HKUST Institutional Repository

Total Page:16

File Type:pdf, Size:1020Kb

HKUST Institutional Repository FunSort Therese Biedl Timothy Chan Erik D Demaine y y Rudolf Fleischer Mordecai Golin J Ian Munro February Abstract In this pap er we study greedy inplace sorting algorithms which miraculously happ en to work in reasonable time DumbSort which rep eatedly compares all p ossible pairs of array cells sorts n elements in n cycles or time O n NotSoDumbSort which only tests adjacent cells also sorts in n cycles or in time O n GuessSorta randomized version of DumbSort runs in exp ected time O n log n And FunSort an inplace variant of InsertionSort that p erforms re p eated insertions by binary search into an initially unsorted array sorts in time O n log n Intro duction Comparison based sorting algorithms tend to be based on a few basic para digms insertion exchanging selection and merging page Most metho ds op erate by maintaining an invariant of sortedness on an increas ingly longer segment of the array The exchange sorts eg Bubblesort and Quicksort are notable exceptions to this approach But even they maintain strong invariants on the progress made thus far Shellsort from one p oint of view maintains sorted subarrays of increasingly greater length as the pro cess continues Perhaps greater density is a b etter term for the notion of the interleaved sorted segments of Shellsort From another p oint of view Shellsort Department of Computer Science University of Waterlo o Waterlo o ON NL G Canada Email fbiedl tmchan eddemaine imunroguwaterlooca y Department of Computer Science The Hong Kong University of Science and Tech nology Clear Water Bay Kowlo on Hong Kong Email frudolf golingcsusthk R Fleischer was partially supp orted by HKUST grantDAGEG HKUST Theoretical Computer Science Center Research Report HKUST-TCSC-2001-03 is delightfully chaotic Atany stage one is presented with a subregion which one hop es is reasonably close to sorted order and then is to complete the task by using linear InsertionSort Magicallyitworks pretty well Our starting point is the notion of sorting by rep eatedly moving values from current to more likely lo cations by p erforming binary searches If an array were in sorted order except for the lo cation of one value then this approach would minimize b oth the number of comparisons and the number of moves necessary to complete the task The approachwould certainly place the set maximum and minimum in their prop er sp ots and never movethem again If the array is close to b eing in sorted order the pro cess will generally make further progress Our question is whether the general approach of binary insertion into an initially unordered array can be harnassed to yield a viable sorting algorithm We are able to adapt the metho d to correctly p erform a sort and b ound the worstcase runtime reasonably accurately However we feel the greater contribution of this pap er is to lay op en the approach b oth for purp oses of algorithmic improvements and for improvements in the exp ected runtime of our approach In particular we observe that the exp ected p osition of an element binary inserted into an array is approximately its rank Several variations on this theme are explored In a more greedy approach we move values to more likely lo cations by comparing all pairs of array cells and swapping their contents if they are not in the right order We show that n iterations or cycles of this bruteforce approach suce to sort any input indep endent of the order of the comparisons in a cycle Interestingly it turns out that not all n pairs have to b e considered in each cycle It is sucient to have n cycles that only compare the n pairs of adjacent cells in any arbitrary order Bubblesort is a sp ecial case of such an algorithm Previously it was only known that n cycles will sort correctly Our results are also of interest b ecause all of our sorting algorithms are purely inplace And with the exception of the unordered binary searches algorithm they are also oblivious ie they could be realized by a sorting network But in contrast to other work on sorting networks we are not interested in exploiting the parallelism of our sequential algorithms to reduce the numb er of rounds or the depth of the network for example This pap er is organized as follows In Section weintro duce our mo del of inversionxing algorithms and show that all inversionxing algorithms will eventually terminate In Section we give a simple pro of based on the Principle that DumbSort which p erforms n cycles of comparisons of all p ossible cell pairs sorts correctly We think that this is a more natural n time slowsort algorithm than Julstroms Slow Sort which is somehow articially bloated We then show that NotSoDumbSort a streamlined version of DumbSort which only considers adjacent cells also sorts correctly in n cycles reducing the runtime to O n In Section we intro duce GuessSort a randomized