Genus Mandragora (Solanaceae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Appendix Color Plates of Solanales Species
Appendix Color Plates of Solanales Species The first half of the color plates (Plates 1–8) shows a selection of phytochemically prominent solanaceous species, the second half (Plates 9–16) a selection of convol- vulaceous counterparts. The scientific name of the species in bold (for authorities see text and tables) may be followed (in brackets) by a frequently used though invalid synonym and/or a common name if existent. The next information refers to the habitus, origin/natural distribution, and – if applicable – cultivation. If more than one photograph is shown for a certain species there will be explanations for each of them. Finally, section numbers of the phytochemical Chapters 3–8 are given, where the respective species are discussed. The individually combined occurrence of sec- ondary metabolites from different structural classes characterizes every species. However, it has to be remembered that a small number of citations does not neces- sarily indicate a poorer secondary metabolism in a respective species compared with others; this may just be due to less studies being carried out. Solanaceae Plate 1a Anthocercis littorea (yellow tailflower): erect or rarely sprawling shrub (to 3 m); W- and SW-Australia; Sects. 3.1 / 3.4 Plate 1b, c Atropa belladonna (deadly nightshade): erect herbaceous perennial plant (to 1.5 m); Europe to central Asia (naturalized: N-USA; cultivated as a medicinal plant); b fruiting twig; c flowers, unripe (green) and ripe (black) berries; Sects. 3.1 / 3.3.2 / 3.4 / 3.5 / 6.5.2 / 7.5.1 / 7.7.2 / 7.7.4.3 Plate 1d Brugmansia versicolor (angel’s trumpet): shrub or small tree (to 5 m); tropical parts of Ecuador west of the Andes (cultivated as an ornamental in tropical and subtropical regions); Sect. -
Cyprus at Christmas
Cyprus at Christmas Naturetrek Tour Report 20 - 27 December 2019 Eastern Strawberry Tree Greater Sand Plover Snake-eyed Lizard True Cyprus Tarantula Report by Duncan McNiven Photos by Debbie Pain Naturetrek Mingledown Barn Wolf's Lane Chawton Alton Hampshire GU34 3HJ UK T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk Tour Report Cyprus at Christmas Tour participants: Yiannis Christofides & Duncan McNiven (leaders), Debbie Pain (co-leader) and Theodoros Theodorou (Doros, driver) with a group of 16 Naturetrek clients Day 1 Friday 20th December Gatwick - Mandria Beach – Paphos Sewage Works - Paphos The bulk of our group of ‘Christmas refugees’ took the early morning flight from Gatwick to Paphos where we met up with our local guide Yannis and driver Doros, as well as the remaining guests who had arrived separately. At the airport we boarded our bus and drove the short distance to Mandria beach. Although it was already late afternoon in Cyprus, here we had a chance to stretch our legs, get some fresh air, feel the warmth of the Mediterranean sun and begin to explore the nature of Cyprus in winter. Amongst the coastal scrub at the back of the beach we noted some familiar Painted Lady butterflies and a flock of lovely Greenfinches that positively glowed in the low winter sun. The scrub was full of Stonechats and noisy Sardinian Warblers, a chattering call that would form the backdrop to our trip wherever we went. A Zitting Cisticola popped up briefly but our attention was drawn to the recently ploughed fields beyond the scrub. -
Nightshade”—A Hierarchical Classification Approach to T Identification of Hallucinogenic Solanaceae Spp
Talanta 204 (2019) 739–746 Contents lists available at ScienceDirect Talanta journal homepage: www.elsevier.com/locate/talanta Call it a “nightshade”—A hierarchical classification approach to T identification of hallucinogenic Solanaceae spp. using DART-HRMS-derived chemical signatures ∗ Samira Beyramysoltan, Nana-Hawwa Abdul-Rahman, Rabi A. Musah Department of Chemistry, State University of New York at Albany, 1400 Washington Ave, Albany, NY, 12222, USA ARTICLE INFO ABSTRACT Keywords: Plants that produce atropine and scopolamine fall under several genera within the nightshade family. Both Hierarchical classification atropine and scopolamine are used clinically, but they are also