisms are behind a mas- vernal pools as a unique type of habitat, very sive number of biological and biogeochemical little research has been conducted on vernal processes—including nutrient cycling via de- pool microorganisms (see https://www.vernal- composition, carbon storage via photosynthesis pools.org/literature.html). Therefore, the mi- and fermentation, and several other metabolic- crobial world of vernal pools remains a frontier ecosystemic processes occurring under diverse to explore (Figure 1). habitat conditions (Hättenschwiler and Vi- tousek, 2000; Morgavi et al., 2010; Weitz and Microbiology refers to the study of those small Wilhelm, 2012; Jacoby et al., 2017). In parallel, organisms – microorganisms – that cannot be 153 Vernal Pool Landscapes: Past Present and Future FIGURE1. Sporangia (dark spheres) of unknown zygomy- cete (soil microfungi) 40x. The sporangia shown here aver- age 0.07 mm in diameter. Photo by Jorge Montiel. observed with the naked eye. This includes vernal pools, based on similar ecosystems, and groups of the smallest existing organisms concepts in ecology that could apply, to under- within the five kingdoms: amoebas, zygomy- stand microbial distribution patterns. We begin cetes, tardigrades, chytridiomycetes, and sev- with a brief summary of the origins of microbi- eral bacteria taxa. Because of their physical ology and microbial ecology. properties, vernal pools are appropriate sys- tems to test ecological theories pertaining to NAMES OF IMPORTANCE microorganismal diversity and distribution. IN THE HISTORY OF MICROBIAL ECOLOGY Vernal pools can be seen as water islands that extend across the western edge of the North The history of microbiology can be viewed as American continent. They are complete eco- occurring in phases. This history began with systems in which microorganisms could move the microscope and Robert Hooke, who was a among the soil matrix, water column, and bio- pioneer in the use of optical instruments; he de- sphere (e.g., inside plant tissues). Microorgan- veloped a primitive microscope to observe the ismal diversity and their spatial and temporal unseen world in different sample types. With it, distribution across the landscape are aspects he contributed with the basic morphological studied by microbial ecologists and the con- descriptions for filamentous fungi (Kara- cepts extrapolated from the study of larger or- manou, et al., 2010). Later, Antonie Van Leeu- ganisms could inform microbial distribution wenhoek (Delft, Netherlands 1632) improved patterns. In this paper we review potential ex- the technology of the microscope by upgrading isting diversity of microorganisms inhabiting it into the compound microscope (or light 154 Montiel et al.: Microbial Communities in Vernal Pools microscope). He described the morphological on microorganismal diversity. His ideas were traits of protozoa (paramecia and amoeba) and inherited by later generations of scientists bacteria taxa, coining the term “animaculus” to (Ragon et al., 2012). refer to microorganisms (Karamanou, et al., 2010). Lourens Gerhard Marinus Baas-Becking is a central character in the history of microbial Between the years 1800 and 1900, scientists ecology. He was part of the Delft School of Mi- such as Louis Pasteur began to study more crobiology, but also had a background in deeply the biochemistry of bacteria using nutri- botany. He explored interspecific relationships ent-rich substrates. Pasteur developed special between microorganisms and larger organisms. laboratory equipment, and using an explicitly He also compared the broad-scale biogeo- experimental approach, worked to understand graphic patterns of microorganisms and larger the biochemical capabilities of microbes to de- organisms, such as plants. Baas-Becking vis- velop concepts for medical immunology. Fol- ited California, as part of his work on extreme lowing Pasteur's work at the end of the 1800s, environments and microbial com-munity as- Robert Koch developed methods to study mi- sembly (Ragon et al., 2012). His findings led croorganisms as agents of disease, recognized him to conclude that micro-organisms are today as the “Koch postulates.” This methodol- widely distributed across landscapes and “se- ogy involved the inoculation of a healthy or- lected out by ecology,” a theory that has been ganism (host) with a given microorganism iso- rephrased in English as: “everything is