variant of Dumb Sort which sorts in exp ected time O n log n In Section we show that FunSort whichisInsertionSort with binarysearch insertions into an initially unordered array sorts in time O n log n And we conclude with a few op en problems in Section To Swap or not to Swap Thats our Question Assume we are given n elements from a totally ordered set stored in an array of size n which we think of b eing arranged from left to right in increasing order For simplicity we assume that all elements are dierent but the results in this pap er also hold in the general case At any time we denote the content of cell i by a for i n Our goal is to sort these elements i in nondecreasing order Intuitively the simplest way to sort an array is to concentrate on just two elements at a time from which we can extract only one bit of information A pair i j of cells i and j where i j isgood if the cell contents are correctly ordered ie a a if i j or a a if i j i j i j Otherwise the pair is bad Bad pairs are also called inversions The number of inversions in the array can be between zero if the array is correctly sorted n and if the array is sorted in reverse order Following these ideas the most basic metho d of sorting is to search for and swap bad pairs De Bruijns called the action of comparing the contents of a pair of cells and leaving the smaller value in the left cell ie the cell with lower index a swapora miniswap if the two cells are adjacent Note that swapping a go o d pair has no eect whereas in a swap of a bad pair an exchange swapthe cell contents are exchanged The following simple observation seems to be folklore but we could not nd it stated prop erly in the literature although it is used in It implies that we can sort by rep eatedly doing exchange swaps Lemma An exchange swap strictly decreases the number of inversions Proof Consider an exchange swap i j where ij and a a see Fig i j Let k be a good pair b efore the swap where k Since the content of cell i is decreasing and the content of cell j is increasing k can only b ecome a bad pair if k j or i i m j k Figure If weswap the bad pair i j then the go o d pair k b ecomes a bad pair However the bad pair i b ecomes a go o d pair We also accidentally turn the bad pairs i mandm j into go o d pairs but that is ok In the former case i was a bad pair b efore the swap b ecause a moves i to cell j but it is good afterwards and in the latter case k j was a bad pair b efore the swap b ecause a moves to cell i but it is go o d afterwards j In any case the numb er of bad pairs decreases b ecause i j becomesagood pair We only consider sorting algorithms based on swaps called exchange sort ing algorithms byKnuth page We prefer to call them inversionxing algorithms Knuth also calls sorting algorithms purely based on miniswaps primitive Exercise on page Lemma implies that inversion xing algorithms cannot makean unb ounded number of exchange swaps n Corollary Any inversionxing algorithm makes at most O n exchange swaps n Proof Initially the array can have at most inversions and each exchange swap strictly decreases the number of inversions by Lemma So if we knew the indices of the bad pairs we could easily sort in O n time Unfortunately we cannot exp ect to get this information for free In the next three sections we will show several simple but nevertheless correct and even semiecient ways to nd bad pairs We only consider oblivious algorithms where the sequence of comparisons is xed in advance In par ticular it is indep endent of the input sequence or the outcome of individual comparisons That makes the algorithms similar to sorting networks except that we do not try to exploit any parallelism DumbSort Test All Hit One A not to o clever brute force way of nding an exchange swap is to try all swaps This approach is similar to the BellmanFord algorithm for computing shortest paths in a weighted graph where in eachstepwe know that there is one no de of optimal value which we should relax next but since we cannot identify that no de we simply relax all no des Section therefore the bad runtime of that algorithm n A cycle is a sequence of all swaps in some arbitrary order the swap sequence A minicycle is a sequence of all n miniswaps in some arbitrary order the miniswap sequence Note that no miniswap sequence can sort the input sequence On the other hand there is aswap sequence that sorts all sequences namely the swap sequence n n However not all swap sequences can sort any input sequence For example the sequence will not b e sorted by the swap sequence the result would be Since anyswap sequence contains at
Recommended publications
  • Parallel Sorting Algorithms + Topic Overview