important in a forensics context because they are Psychoactive plants abused recreationally for their psychoactive properties. The accurate species attribution of these plants, which Seed species identifiction are related taxonomically, and which all contain the same characteristic biomarkers, is a challenging problem in Metabolome profiling both forensics and horticulture, as the plants are not only mind-altering, but are also important in landscaping as Direct analysis in real time-mass spectrometry ornamentals. Ambient ionization mass spectrometry in combination with a hierarchical classification workflow Chemometrics is shown to enable species identification of these plants. The hierarchical classification simplifies the classifi- cation problem to primarily consider the subset of models that account for the hierarchy taxonomy, instead of having it be based on discrimination between species using a single flat classification model. Accordingly, the seeds of 24 nightshade plant species spanning 5 genera (i.e. Atropa, Brugmansia, Datura, Hyocyamus and Mandragora), were analyzed by direct analysis in real time-high resolution mass spectrometry (DART-HRMS) with minimal sample preparation required. -
The Mandrake and the Ancient World,” the Evangelical Quarterly 28.2 (1956): 87-92
R.K. Harrison, “The Mandrake And The Ancient World,” The Evangelical Quarterly 28.2 (1956): 87-92. The Mandrake and the Ancient World R.K. Harrison [p.87] Professor Harrison, of the Department of Old Testament in Huron College, University of Western Ontario, has already shown by articles in THE EVANGELICAL QUARTERLY his interest and competence in the natural history of the Bible. Here he examines one of the more curious Biblical plants. The mandrake is one of the plants which still grows widely in the Middle East, and which has claimed magical associations from a very remote period. It is generally assigned the botanical name of Mandragora officinarum L..1 and is a perennial of the order Solanaceae. It claims affinity with the potato and eggplant, and is closely allied to the Atropa belladonna L.,2 with which it is not infrequently confused by some writers. The modern Arab knows it by a number of names, including Tuffah£ el Majanin (‘Madmen’s Apple) and Beid el Jinn (Eggs of the Jinn), apparently a reference to the ability of the plant to invigorate and stimulate the senses even to the point of mental imbalance. The former name may perhaps be a survival of the belief found in Oriental folk-lore regarding the magical herb Baaras, with which the mandrake is identified by some authorities.3 According to the legends associated with this plant, it was highly esteemed amongst the ancients on account of its pronounced magical properties. But because of the potency of these attributes it was an extremely hazardous undertaking for anyone to gather the plant, and many who attempted it were supposed to have paid for their daring with [p.88] sickness and death.4 Once the herb had been gathered, however, it availed for a number of diseases, and in antiquity it was most reputed for its ability to cure depression and general disorders of the mind. -
Feasibility Study of Kailash Sacred Landscape
Kailash Sacred Landscape Conservation Initiative Feasability Assessment Report - Nepal Central Department of Botany Tribhuvan University, Kirtipur, Nepal June 2010 Contributors, Advisors, Consultants Core group contributors • Chaudhary, Ram P., Professor, Central Department of Botany, Tribhuvan University; National Coordinator, KSLCI-Nepal • Shrestha, Krishna K., Head, Central Department of Botany • Jha, Pramod K., Professor, Central Department of Botany • Bhatta, Kuber P., Consultant, Kailash Sacred Landscape Project, Nepal Contributors • Acharya, M., Department of Forest, Ministry of Forests and Soil Conservation (MFSC) • Bajracharya, B., International Centre for Integrated Mountain Development (ICIMOD) • Basnet, G., Independent Consultant, Environmental Anthropologist • Basnet, T., Tribhuvan University • Belbase, N., Legal expert • Bhatta, S., Department of National Park and Wildlife Conservation • Bhusal, Y. R. Secretary, Ministry of Forest and Soil Conservation • Das, A. N., Ministry of Forest and Soil Conservation • Ghimire, S. K., Tribhuvan University • Joshi, S. P., Ministry of Forest and Soil Conservation • Khanal, S., Independent Contributor • Maharjan, R., Department of Forest • Paudel, K. C., Department of Plant Resources • Rajbhandari, K.R., Expert, Plant Biodiversity • Rimal, S., Ministry of Forest and Soil Conservation • Sah, R.N., Department of Forest • Sharma, K., Department of Hydrology • Shrestha, S. M., Department of Forest • Siwakoti, M., Tribhuvan University • Upadhyaya, M.P., National Agricultural Research Council -