every- lated from contaminated tissue and identifica- where, and the environment selects” (Baas- tion of the causal agent of a specific disease. Becking, 1932). We can consider this historical time period as the first phase of microbiology, where the main Nowadays, with the advancement of molecular focus was on the biomedical aspects of micro- tools (e.g. DNA sequencing), current research organisms, their morphology, taxonomy and questions about microbial distributions can physiology. take innovative new approaches to understand distribution patterns (e.g., isolation by distance, Microbiology later focused on developing the biogeography), and the drivers of such distribu- field for industry. The Delft School of Micro- tions. It is now possible to examine microbial biology, a prestigious research institute estab- community assembly drawing on concepts de- lished in the hometown of Antone Van Leeu- veloped for larger organisms (Fuhrman et al., wenhoek, worked to improve core concepts in 2008; Sonthiphand et al., 2014; Oono et al., the study of modern microbiology, including 2017). As recent research has progressed, an themes such as microbial ecology, microbial emerging point of view is that both contempo- community succession, microbial diversity, rary environmental factors and historical and microbial biogeochemistry. Mateus Bei- events likely contribute to current microbial di- jerinck was a pioneer based at Delft. He studied versity and its distributions (Fierer and Jack- free-living microorganisms inhabiting lakes to son, 2006; Zhou and Ning, 2017). However, understand their diversity and distribution in there is still uncertainty and a need to create a the landscape, while perfecting culturing meth- theoretical framework for microorganisms, in odologies for micro-algae, fungi, protozoa, order to explain both existing diversity and methanogenic bacteria and other specialist mi- how it may change (Finlay, 2002; Finlay & croorganisms (extremophiles). In particular, Fenchel, 2004, Martiny et al., 2006; Zhou & his work attempted to determine the im- Ning, 2017). portance of specific environmental conditions 155 Vernal Pool Landscapes: Past Present and Future MICROBIAL DIVERSITY IN VERNAL POOLS and Swanson (2008) characterized the eukary- otic and bacterial microbiota from Ohio snow- The diversity of microbes living in the soil, wa- melt “vernal pools,” finding that these pools ter column, and symbiotically in larger organ- were rich in Alphaproteobacteria and
Recommended publications
  • Metabolic and Genetic Basis for Auxotrophies in Gram-Negative Species
    Metabolic and genetic basis for auxotrophies in Gram-negative species Yara Seifa,1 , Kumari Sonal Choudharya,1 , Ying Hefnera, Amitesh Ananda , Laurence Yanga,b , and Bernhard O. Palssona,c,2 aSystems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122; bDepartment of Chemical Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada; and cNovo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark Edited by Ralph R. Isberg, Tufts University School of Medicine, Boston, MA, and approved February 5, 2020 (received for review June 18, 2019) Auxotrophies constrain the interactions of bacteria with their exist in most free-living microorganisms, indicating that they rely environment, but are often difficult to identify. Here, we develop on cross-feeding (25). However, it has been demonstrated that an algorithm (AuxoFind) using genome-scale metabolic recon- amino acid auxotrophies are predicted incorrectly as a result struction to predict auxotrophies and apply it to a series of the insufficient number of known gene paralogs (26). Addi- of available genome sequences of over 1,300 Gram-negative tionally, these methods rely on the identification of pathway strains. We identify 54 auxotrophs, along with the corre- completeness, with a 50% cutoff used to determine auxotrophy sponding metabolic and genetic basis, using a pangenome (25). A mechanistic approach is expected to be more appropriate approach, and highlight auxotrophies conferring a fitness advan- and can be achieved using genome-scale models of metabolism tage in vivo. We show that the metabolic basis of auxotro- (GEMs). For example, requirements can arise by means of a sin- phy is species-dependent and varies with 1) pathway structure, gle deleterious mutation in a conditionally essential gene (CEG), 2) enzyme promiscuity, and 3) network redundancy.