    + Design of Parallel Algorithms Parallel Sorting Algorithms + Topic Overview n Issues in Sorting on Parallel Computers n Sorting Networks n Bubble Sort and its Variants n Quicksort n Bucket and Sample Sort n Other Sorting Algorithms + Sorting: Overview n One of the most commonly used and well-studied kernels. n Sorting can be comparison-based or noncomparison-based. n The fundamental operation of comparison-based sorting is compare-exchange. n The lower bound on any comparison-based sort of n numbers is Θ(nlog n) . n We focus here on comparison-based sorting algorithms. + Sorting: Basics What is a parallel sorted sequence? Where are the input and output lists stored? n We assume that the input and output lists are distributed. n The sorted list is partitioned with the property that each partitioned list is sorted and each element in processor Pi's list is less than that in Pj's list if i < j. + Sorting: Parallel Compare Exchange Operation A parallel compare-exchange operation. Processes Pi and Pj send their elements to each other. Process Pi keeps min{ai,aj}, and Pj keeps max{ai, aj}. + Sorting: Basics What is the parallel counterpart to a sequential comparator? n If each processor has one element, the compare exchange operation stores the smaller element at the processor with smaller id. This can be done in ts + tw time. n If we have more than one element per processor, we call this operation a compare split. Assume each of two processors have n/p elements. n After the compare-split operation, the smaller n/p elements are at processor Pi and the larger n/p elements at Pj, where i < j.
    [Show full text]
  • Sorting Networks
    Sorting Networks March 2, 2005 1 Model of Computation Can we do better by using different computes? Example: Macaroni sort. Can we do better by using the same computers? How much time does it take to compute the value of this circuit? We can compute this circuit in 4 time units. Namely, circuits are inherently parallel. Can we take advantage of this??? Let us consider the classical problem of sorting n numbers. Q: Can one sort in sublinear by allowing parallel comparisons? Q: What exactly is our computation model? 1 1.1 Computing with a circuit We are going to design a circuit, where the inputs are the numbers, and we compare two numbers using a comparator gate: ¢¤¦© ¡ ¡ Comparator ¡£¢¥¤§¦©¨ ¡ For our drawings, we will draw such a gate as follows: ¢¡¤£¦¥¨§ © ¡£¦ So, circuits would just be horizontal lines, with vertical segments (i.e., gates) between them. A complete sorting network, looks like: The inputs come on the wires on the left, and are output on the wires on the right. The largest number is output on the bottom line. The surprising thing, is that one can generate circuits from a sorting algorithm. In fact, consider the following circuit: Q: What does this circuit does? A: This is the inner loop of insertion sort. Repeating this inner loop, we get the following sorting network: 2 Alternative way of drawing it: Q: How much time does it take for this circuit to sort the n numbers? Running time = how many time clocks we have to wait till the result stabilizes. In this case: 5 1 2 3 4 6 7 8 9 In general, we get: Lemma 1.1 Insertion sort requires 2n − 1 time units to sort n numbers.
    [Show full text]
  • Foundations of Differentially Oblivious Algorithms
    Foundations of Differentially Oblivious Algorithms T-H. Hubert Chan Kai-Min Chung Bruce Maggs Elaine Shi August 5, 2020 Abstract It is well-known that a program's memory access pattern can leak information about its input. To thwart such leakage, most existing works adopt the technique of oblivious RAM (ORAM) simulation. Such an obliviousness notion has stimulated much debate. Although ORAM techniques have significantly improved over the past few years, the concrete overheads are arguably still undesirable for real-world systems | part of this overhead is in fact inherent due to a well-known logarithmic ORAM lower bound by Goldreich and Ostrovsky. To make matters worse, when the program's runtime or output length depend on secret inputs, it may be necessary to perform worst-case padding to achieve full obliviousness and thus incur possibly super-linear overheads. Inspired by the elegant notion of differential privacy, we initiate the study of a new notion of access pattern privacy, which we call \(, δ)-differential obliviousness". We separate the notion of (, δ)-differential obliviousness from classical obliviousness by considering several fundamental algorithmic abstractions including sorting small-length keys, merging two sorted lists, and range query data structures (akin to binary search trees). We show that by adopting differential obliv- iousness with reasonable choices of and δ, not only can one circumvent several impossibilities pertaining to full obliviousness, one can also, in several cases, obtain meaningful privacy with little overhead relative to the non-private baselines (i.e., having privacy \almost for free"). On the other hand, we show that for very demanding choices of and δ, the same lower bounds for oblivious algorithms would be preserved for (, δ)-differential obliviousness.