Tropinone Synthesis Via an Atypical Polyketide Synthase and P450-Mediated Cyclization
ARTICLE DOI: 10.1038/s41467-018-07671-3 OPEN Tropinone synthesis via an atypical polyketide synthase and P450-mediated cyclization Matthew A. Bedewitz 1, A. Daniel Jones 2,3, John C. D’Auria 4 & Cornelius S. Barry 1 Tropinone is the first intermediate in the biosynthesis of the pharmacologically important tropane alkaloids that possesses the 8-azabicyclo[3.2.1]octane core bicyclic structure that defines this alkaloid class. Chemical synthesis of tropinone was achieved in 1901 but the 1234567890():,; mechanism of tropinone biosynthesis has remained elusive. In this study, we identify a root- expressed type III polyketide synthase from Atropa belladonna (AbPYKS) that catalyzes the formation of 4-(1-methyl-2-pyrrolidinyl)-3-oxobutanoic acid. This catalysis proceeds through a non-canonical mechanism that directly utilizes an unconjugated N-methyl-Δ1-pyrrolinium cation as the starter substrate for two rounds of malonyl-Coenzyme A mediated decarbox- ylative condensation. Subsequent formation of tropinone from 4-(1-methyl-2-pyrrolidinyl)-3- oxobutanoic acid is achieved through cytochrome P450-mediated catalysis by AbCYP82M3. Silencing of AbPYKS and AbCYP82M3 reduces tropane levels in A. belladonna. This study reveals the mechanism of tropinone biosynthesis, explains the in planta co-occurrence of pyrrolidines and tropanes, and demonstrates the feasibility of tropane engineering in a non- tropane producing plant. 1 Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA. 2 Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. 3 Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA. 4 Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA. -
Cordyceps Medicinal Fungus: Harvest and Use in Tibet
HerbalGram 83 • August – October 2009 83 • August HerbalGram Kew’s 250th Anniversary • Reviving Graeco-Arabic Medicine • St. John’s Wort and Birth Control The Journal of the American Botanical Council Number 83 | August – October 2009 Kew’s 250th Anniversary • Reviving Graeco-Arabic Medicine • Lemongrass for Oral Thrush • Hibiscus for Blood Pressure • St. John’s Wort and BirthWort Control • St. John’s Blood Pressure • HibiscusThrush for Oral for 250th Anniversary Medicine • Reviving Graeco-Arabic • Lemongrass Kew’s US/CAN $6.95 Cordyceps Medicinal Fungus: www.herbalgram.org Harvest and Use in Tibet www.herbalgram.org www.herbalgram.org 2009 HerbalGram 83 | 1 STILL HERBAL AFTER ALL THESE YEARS Celebrating 30 Years of Supporting America’s Health The year 2009 marks Herb Pharm’s 30th anniversary as a leading producer and distributor of therapeutic herbal extracts. During this time we have continually emphasized the importance of using the best quality certified organically cultivated and sustainably-wildcrafted herbs to produce our herbal healthcare products. This is why we created the “Pharm Farm” – our certified organic herb farm, and the “Plant Plant” – our modern, FDA-audited production facility. It is here that we integrate the centuries-old, time-proven knowledge and wisdom of traditional herbal medicine with the herbal sciences and technology of the 21st Century. Equally important, Herb Pharm has taken a leadership role in social and environmental responsibility through projects like our use of the Blue Sky renewable energy program, our farm’s streams and Supporting America’s Health creeks conservation program, and the Botanical Sanctuary program Since 1979 whereby we research and develop practical methods for the conser- vation and organic cultivation of endangered wild medicinal herbs. -
Pacific Information Service on Street-Drugs November 1974