    [Show full text]
  • Supplementary Information
    doi: 10.1038/nature06269 SUPPLEMENTARY INFORMATION METAGENOMIC AND FUNCTIONAL ANALYSIS OF HINDGUT MICROBIOTA OF A WOOD FEEDING HIGHER TERMITE TABLE OF CONTENTS MATERIALS AND METHODS 2 • Glycoside hydrolase catalytic domains and carbohydrate binding modules used in searches that are not represented by Pfam HMMs 5 SUPPLEMENTARY TABLES • Table S1. Non-parametric diversity estimators 8 • Table S2. Estimates of gross community structure based on sequence composition binning, and conserved single copy gene phylogenies 8 • Table S3. Summary of numbers glycosyl hydrolases (GHs) and carbon-binding modules (CBMs) discovered in the P3 luminal microbiota 9 • Table S4. Summary of glycosyl hydrolases, their binning information, and activity screening results 13 • Table S5. Comparison of abundance of glycosyl hydrolases in different single organism genomes and metagenome datasets 17 • Table S6. Comparison of abundance of glycosyl hydrolases in different single organism genomes (continued) 20 • Table S7. Phylogenetic characterization of the termite gut metagenome sequence dataset, based on compositional phylogenetic analysis 23 • Table S8. Counts of genes classified to COGs corresponding to different hydrogenase families 24 • Table S9. Fe-only hydrogenases (COG4624, large subunit, C-terminal domain) identified in the P3 luminal microbiota. 25 • Table S10. Gene clusters overrepresented in termite P3 luminal microbiota versus soil, ocean and human gut metagenome datasets. 29 • Table S11. Operational taxonomic unit (OTU) representatives of 16S rRNA sequences obtained from the P3 luminal fluid of Nasutitermes spp. 30 SUPPLEMENTARY FIGURES • Fig. S1. Phylogenetic identification of termite host species 38 • Fig. S2. Accumulation curves of 16S rRNA genes obtained from the P3 luminal microbiota 39 • Fig. S3. Phylogenetic diversity of P3 luminal microbiota within the phylum Spirocheates 40 • Fig.
    [Show full text]
  • Public Health Aspects of Yersinia Pseudotuberculosis in Deer and Venison
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. PUBLIC HEALTH ASPECTS OF YERSINIA PSEUDOTUBERCULOSIS IN DEER AND VENISON A THESIS PRESENTED IN PARTIAL FULFlLMENT (75%) OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF PHILOSOPHY IN VETERINARY PUBLIC HEALTH AT MASSEY UNIVERSITY EDWIN BOSI September, 1992 DEDICATED TO MY PARENTS (MR. RICHARD BOSI AND MRS. VICTORIA CHUAN) MY WIFE (EVELYN DEL ROZARIO) AND MY CHILDREN (AMELIA, DON AND JACQUELINE) i Abstract A study was conducted to determine the possible carriage of Yersinia pseudotuberculosisand related species from faeces of farmed Red deer presented/or slaughter and the contamination of deer carcase meat and venison products with these organisms. Experiments were conducted to study the growth patternsof !.pseudotuberculosis in vacuum­ packed venison storedat chilling andfreezing temperatures. The serological status of slaughtered deer in regards to l..oseudotubercu/osis serogroups 1, 2 and 3 was assessed by Microp late Agglutination Tests. Forty sera were examined comprising 19 from positive and 20 from negative intestinal carriers. Included in this study was one serum from an animal that yielded carcase meat from which l..pseudotuberculosiswas isolated. Caecal contents were collected from 360 animals, and cold-enriched for 3 weeks before being subjected to bacteriological examination for Yersinia spp. A total of 345 and 321 carcases surface samples for bacteriological examination for Yersiniae were collected at the Deer Slaughter Premises (DSP) and meat Packing House respectively.