    [Show full text]
  • Visvesvaraya Technological University a Project Report
    ` VISVESVARAYA TECHNOLOGICAL UNIVERSITY “Jnana Sangama”, Belagavi – 590 018 A PROJECT REPORT ON “PREDICTIVE SCHEDULING OF SORTING ALGORITHMS” Submitted in partial fulfillment for the award of the degree of BACHELOR OF ENGINEERING IN COMPUTER SCIENCE AND ENGINEERING BY RANJIT KUMAR SHA (1NH13CS092) SANDIP SHAH (1NH13CS101) SAURABH RAI (1NH13CS104) GAURAV KUMAR (1NH13CS718) Under the guidance of Ms. Sridevi (Senior Assistant Professor, Dept. of CSE, NHCE) DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING NEW HORIZON COLLEGE OF ENGINEERING (ISO-9001:2000 certified, Accredited by NAAC ‘A’, Permanently affiliated to VTU) Outer Ring Road, Panathur Post, Near Marathalli, Bangalore – 560103 ` NEW HORIZON COLLEGE OF ENGINEERING (ISO-9001:2000 certified, Accredited by NAAC ‘A’ Permanently affiliated to VTU) Outer Ring Road, Panathur Post, Near Marathalli, Bangalore-560 103 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CERTIFICATE Certified that the project work entitled “PREDICTIVE SCHEDULING OF SORTING ALGORITHMS” carried out by RANJIT KUMAR SHA (1NH13CS092), SANDIP SHAH (1NH13CS101), SAURABH RAI (1NH13CS104) and GAURAV KUMAR (1NH13CS718) bonafide students of NEW HORIZON COLLEGE OF ENGINEERING in partial fulfillment for the award of Bachelor of Engineering in Computer Science and Engineering of the Visvesvaraya Technological University, Belagavi during the year 2016-2017. It is certified that all corrections/suggestions indicated for Internal Assessment have been incorporated in the report deposited in the department library. The project report has been approved as it satisfies the academic requirements in respect of Project work prescribed for the Degree. Name & Signature of Guide Name Signature of HOD Signature of Principal (Ms. Sridevi) (Dr. Prashanth C.S.R.) (Dr. Manjunatha) External Viva Name of Examiner Signature with date 1.
