Pp-03-25-New Dots.Qxd 10/23/02 2:16 PM Page 136
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Polymorphism, Halogen Bonding, and Chalcogen Bonding in the Diiodine Adducts of 1,3- and 1,4-Dithiane
molecules Article Polymorphism, Halogen Bonding, and Chalcogen Bonding in the Diiodine Adducts of 1,3- and 1,4-Dithiane Andrew J. Peloquin 1, Srikar Alapati 2, Colin D. McMillen 1, Timothy W. Hanks 2 and William T. Pennington 1,* 1 Department of Chemistry, Clemson University, Clemson, SC 29634, USA; [email protected] (A.J.P.); [email protected] (C.D.M.) 2 Department of Chemistry, Furman University, Greenville, SC 29613, USA; [email protected] (S.A.); [email protected] (T.W.H.) * Correspondence: [email protected] Abstract: Through variations in reaction solvent and stoichiometry, a series of S-diiodine adducts of 1,3- and 1,4-dithiane were isolated by direct reaction of the dithianes with molecular diiodine in solution. In the case of 1,3-dithiane, variations in reaction solvent yielded both the equatorial and the axial isomers of S-diiodo-1,3-dithiane, and their solution thermodynamics were further studied via DFT. Additionally, S,S’-bis(diiodo)-1,3-dithiane was also isolated. The 1:1 cocrystal, (1,4-dithiane)·(I2) was further isolated, as well as a new polymorph of S,S’-bis(diiodo)-1,4-dithiane. Each structure showed significant S···I halogen and chalcogen bonding interactions. Further, the product of the diiodine-promoted oxidative addition of acetone to 1,4-dithiane, as well as two new cocrystals of 1,4-dithiane-1,4-dioxide involving hydronium, bromide, and tribromide ions, was isolated. Keywords: crystal engineering; chalcogen bonding; halogen bonding; polymorphism; X-ray diffraction Citation: Peloquin, A.J.; Alapati, S.; McMillen, C.D.; Hanks, T.W.; Pennington, W.T. -
Naming Molecular Compounds General Instructions: Please Do the Activities for Each Day As Indicated
Teacher Name: Dwight Lillie Student Name: ________________________ Class: ELL Chemistry Period: Per 4 Assignment: Assignment week 2 Due: Friday, 5/8 Naming Molecular Compounds General Instructions: Please do the activities for each day as indicated. Any additional paper needed please attach. Submitted Work: 1) Completed packet. Questions: Please send email to your instructor and/or attend published virtual office hours. Schedule: Date Activity Monday (4/27) Read Sections 9.3, 9.5 in your textbook. Tuesday (4/28) Read and work through questions 1-9 Wednesday (4/29) Read and work through questions 10-14 Thursday (4/30) Read and work through questions 14-18 Friday (5/31) Read and work through questions 19-21 How are the chemical formula and name of a molecular compound related? Why? When you began chemistry class this year, you probably already knew that the chemical formula for carbon dioxide was CO2. Today you will find out why CO2 is named that way. Naming chemical compounds correctly is of paramount importance. The slight difference between the names carbon monoxide (CO, a poisonous, deadly gas) and carbon dioxide (CO2, a greenhouse gas that we exhale when we breathe out) can be the difference between life and death! In this activity you will learn the naming system for molecular compounds. Model 1 – Molecular Compounds Molecular Number of Atoms Number of Atoms in Name of Compound Formula of First Element Second Element ClF Chlorine monofluoride ClF5 1 5 Chlorine pentafluoride CO Carbon monoxide CO2 Carbon dioxide Cl2O Dichlorine monoxide PCl5 Phosphorus pentachloride N2O5 Dinitrogen pentoxide 1. Fill in the table to indicate the number of atoms of each type in the molecular formula. -
Safety Data Sheet
SAFETY DATA SHEET Creation Date 27-Aug-2013 Revision Date 14-Feb-2020 Revision Number 2 1. Identification Product Name Cadmium bromide, ultra dry Cat No. : 47105 CAS-No 7789-72-6 Synonyms No information available Recommended Use Laboratory chemicals. Uses advised against Food, drug, pesticide or biocidal product use. Details of the supplier of the safety data sheet Company Alfa Aesar Thermo Fisher Scientific Chemicals, Inc. 30 Bond Street Ward Hill, MA 01835-8099 Tel: 800-343-0660 Fax: 800-322-4757 Email: [email protected] www.alfa.com Emergency Telephone Number During normal business hours (Monday-Friday, 8am-7pm EST), call (800) 343-0660. After normal business hours, call Carechem 24 at (866) 928-0789. 2. Hazard(s) identification Classification This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Acute oral toxicity Category 4 Acute dermal toxicity Category 4 Acute Inhalation Toxicity - Dusts and Mists Category 4 Carcinogenicity Category 1A Label Elements Signal Word Danger Hazard Statements May cause cancer Harmful if swallowed, in contact with skin or if inhaled ______________________________________________________________________________________________ Page 1 / 7 Cadmium bromide, ultra dry Revision Date 14-Feb-2020 ______________________________________________________________________________________________ Precautionary Statements Prevention Obtain special instructions before use Do not handle until all safety precautions have been read and understood Use personal protective equipment -