    [Show full text]
  • Wetland Restoration USING the Ground Water TECHNIQUE
    Wetland ResTORATION USING THE Ground water TECHNIQUE How to build a ground water wetland three important vernal pool zones A ground water wetland fills with water the way a hand-dug well does, by exposing a high water table near the surface. Check for a high water table near a woodland oasis The vernal pool basin or depression is the area that floods in the fall or the center of a potential restoration site. Dig a hole at least 3 feet deep with a spring. This is where vernal pool amphibians and invertebrates breed and post-hole digger, soil auger, or shovel. Watch for water seeping into the hole A vernal pool is like a small oasis of food, water, and shelter for all kinds of lay their eggs, and their young hatch out, feed, and develop (Brown and from the bottom and sides. A high water table will fill the hole partially or woodland wildlife. Large game species such as turkeys, deer, and bears frequent Jung, 2005). The vernal pool basin is the core wetland area protected by state completely with water; listen for the slurp of water as a soil auger is removed. vernal pools, along with a variety of other wildlife including bats, ducks, and federal regulations. The vernal pool basin should be designated as a ‘no Clay soils are not needed to build a ground water wetland because the songbirds, turtles, and snakes. Vernal pools are unique among wetlands disturbance zone.’ depression simply exposes the water table. A seasonally high water table can because they support specialized pool-breeding salamanders, frogs, insects, The vernal pool envelope is the upland habitat immediately surrounding be hard to detect during the summer or any period of drought (Biebighauser, and crustaceans.
    [Show full text]
  • Leaf Litter Decomposition in Vernal Pools of a Central Ontario Mixedwood Forest
    Leaf Litter Decomposition in Vernal Pools of a Central Ontario Mixedwood Forest by Kirsten Verity Otis A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Environmental Science Guelph, Ontario, Canada © Kirsten V. Otis, July, 2012 ABSTRACT LEAF LITTER DECOMPOSITION IN VERNAL POOLS OF A CENTRAL ONTARIO MIXEDWOOD FOREST Kirsten V. Otis Advisors: University of Guelph, 2012 Dr. Jonathan Schmidt Dr. Shelley Hunt Vernal pools are small, seasonally filling wetlands found throughout forests of north eastern North America. Vernal pools have been proposed as potential 'hot spots' of carbon cycling. A key component of the carbon cycle within vernal pools is the decomposition of leaf litter. I tested the hypothesis that leaf litter decomposition is more rapid within vernal pools than the adjacent upland. Leaf litter mass losses from litterbags incubated in situ within vernal pools and adjacent upland habitat were measured periodically over one year and then again after two years. The experiment was carried out at 24 separate vernal pools, over two replicate years. This is a novel degree of replication in studies of decomposition in temporary wetlands. Factors influencing decomposition, such as duration of flooding, water depth, pH, temperature, and dissolved oxygen were measured. Mass loss was greater within pools than adjacent upland after 6 months, equal after 12 months, and lower within pools than adjacent upland after 24 months. This evidence suggests that vernal pools of Central Ontario are 'hot spots' of decomposition up to 6 months, but not after 12 and 24 months. In the long term, vernal pools may reduce decomposition rates, compared to adjacent uplands.
    [Show full text]
  • Biological Resources Assessment the Ranch ±530- Acre Study Area City of Rancho Cordova, California
    Biological Resources Assessment The Ranch ±530- Acre Study Area City of Rancho Cordova, California Prepared for: K. Hovnanian Homes October 13, 2017 Prepared by: © 2017 TABLE OF CONTENTS 1.0 Introduction ......................................................................................................................... 1 1.1. Project Description ........................................................................................................... 1 2.0 Regulatory Framework ........................................................................................................ 2 2.1. Federal Regulations .......................................................................................................... 2 2.1.1. Federal Endangered Species Act ............................................................................... 2 2.1.2. Migratory Bird Treaty Act ......................................................................................... 2 2.1.3. The Bald and Golden Eagle Protection Act ............................................................... 2 2.2. State Jurisdiction .............................................................................................................. 3 2.2.1. California Endangered Species Act ........................................................................... 3 2.2.2. California Department of Fish and Game Codes ...................................................... 3 2.2.3. Native Plant Protection Act .....................................................................................