    [Show full text]
  • I. Sorting Networks Thomas Sauerwald
    I. Sorting Networks Thomas Sauerwald Easter 2015 Outline Outline of this Course Introduction to Sorting Networks Batcher’s Sorting Network Counting Networks I. Sorting Networks Outline of this Course 2 Closely follow the book and use the same numberring of theorems/lemmas etc. I. Sorting Networks (Sorting, Counting, Load Balancing) II. Matrix Multiplication (Serial and Parallel) III. Linear Programming (Formulating, Applying and Solving) IV. Approximation Algorithms: Covering Problems V. Approximation Algorithms via Exact Algorithms VI. Approximation Algorithms: Travelling Salesman Problem VII. Approximation Algorithms: Randomisation and Rounding VIII. Approximation Algorithms: MAX-CUT Problem (Tentative) List of Topics Algorithms (I, II) Complexity Theory Advanced Algorithms I. Sorting Networks Outline of this Course 3 Closely follow the book and use the same numberring of theorems/lemmas etc. (Tentative) List of Topics Algorithms (I, II) Complexity Theory Advanced Algorithms I. Sorting Networks (Sorting, Counting, Load Balancing) II. Matrix Multiplication (Serial and Parallel) III. Linear Programming (Formulating, Applying and Solving) IV. Approximation Algorithms: Covering Problems V. Approximation Algorithms via Exact Algorithms VI. Approximation Algorithms: Travelling Salesman Problem VII. Approximation Algorithms: Randomisation and Rounding VIII. Approximation Algorithms: MAX-CUT Problem I. Sorting Networks Outline of this Course 3 (Tentative) List of Topics Algorithms (I, II) Complexity Theory Advanced Algorithms I. Sorting Networks (Sorting, Counting, Load Balancing) II. Matrix Multiplication (Serial and Parallel) III. Linear Programming (Formulating, Applying and Solving) IV. Approximation Algorithms: Covering Problems V. Approximation Algorithms via Exact Algorithms VI. Approximation Algorithms: Travelling Salesman Problem VII. Approximation Algorithms: Randomisation and Rounding VIII. Approximation Algorithms: MAX-CUT Problem Closely follow the book and use the same numberring of theorems/lemmas etc.
    [Show full text]
  • An 11-Step Sorting Network for 18 Elements
    An 11-Step Sorting Network for 18 Elements Sherenaz W. Al-Haj Baddar, Kenneth E. Batcher Kent State University Department of Computer Science Kent, Ohio 44240 [email protected] [email protected] output set must be a permutation of the input set {I1,I2,…,IN}. Abstract— Sorting Networks are cost-effective multistage Moreover, for every two elements of the output set Oj and Ok, interconnection networks with sorting capabilities. These Oj must be less than or equal to Ok whenever j ≤ k. networks theoretically consume Θ(NlogN) comparisons. However, Sorting networks are constructed using stages (steps) of the fastest implementable sorting networks built so far consume basic cells called Comparator Exchange(CE) modules. A CE is Θ(Nlog2N) comparisons, and generally, use the Merge-sorting a 2-element sorting circuit. It accepts two inputs via two input strategy to sort the input. An 18-element network using the Merge-sorting strategy needs at least 12 steps-here we show a lines, compares them and outputs the larger element on its high network that sorts 18 elements in only 11 steps. output line, whereas the smaller is output on its low output line. It is assumed that two comparators with disjoint inputs can operate in parallel. A typical CE is depicted in Figure 1[2]. Index Terms—Sorting Networks, Partial Ordering, 0/1 cases. I. INTRODUCTION Parallel processors are fast and powerful computing systems Figure 1. A comparator exchange module[2] that have been developed to help undertake computationally challenging problems. Deploying parallelism for solving a An optimal N-element sorting network requires θ(NlogN) given problem implies splitting the problem into subtasks.
    [Show full text]
  • Selection O. Best Sorting Algorithm
    International Journal of Intelligent Information Processing © Serials Publications 2(2) July-December 2008; pp. 363-368 SELECTION O BEST SORTING ALGORITHM ADITYA DEV MISHRA* & DEEPAK GARG** The problem of sorting is a problem that arises frequently in computer programming. Many different sorting algorithms have been developed and improved to make sorting fast. As a measure of performance mainly the average number of operations or the average execution times of these algorithms have been investigated and compared. There is no one sorting method that is best for every situation. Some of the factors to be considered in choosing a sorting algorithm include the size of the list to be sorted, the programming effort, the number of words of main memory available, the size of disk or tape units, the extent to which the list is already ordered, and the distribution of values. Keywords: Sorting, complexity lists, comparisons, movement sorting algorithms, methods, stable, unstable, internal sorting 1. INTRODUCTION Sorting is one of the most important and well-studied problems in computer science. Many good algorithms are known which offer various trade-offs in efficiency, simplicity, memory use, and other factors. However, these algorithms do not take into account features of modern computer architectures that significantly influence performance. A large number of sorting algorithms have been proposed and their asymptotic complexity, in terms of the number of comparisons or number of iterations, has been carefully analyzed [1]. In the recent past, there has been a growing interest on improvements to sorting algorithms that do not affect their asymptotic complexity but nevertheless improve performance by enhancing data locality [3,6].