University of the Pacific Scholarly Commons Thomas J. Long School of Pharmacy and Health Pacific nforI mation Service on Street-Drugs Sciences 11-1-1974 Pacific nforI mation Service on Street-Drugs November 1974 School of Pharmacy Follow this and additional works at: https://scholarlycommons.pacific.edu/issd Part of the Chemicals and Drugs Commons, and the Pharmacy and Pharmaceutical Sciences Commons Recommended Citation School of Pharmacy, "Pacific nforI mation Service on Street-Drugs November 1974" (1974). Pacific nfI ormation Service on Street-Drugs. 17. https://scholarlycommons.pacific.edu/issd/17 This Article is brought to you for free and open access by the Thomas J. Long School of Pharmacy and Health Sciences at Scholarly Commons. It has been accepted for inclusion in Pacific nforI mation Service on Street-Drugs by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. PACIFIC INFORMAT· ION SERVICE Published by: School of Pharmacy University of the Pacific Stockton, California 95204 U. S. A. ON All articles may be reprinted, if used in entirety and if acknowledgement given . DRUGS Sponsored by: Beta Omega Chapter , Rho Chi Associated Students University of the Pacific • editors Gamma Nu Chapter , Kappa Psi . malone • Acknowledgement: Junior Aid of Stockton, Inc. FOUR No . 2. 3. SOLANACEOUS NARCOTICS -- A BRIEF HISTORY Varro E. Tyler* The writings of Carlos Castaneda (1) have provoked renewed interest in the subject of solanaceous narcotics, but many modern readers remain unaware of the widespread use of such plant materials as intoxicants throughout most of recorded history. Various morphological parts, particularly roots, leaves , and seeds, of species of Atropa, Datura, Duboisia, Hyoscyamus, Mandragora, and Scopolia have been chewea,-smoked or drunk by ind1viduals in all parts of the world for at least 5,000 years (2). -
Motherhood and the Identity Formation of Masculinities in Sixteenth-Century “Erudite Comedy”
MOTHERHOOD AND THE IDENTITY FORMATION OF MASCULINITIES IN SIXTEENTH-CENTURY “ERUDITE COMEDY” A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Yael Manes February 2010 © 2010 Yael Manes MOTHERHOOD AND THE IDENTITY FORMATION OF MASCULINITIES IN SIXTEENTH CENTURY “ERUDITE COMEDY” Yael Manes, Ph. D. Cornell University 2010 The commedia erudita (erudite comedy) is a five-act drama that is written in the vernacular and regulated by unity of time and place. It was conceived and reached its mature form in Italy during the first half of the sixteenth century. Erudite comedies were composed for audiences from the elite classes and performed in private settings. Since the plots dramatized the lives of contemporary, sixteenth-century urban dwellers, this genre of drama reflects many of the issues that preoccupied the elite classes during this period: the art of identity formation, the nature, attributes, and legitimacy of those who claim the authority to rule, and the relationship between power and gender, age, and experience. The dissertation analyzes five comedies: Ludovico Ariosto’s I suppositi (1509), Niccolò Machiavelli’s Mandragola (1518) and Clizia (1525), Antonio Landi’s Il commodo (1539), and Giovan Maria Cecchi’s La stiava (1546). These plays represent and critique idealized visions of patriarchal masculinity among the elite of Renaissance Italy through an engagement with the problems that maternity and mothering present to patriarchal ideology and identity. By unpacking the ways in which patriarchal masculinity is articulated in response to the challenges of maternal femininity, this dissertation gives a rich account of the gender order and the ways in which it was being problematized during the Italian Renaissance. -
Filed for Intro on 02/16/2006 HOUSE BILL 2909 by Strader an ACT To