    [Show full text]
  • Portsmouth Vernal Pool Inventory
    Portsmouth Vernal Pool Inventory Prepared for: City of Portsmouth, NH Conservation Commission Prepared by: 122 Mast Road, Suite 6, Lee, NH 03861 in cooperation with The City of Portsmouth Planning Department and October 2008 TABLE OF CONTENTS I. Executive Summary II. Vernal Pools Defined III. Methodology IV. Vernal Pool Documentation Sheet V. Findings and Focus Area Summaries VI. Focus Area and Pool Location Maps VII. References Appendices A. Vernal Pool Documentation Sheets B. Proposed Revisions to Wetland Protection Regulations C. Aerial Photo Field Sheets City of Portsmouth Vernal Pool Inventory Report Page 1 I. EXECUTIVE SUMMARY West Environmental, Inc. (WEI) conducted a city-wide Vernal Pool Inventory to locate, document and map vernal pools in Portsmouth. This effort was coordinated with the Portsmouth Planning Department and Conservation Commission to help the City of Portsmouth in vernal pool identification and mapping. The goal of this project was to locate isolated wetlands that provide vernal pool habitat. Currently the City of Portsmouth’s wetland regulations exempt wetlands less than 5,000 square feet from the local 100’ buffer zone. This study identified smaller wetlands which have the potential to provide vernal pool habitat that may deserve the 100 foot buffer protection. It should be noted that vernal pool habitat can exist in a variety of freshwater wetlands including larger red maple swamps. These areas were also mapped when encountered. A field workshop was held for the Conservation Commission members to give them hands-on training in vernal pool ecology. The results of this Vernal Pool Inventory were presented to the Portsmouth Conservation Commission in July of 2008.
    [Show full text]
  • A Case Series of Diarrheal Diseases Associated with Yersinia Frederiksenii
    Article A Case Series of Diarrheal Diseases Associated with Yersinia frederiksenii Eugene Y. H. Yeung Department of Medical Microbiology, The Ottawa Hospital General Campus, The University of Ottawa, Ottawa, ON K1H 8L6, Canada; [email protected] Abstract: To date, Yersinia pestis, Yersinia enterocolitica, and Yersinia pseudotuberculosis are the three Yersinia species generally agreed to be pathogenic in humans. However, there are a limited number of studies that suggest some of the “non-pathogenic” Yersinia species may also cause infections. For instance, Yersinia frederiksenii used to be known as an atypical Y. enterocolitica strain until rhamnose biochemical testing was found to distinguish between these two species in the 1980s. From our regional microbiology laboratory records of 18 hospitals in Eastern Ontario, Canada from 1 May 2018 to 1 May 2021, we identified two patients with Y. frederiksenii isolates in their stool cultures, along with their clinical presentation and antimicrobial management. Both patients presented with diarrhea, abdominal pain, and vomiting for 5 days before presentation to hospital. One patient received a 10-day course of sulfamethoxazole-trimethoprim; his Y. frederiksenii isolate was shown to be susceptible to amoxicillin-clavulanate, ceftriaxone, ciprofloxacin, and sulfamethoxazole- trimethoprim, but resistant to ampicillin. The other patient was sent home from the emergency department and did not require antimicrobials and additional medical attention. This case series illustrated that diarrheal disease could be associated with Y. frederiksenii; the need for antimicrobial treatment should be determined on a case-by-case basis. Keywords: Yersinia frederiksenii; Yersinia enterocolitica; yersiniosis; diarrhea; microbial sensitivity tests; Citation: Yeung, E.Y.H. A Case stool culture; sulfamethoxazole-trimethoprim; gastroenteritis Series of Diarrheal Diseases Associated with Yersinia frederiksenii.