    [Show full text]
  • Goodrich: Randomized Shellsort: a Simple Oblivious Sorting Algorithm
    Randomized Shellsort: A Simple Oblivious Sorting Algorithm Michael T. Goodrich Dept. of Computer Science University of California, Irvine http://www.ics.uci.edu/∼goodrich/ Abstract of the Pratt sequence. Moreover, Plaxton and Suel [35] es- Ω(n log2 n/(log log n)2) In this paper, we describe a randomized Shellsort algorithm. tablish a lower bound of for the This algorithm is a simple, randomized, data-oblivious ver- worst-case running time of Shellsort with any input sequence et al. sion of the Shellsort algorithm that always runs in O(n log n) (see also [11]) and Jiang [23] establish a lower bound Ω(pn1+1/p) time and succeeds in sorting any given input permutation of for the average-case running time of Shell- O(n log n) with very high probability. Taken together, these properties sort. Thus, the only way to achieve an average- imply applications in the design of new efficient privacy- time bound for Shellsort is to use an offset sequence of Θ(log n) preserving computations based on the secure multi-party length , and, even then, the problem of proving O(n log n) computation (SMC) paradigm. In addition, by a trivial con- an average running-time bound for a version of version of this Monte Carlo algorithm to its Las Vegas equiv- Shellsort is a long-standing open problem [42]. alent, one gets the first version of Shellsort with a running The approach we take in this paper is to consider a time that is provably O(n log n) with very high probability.
    [Show full text]
  • GPU-Quicksort: a Practical Quicksort Algorithm for Graphics Processors
    GPU-Quicksort: A Practical Quicksort Algorithm for Graphics Processors DANIEL CEDERMAN and PHILIPPAS TSIGAS Chalmers University of Technology In this paper we describe GPU-Quicksort, an e±cient Quicksort algorithm suitable for highly par- allel multi-core graphics processors. Quicksort has previously been considered an ine±cient sorting solution for graphics processors, but we show that in CUDA, NVIDIA's programming platform for general purpose computations on graphical processors, GPU-Quicksort performs better than the fastest known sorting implementations for graphics processors, such as radix and bitonic sort. Quicksort can thus be seen as a viable alternative for sorting large quantities of data on graphics processors. Categories and Subject Descriptors: F.2.2 [Nonnumerical Algorithms and Problems]: Sort- ing and searching; G.4 [MATHEMATICAL SOFTWARE]: Parallel and vector implementa- tions General Terms: Algorithms, Design, Experimentation, Performance Additional Key Words and Phrases: Sorting, Multi-Core, CUDA, Quicksort, GPGPU 1. INTRODUCTION In this paper, we describe an e±cient parallel algorithmic implementation of Quick- sort, GPU-Quicksort, designed to take advantage of the highly parallel nature of graphics processors (GPUs) and their limited cache memory. Quicksort has long been considered one of the fastest sorting algorithms in practice for single processor systems and is also one of the most studied sorting algorithms, but until now it has not been considered an e±cient sorting solution for GPUs [Sengupta et al. 2007]. We show that GPU-Quicksort presents a viable sorting alternative and that it can outperform other GPU-based sorting algorithms such as GPUSort and radix sort, considered by many to be two of the best GPU-sorting algorithms.