Attachment 3-1 Guidance for Developing Ecological Soil
Attachment 3-1 Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs) Eco-SSL Standard Operating Procedure (SOP # 1): Plant and Soil Invertebrate Literature Search and Acquisition OSWER Directive 92857-55 November 2003 This page intentionally left blank OVERVIEW Currently, there is a lack of clear guidance in setting terrestrial effect thresholds when conducting risk assessments. Without an EPA-approved, peer-reviewed, ecologically-based terrestrial effect database, the process to develop thresholds is problematic both to EPA, other federal agencies, states, and concerned private parties. Identification of published toxicity studies on invertebrates, microbial processes and plants is a key step in the derivation of benchmarks. The purpose of the Task Group 4, Standard Operating Procedure Number 1: Literature Search and Acquisition (referred to as TG4-SOP#1) is to document procedures used to identify and acquire potentially relevant toxicology literature for use in setting ecological soil screening levels. The literature search strategy is designed to locate worldwide terrestrial toxicity literature that includes the effects of chemicals of concern on terrestrial soil-dwelling invertebrates and plants. The literature acquisition process is designed to ensure timely acquisition of relevant publications. LITERATURE IDENTIFICATION Potentially relevant literature for developing ecological soil screening levels (Eco-SSLs) is identified by examining hard copies of relevant journals, bibliographies and guidance publications and through the use of a comprehensive computerized literature search strategy. These procedures are designed to locate worldwide terrestrial toxicology literature that includes the effects of specific toxic substances with an emphasis on exposure via soil. Paper-based Literature Identification The paper-based literature identification process includes the scanning of relevant review article bibliographies and key journals held in the U.S. -
Safety Datasheet Complies with the Requirements of Regulation (EC) No
Wet Plate Supplies wetplatesupplies.com SAFETY DATA SHEET according to Regulation (EC) No. 1907/2006 Version 1.0 Revision Date 07.10.2016 Print Date 24.10.2016 1. IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING 1.1 Product identifiers Product name : ‘Leas’ landscape #7 Premixed Collodion Brand : Buildingbox Ltd Index-No. : N/A CAS-No. : N/A 1.2 Relevant identified uses of the substance or mixture and uses advised against Identified uses : Photographic use only 1.3 Details of the supplier of the safety data sheet Company : Buildingbox Ltd Unit 15-16 Highlode Industrial Estate Ramsey, Cambridgeshire PE26 2RB UNITED KINGDOM Telephone : +44 (0)1487 813447 E-mail address : [email protected] 1.4 Emergency telephone number Emergency Phone # : +44 (0)1487 813447 2. HAZARDS IDENTIFICATION 2.1 Classification of the substance or mixture Classification according to Regulation (EC) No 1272/2008 [EU-GHS/CLP] H224 Flammable liquids (Category 1), H302 Acute toxicity, Oral (Category 4), H312 Acute toxicity, Dermal (Category 4), H350 Carcinogenicity (Category 1B), H402 Hazardous to the aquatic environment, acute toxicity (Category 3), H412 Chronic aquatic toxicity (Category 3), Specific target organ toxicity - single exposure (Category 3), Central nervous system 2.2 Label elements Labelling according Regulation (EC) No 1272/2008 [CLP] Pictogram Signal word Danger Hazard statement(s) EUH066 Repeated exposure may cause skin dryness or cracking. H224 Extremely flammable liquid and vapour. H319 Causes serious eye irritation. H336 May cause drowsiness or dizziness. H302 + H312 + H332 Harmful if swallowed, in contact with skin or if inhaled H350 May cause cancer. -
Activation of Thin Film Cdte Solar Cells Using a Cadmium Bromide Treatment R.C.Greenhalgh1 , A