Filed for intro on 02/16/2006 HOUSE BILL 2909 By Strader AN ACT to amend Tennessee Code Annotated, Title 39, Chapter 17, Part 4, relative to certain hallucinogenic plants. BE IT ENACTED BY THE GENERAL ASSEMBLY OF THE STATE OF TENNESSEE: SECTION 1. Tennessee Code Annotated, Title 39, Chapter 17, Part 4, is amended by adding the following as a new section: § 39-17-452. (a) As used in this section: (1) "Distribute" means to sell, lease, rent, barter, trade, furnish, supply, or otherwise transfer in exchange for anything of value a material, compound, mixture, or preparation intended for human consumption which contains a hallucinogenic plant. (2) "Hallucinogenic plant" means any part or portion of any of the following: (A) Brugmansia arborea. (B) Amanita muscaria. (C) Conocybe spp. (D) Panaeolus spp. (E) Psilocybe spp. (F) Stropharia spp. (G) Vinca rosea. (H) Ipomoea violacea. (I) Datura spp. HB2909 01337129 -1- (J) Pancreatium trianthum. (K) Kaempferia galanga. (L) Olmedioperebea sclerophylla. (M) Mesembryanthemum spp. (N) Virola spp. (O) Anadenanthera peregrina. (P) Anadenanthera colubrina. (Q) Erythina spp. (R) Genista canariensis. (S) Mimosa hostilis. (T) Rhynchosia spp. (U) Sophora secundiflora. (V) Peganum harmala. (W) Banisteriopsis spp. (X) Tetrapteris methystica. (Y) Heimia salicfolia. (Z) Tabernanthe iboga. (AA) Prestonia amazonica. (BB) Lagoehilus inebrians. (CC) Rivea corymbosa. (DD) Salvia divinorum. (EE) Atropa belladonna. (FF) Hyoscyamus niger. (GG) Mandragora officinarum. (HH) Brunfelsia spp. - 2 - 01337129 (II) Methysticodendron amesianum. (JJ) Latua pubiflora. (KK) Calea Zacatechichi. (LL) Physalis subglabrata. (MM) Solanum carolinense. (3) "Homeopathic drug" means any drug labeled as being homeopathic which is listed in the Homeopathic Pharmacopeia of the United States, an addendum to it, or its supplements. -
Monographs on Datura Stramonium L
The School of Pharmaceutical and Biomedical Sciences Pokhara University, P. O. Box 427, Lekhnath, Kaski, NEPAL Monographs on Datura stramonium L Submitted By Bhakta Prasad Gaire Bachelor in Pharmaceutical Sciences (5th Batch) Roll No. 29/2005 [2008] [TYPE THE COMPANY ADDR ESS ] A Plant Monograph on Dhaturo (Datura stramonium L.) Prepared by Bhakta Prasad Gaire Roll No. 29/2005 Submitted to The School of Pharmaceutical and Biomedical Sciences Pokhara University, Dhungepatan-12, Lekhnath, Kaski, NEPAL 2008 ii PREFACE Datura was quite abundantly available in my village (Kuwakot-8, Syangja) since the days of my ancestors. Although it's medicinal uses were not so clear and established at that time, my uncle had a belief that when given along with Gaja, it'll cure diarrhea in cattle. But he was very particular of its use in man and was constantly reminding me not to take it, for it can cause madness. I, on the other hand was very curious and often used to wonder how it looks and what'll actually happen if I take it. This curiosity was also fuelled by other rumours floating around in the village, of the cases of mass hysteria which happened when people took Datura with Panchamrit and Haluwa during Shivaratri and Swasthani Puja. It was in 2052 B.S (I was in class 3 at that time) when an incident happened. One day I came earlier from school (around 2'0 clock), only to find nobody at home. The door was locked and I frantically searched for my mother and sister, but in vain. -
Comparative Biology of Seed Dormancy-Break and Germination in Convolvulaceae (Asterids, Solanales)
University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2008 COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) Kariyawasam Marthinna Gamage Gehan Jayasuriya University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Jayasuriya, Kariyawasam Marthinna Gamage Gehan, "COMPARATIVE BIOLOGY OF SEED DORMANCY- BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES)" (2008). University of Kentucky Doctoral Dissertations. 639. https://uknowledge.uky.edu/gradschool_diss/639 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Kariyawasam Marthinna Gamage Gehan Jayasuriya Graduate School University of Kentucky 2008 COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) ABSRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Art and Sciences at the University of Kentucky By Kariyawasam Marthinna Gamage Gehan Jayasuriya Lexington, Kentucky Co-Directors: Dr. Jerry M. Baskin, Professor of Biology Dr. Carol C. Baskin, Professor of Biology and of Plant and Soil Sciences Lexington, Kentucky 2008 Copyright © Gehan Jayasuriya 2008 ABSTRACT OF DISSERTATION COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) The biology of seed dormancy and germination of 46 species representing 11 of the 12 tribes in Convolvulaceae were compared in laboratory (mostly), field and greenhouse experiments.