    [Show full text]
  • Copyright by Waqas Akram 2011 the Dissertation Committee for Waqas Akram Certifies That This Is the Approved Version of the Following Dissertation
    Copyright by Waqas Akram 2011 The Dissertation Committee for Waqas Akram certifies that this is the approved version of the following dissertation: Tunable Mismatch Shaping for Bandpass Delta-Sigma Data Converters Committee: Earl E. Swartzlander, Jr., Supervisor Mircea D. Driga Michael E. Orshansky Vivek Telang Nur A. Touba Tunable Mismatch Shaping for Bandpass Delta-Sigma Data Converters by Waqas Akram, B.S.E.E.; B.A.; M.S.E. DISSERTATION Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT AUSTIN May 2011 Dedicated to the memory of my loving parents, Zakia and Muhammad Akram. My mother was a mathematician and my father an engineer. Together, they ignited my passion to explore and encouraged my tenacity to succeed, but above all else, they nurtured me with patience and showed me how to persevere. Acknowledgments My deepest gratitude to my adviser, Dr. Earl E. Swartzlander, Jr., for his limitless patience and the thoughtful guidance he has generously provided, as a mentor and as a friend, throughout the course of my graduate studies. My sincere thanks to all the members of my dissertation committee for their support and kindness in sharing their precious time. I remain truly indebted to Melanie Gulick for always being willing to help; no matter how busy the moment, or how vexing the issue, her cheerfulness never failed to brighten the day. Most importantly, none of this would be possible without the encouragement and support of my family.
    [Show full text]
  • Optimal Sorting Circuits for Short Keys*
    Optimal Sorting Circuits for Short Keys* Wei-Kai Lin Elaine Shi Cornell CMU [email protected] [email protected] Abstract A long-standing open question in the algorithms and complexity literature is whether there exist sort- ing circuits of size o(n log n). A recent work by Asharov, Lin, and Shi (SODA’21) showed that if the elements to be sorted have short keys whose length k = o(log n), then one can indeed overcome the n log n barrier for sorting circuits, by leveraging non-comparison-based techniques. More specifically, Asharov et al. showed that there exist O(n) · min(k; log n)-sized sorting circuits for k-bit keys, ignor- ing poly log∗ factors. Interestingly, the recent works by Farhadi et al. (STOC’19) and Asharov et al. (SODA’21) also showed that the above result is essentially optimal for every key length k, assuming that the famous Li-Li network coding conjecture holds. Note also that proving any unconditional super-linear circuit lower bound for a wide class of problems is beyond the reach of current techniques. Unfortunately, the approach taken by Asharov et al. to achieve optimality in size somewhat crucially relies on sacrificing the depth: specifically, their circuit is super-polylogarithmic in depth even for 1-bit keys. Asharov et al. phrase it as an open question how to achieve optimality both in size and depth. In this paper, we close this important gap in our understanding. We construct a sorting circuit of size O(n)·min(k; log n) (ignoring poly log∗ terms) and depth O(log n).
    [Show full text]
  • Engineering Faster Sorters for Small Sets of Items
    ARTICLE Engineering Faster Sorters for Small Sets of Items Timo Bingmann* | Jasper Marianczuk | Peter Sanders 1Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Summary Karlsruhe, Germany Sorting a set of items is a task that can be useful by itself or as a building block for Correspondence more complex operations. That is why a lot of effort has been put into finding sorting *Timo Bingmann, Karlsruhe Institute of Technology, Am Fasanengarten 5, 76131 algorithms that sort large sets as efficiently as possible. But the more sophisticated Karlsruhe, Germany. Email: and fast the algorithms become asymptotically, the less efficient they are for small [email protected] sets of items due to large constant factors. A relatively simple sorting algorithm that is often used as a base case sorter is inser- tion sort, because it has small code size and small constant factors influencing its execution time. We aim to determine if there is a faster way to sort small sets of items to provide an efficient base case sorter. We looked at sorting networks, at how they can improve the speed of sorting few elements, and how to implement them in an efficient manner using conditional moves. Since sorting networks need to be implemented explicitly for each set size, providing networks for larger sizes becomes less efficient due to increased code sizes. To also enable the sorting of slightly larger base cases, we adapted sample sort to Register Sample Sort, to break down those larger sets into sizes that can in turn be sorted by sorting networks. From our experiments we found that when sorting only small sets of integers, the sort- ing networks outperform insertion sort by a factor of at least 1.76 for any array size between six and sixteen, and by a factor of 2.72 on average across all machines and array sizes.
    [Show full text]