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Loughborough University Institutional Repository Activation of Thin Film CdTe Solar Cells Using a Cadmium Bromide Treatment R.C.Greenhalgh1 , A. Abbas1, A. H. Munshi2, T. M. Shimpi2, K.L.Barth2, W. S. Sampath2 J. W. Bowers1 and J. M. Walls1 1 CREST, Loughborough University, Loughborough, United Kingdom, LE11 3TU 2 NSF I/UCRC for Next Generation Photovoltaics, Colorado State University, Fort Collins, CO 80526 United States Abstract — The activation of CdTe with a cadmium chloride toxicity of CdF2 this is unsafe and unlikely to be scalable annealing treatment is a vital step in the fabrication of high industrially. efficiency solar cells. Thin film MZO/CdTe cells have been Electrically, the chlorine has been theorized to make the activated using CdBr2 instead of CdCl2 with a lower activation process temperature. Using this method, CdBr2 does activate the grain boundaries less p-type than the grain bulk [8]. This cell as revealed by J-V and EQE measurements. TEM and EDX improves carrier collection as grain boundaries may act as a elemental maps from device cross-sections confirm that bromine segregated conduction pathway for electrons due to local is present in the grain boundaries. TEM shows that the electric fields [4]. However, the predominant effect of treatment removes stacking faults at 425 °C. CdBr2 treatment resulted in a relatively modest conversion efficiency of 5.49% chlorine is passivation of dangling bonds at grain boundaries when treated at 375 °C. Nevertheless, the experiments shed and removal of planar defects[3], [9]. -
Iodine Monobromide Original Commentary
IODINE MONOBROMIDE 1 Iodine Monobromide O OH t 1. IBr, PhMe O -BuO O –80 to –85 °C (2) BrI 2. K2CO3, MeOH 71% OBn 13.9:1 [7789-33-5] Brl (MW 206.80) OBn InChI = 1S/BrI/c1-2 InChIKey = CBEQRNSPHCCXSH-UHFFFAOYAO (diastereoselective cyclizations of homoallylic carbonates; elec- trophilic addition to alkenes; -bromination of steroidal aldehy- Table 1 Regiochemistry of IBr addition to alkenes des and ketones;, cleavage of carbon–metal bonds) Alkene % Markovnikov % anti-Markovnikov Physical Data: mp 40 ◦ C; bp 116 ◦C (dec); d 4.416 g cm−3. Solubility: sol alcohol, ether, CS2, acetic acid, acetone, CH2Cl2, MeCH=CH2 65 35 MeCN, DME, toluene (but with limited solubility below –80 ErCH=CH2 45 55 ◦ C); soluble in H2O, but hydrolyzes to HBr and IOH. i-PrCH=CH2 15 85 Form Supplied in: brownish-black crystals or very hard, black t-BuCH=CH2 0 100 solid; widely available (usually 97–98% purity). PhCH=CH2 100 0 Handling, Storage, and Precautions: corrosive solid and vapor; readily absorbed through skin and mucous membranes; use in a fume hood and wear gloves and appropriate protective clothing; air-, moisture-, and light-sensitive; should be stored refrigerated (under N ) in a tightly sealed amber bottle. Forms explosive 2 mixtures with potassium and sodium, and reacts extremely -Bromination of Steroidal Aldehydes and Ketones. Io- exothermically with phosphorus and tin. dine monobromide is an effective monobrominating reagent for steroidal aldehydes (eq 3). The ratio of diastereomeric products is in part a function of the reaction site’s proximity to an asymmet- Original Commentary ric center, with -orientation favored for the entering bromine. -
Maine Remedial Action Guidelines (Rags) for Contaminated Sites
Maine Department of Environmental Protection Remedial Action Guidelines for Contaminated Sites (RAGs) Effective Date: May 1, 2021 Approved by: ___________________________ Date: April 27, 2021 David Burns, Director Bureau of Remediation & Waste Management Executive Summary MAINE DEPARTMENT OF ENVIRONMENTAL PROTECTION 17 State House Station | Augusta, Maine 04333-0017 www.maine.gov/dep Maine Department of Environmental Protection Remedial Action Guidelines for Contaminated Sites Contents 1 Disclaimer ...................................................................................................................... 1 2 Introduction and Purpose ............................................................................................... 1 2.1 Purpose ......................................................................................................................................... 1 2.2 Consistency with Superfund Risk Assessment .............................................................................. 1 2.3 When to Use RAGs and When to Develop a Site-Specific Risk Assessment ................................. 1 3 Applicability ................................................................................................................... 2 3.1 Applicable Programs & DEP Approval Process ............................................................................. 2 3.1.1 Uncontrolled Hazardous Substance Sites ............................................................................. 2 3.1.2 Voluntary Response Action Program -
Chemical Names and CAS Numbers Final
Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride -
Hazardous Substances (Chemicals) Transfer Notice 2006