    [Show full text]
  • Vernal Pool Vernal Pool, Page 1 Michael A
    Vernal Pool Vernal Pool, Page 1 Michael A. Kost Michael Overview: Vernal pools are small, isolated Introduction and Definitions: Temporary water wetlands that occur in forested settings throughout pools can occur throughout the world wherever the Michigan. Vernal pools experience cyclic periods ground or ice surface is concave and liquid water of water inundation and drying, typically filling gains temporarily exceed losses. The term “vernal with water in the spring or fall and drying during pool” has been widely applied to temporary pools the summer or in drought years. Substrates that normally reach maximum water levels in often consist of mineral soils underlain by an spring (Keeley and Zedler 1998, Colburn 2004). impermeable layer such as clay, and may be In northeastern North America, vernal pool and covered by a layer of interwoven fibrous roots similar interchangeable terms have focused even and dead leaves. Though relatively small, and more narrowly upon pools that are relatively small, sometimes overlooked, vernal pools provide critical are regularly but temporarily flooded, and are habitat for many plants and animals, including rare within wooded settings (Colburn 2004, Calhoun species and species with specialized adaptations for and deMaynadier 2008, Wisconsin DNR 2008, coping with temporary and variable hydroperiods. Ohio Vernal Pool Partnership 2009, Vermont Vernal pools are also referred to as vernal ponds, Fish & Wildlife Department 2004, Tesauro 2009, ephemeral ponds, ephemeral pools, temporary New York Natural Heritage Program 2009, pools, and seasonal wetlands. Commonwealth of Massachusetts Division of Michigan Natural Features Inventory P.O. Box 30444 - Lansing, MI 48909-7944 Phone: 517-373-1552 Vernal Pool, Page 2 Fisheries and Wildlife 2009, Maine Department of community types (see Kost et al.
    [Show full text]
  • Forestry Habitat Management Guidelines for Vernal Pool Wildlife
    $8.00 Forestry Habitat Management Guidelines for Vernal Pool Wildlife Metropolitan Conservation Alliance a program of MCA Technical Paper Series: No. 6 Aram J. K. Calhoun, Ph.D. Department of Plant, Soil, and Environmental Sciences University of Maine, Orono, Maine 04469 Maine Audubon 20 Gilsland Farm Rd., Falmouth, Maine 04105 Phillip deMaynadier, Ph.D. Maine Department of Inland Fisheries and Wildlife Endangered Species Group, 650 State Street, Bangor, Maine 04401 A cooperative publication of the University of Maine, Maine Audubon, Maine Department of Inland Fisheries and Wildlife, Maine Department of Conservation, and the Wildlife Conservation Society. Cover illustration: Nancy J. Haver Suggested citation: Calhoun, A. J. K. and P. deMaynadier. 2004. Forestry habitat management guidelines for vernal pool wildlife. MCA Technical Paper No. 6, Metropolitan Conservation Alliance, Wildlife Conservation Society, Bronx, New York. Additional copies of this document can be obtained from: Maine Audubon 20 Gilsland Farm Road, Falmouth, ME 04105 (207) 781-2330 -------- Maine Department of Inland Fisheries and Wildlife 284 State Street, 41 SHS, Augusta, ME 04333 (207) 287-8000 -------- Metropolitan Conservation Alliance, Wildlife Conservation Society 68 Purchase Street, 3rd Floor, Rye, New York 10580 (914) 925-9175 ISBN 0-9724810-1-X ISSN 1542-8133 Printed on partially recycled paper. ACKNOWLEDGEMENTS THE PROCESS OF GUIDELINE DEVELOPMENT BENEFITED from active participation by Maine’s forest products industry (Georgia-Pacific Corp., Great Northern
    [Show full text]