16551655 OF THURSDAY, 22 JUNE 2006 WELLINGTON: WEDNESDAY, 28 JUNE 2006 — ISSUE NO. 72 ENVIRONMENTAL RISK MANAGEMENT AUTHORITY HAZARDOUS SUBSTANCES (CHEMICALS) TRANSFER NOTICE 2006 PURSUANT TO THE HAZARDOUS SUBSTANCES AND NEW ORGANISMS ACT 1996 1656 NEW ZEALAND GAZETTE, No. 72 28 JUNE 2006 Hazardous Substances and New Organisms Act 1996 Hazardous Substances (Chemicals) Transfer Notice 2006 Pursuant to section 160A of the Hazardous Substances and New Organisms Act 1996 (in this notice referred to as the Act), the Environmental Risk Management Authority gives the following notice. Contents 1 Title 2 Commencement 3 Interpretation 4 Deemed assessment and approval 5 Deemed hazard classification 6 Application of controls and changes to controls 7 Other obligations and restrictions 8 Exposure limits Schedule 1 List of substances to be transferred Schedule 2 Changes to controls Schedule 3 New controls Schedule 4 Transitional controls ______________________________ 1 Title This notice is the Hazardous Substances (Chemicals) Transfer Notice 2006. 2 Commencement This notice comes into force on 1 July 2006. 3 Interpretation In this notice, unless the context otherwise requires,— (a) words and phrases have the meanings given to them in the Act and in regulations made under the Act; and (b) the following words and phrases have the following meanings: 28 JUNE 2006 NEW ZEALAND GAZETTE, No. 72 1657 manufacture has the meaning given to it in the Act, and for the avoidance of doubt includes formulation of other hazardous substances pesticide includes but -
Cadmium Halide Complexes and Anion Exchange Equilibria. Edward Lyndol Harris Louisiana State University and Agricultural & Mechanical College
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1961 Cadmium Halide Complexes and Anion Exchange Equilibria. Edward Lyndol Harris Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Harris, Edward Lyndol, "Cadmium Halide Complexes and Anion Exchange Equilibria." (1961). LSU Historical Dissertations and Theses. 669. https://digitalcommons.lsu.edu/gradschool_disstheses/669 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been 61-5141 microfilmed exactly as received HARRIS, Edward Lyndol, 1933- CADMIUM HALIDE COMPLEXES AND ANION EXCHANGE EQUILIBRIA. Louisiana State University, Ph.D., 1961 Chemistry, inorganic University Microfilms, Inc., Ann Arbor, Michigan CADMIUM HALIDE COMPLEXES AND ANION EXCHANGE EQUILIBRIA A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Edward Lyndol Harris B .A ., Me Murry College* 1956 M.S., Louisiana State University, 1958 June, 1961 ACKNOWLEDGMENT The author wiehea to gratefully acknowledge the advice and aeaietance given to him on numeroua occaeione by Profeaeor Maurice M. Vick, who directed thie work. ii TABLE OF CONTENTS Page INTRODUCTION . ............................................................................... 1 EXPERIMENTAL PROCEDURES ............................................................. 8 Reagents and Analytical M eth o d.............................. s 8 Equilibrium Determinations ........... 9 Resin Volume D eterm inations................................... -
Safety Data Sheet
SAFETY DATA SHEET Creation Date 27-Aug-2013 Revision Date 13-Mar-2018 Revision Number 1 SECTION 1: IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING 1.1. Product identification Product Description: Cadmium bromide hydrate Cat No. : 44498 CAS-No 7789-72-6 EC-No. 232-165-1 Molecular Formula Br2 Cd Reach Registration Number - 1.2. Relevant identified uses of the substance or mixture and uses advised against Recommended Use Laboratory chemicals. Uses advised against No Information available 1.3. Details of the supplier of the safety data sheet Company Alfa Aesar . Avocado Research Chemicals, Ltd. Shore Road Port of Heysham Industrial Park Heysham, Lancashire LA3 2XY United Kingdom Office Tel: +44 (0) 1524 850506 Office Fax: +44 (0) 1524 850608 E-mail address [email protected] www.alfa.com Product Safety Department 1.4. Emergency telephone number Call Carechem 24 at +44 (0) 1865 407333 (English only); +44 (0) 1235 239670 (Multi-language) SECTION 2: HAZARDS IDENTIFICATION 2.1. Classification of the substance or mixture CLP Classification - Regulation (EC) No 1272/2008 Physical hazards Based on available data, the classification criteria are not met Health hazards Acute oral toxicity Category 4 (H302) Acute dermal toxicity Category 4 (H312) Acute Inhalation Toxicity - Dusts and Mists Category 4 (H332) ______________________________________________________________________________________________ ALFAA44498 Page 1 / 10 SAFETY DATA SHEET Cadmium bromide hydrate Revision Date 13-Mar-2018 ______________________________________________________________________________________________