  • Laborergebnisse Und Auswertung Der 'Hähnchenstudie', Aug-Sep. 2020
    Nationales Referenzzentrum für gramnegative Krankenhauserreger in der Abteilung für Medizinische Mikrobiologie Ruhr-Universität Bochum, D-44780 Bochum Nationales Referenzzentrum für gramnegative Krankenhauserreger Prof. Dr. med. Sören Gatermann Institut für Hygiene und Mikrobiologie Abteilung für Medizinische Mikrobiologie Gebäude MA 01 Süd / Fach 21 Universitätsstraße 150 / D-44780 Bochum Tel.: +49 (0)234 /32-26467 Fax.:+49 (0)234 /32-14197 Dr. med. Agnes Anders Dr. rer. nat. Niels Pfennigwerth Tel.: +49 (0)234 / 32-26938 Fax.:+49 (0)234 /32-14197 [email protected] 14. Oktober 2020 GA/LKu Auswertung der „Hähnchenstudie“ Germanwatch, Aug-Sep. 2020 Proben Die Proben wurden von Germanwatch zur Verfügung gestellt. Es handelte sich meist um originalverpackte Handelsware, hinzu kamen Proben eines Werksverkaufes. Die Proben waren entweder gekühlte Ware oder tiefgefroren. Zur Qualitätssicherung wurde ein Minimum- Maximum-Thermometer in den Transportbehälter eingebracht. Die Proben waren von Germanwatch nach einem abgesprochenen Schema nummeriert und wurden bei Ankunft im Labor auf Schäden oder Zeichen von Transportproblemen überprüft, fotografiert und ggf. aufgetaut, bevor sie verarbeitet wurden. Bearbeitung Details der Methodik finden sich am Ende dieses Textes. Die Kultivierung schloss eine semiquantitative Bestimmung der Keimbelastung ein. Die Proben wurden auf Selektivmedien (solche, die selektiv bestimmte, auch resistente Organismen nachweisen) und auf Universalnährmedien (solche, die eine große Anzahl unterschiedlicher Organismen nachweisen)
    [Show full text]
  • Two Copies of the Ail Gene Found in Yersinia Enterocolitica and Yersinia
    1 Two copies of the ail gene found in Yersinia enterocolitica and Yersinia 2 kristensenii 3 4 Suvi Joutsena,b, Per Johanssona, Riikka Laukkanen-Niniosa,c, Johanna Björkrotha and Maria 5 Fredriksson-Ahomaaa 6 7 aDepartment of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, 8 P.O.Box 66 (Agnes Sjöbergin katu 2), 00014 University of Helsinki, Finland 9 bRisk Assessment Unit, Finnish Food Authority, Helsinki, Finland 10 cFood Safety Unit, Finnish Food Authority, Helsinki, Finland 11 12 Corresponding author: 13 E-mail address: [email protected] 1 14 Abstract 15 16 Yersinia enterocolitica is the most common Yersinia species causing foodborne infections in 17 humans. Pathogenic strains carry the chromosomal ail gene, which is essential for bacterial 18 attachment to and invasion into host cells and for serum resistance. This gene is commonly 19 amplified in several PCR assays detecting pathogenic Y. enterocolitica in food samples and 20 discriminating pathogenic isolates from non-pathogenic ones. We have isolated several non- 21 pathogenic ail-positive Yersinia strains from various sources in Finland. For this study, we 22 selected 16 ail-positive Yersinia strains, which were phenotypically and genotypically 23 characterised. Eleven strains were confirmed to belong to Y. enterocolitica and five strains to 24 Yersinia kristensenii using whole-genome alignment, Parsnp and the SNP phylogenetic tree. 25 All Y. enterocolitica strains belonged to non-pathogenic biotype 1A. We found two copies of 26 the ail gene (ail1 and ail2) in all five Y. kristensenii strains and in one Y. enterocolitica 27 biotype 1A strain. All 16 Yersinia strains carried the ail1 gene consisting of three different 28 sequence patterns (A6-A8), which were highly similar with the ail gene found in high- 29 pathogenic Y.
    [Show full text]