Comparative Biology of Seed Dormancy-Break and Germination in Convolvulaceae (Asterids, Solanales)

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Biology of Seed Dormancy-Break and Germination in Convolvulaceae (Asterids, Solanales) University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2008 COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) Kariyawasam Marthinna Gamage Gehan Jayasuriya University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Jayasuriya, Kariyawasam Marthinna Gamage Gehan, "COMPARATIVE BIOLOGY OF SEED DORMANCY- BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES)" (2008). University of Kentucky Doctoral Dissertations. 639. https://uknowledge.uky.edu/gradschool_diss/639 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Kariyawasam Marthinna Gamage Gehan Jayasuriya Graduate School University of Kentucky 2008 COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) ABSRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Art and Sciences at the University of Kentucky By Kariyawasam Marthinna Gamage Gehan Jayasuriya Lexington, Kentucky Co-Directors: Dr. Jerry M. Baskin, Professor of Biology Dr. Carol C. Baskin, Professor of Biology and of Plant and Soil Sciences Lexington, Kentucky 2008 Copyright © Gehan Jayasuriya 2008 ABSTRACT OF DISSERTATION COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) The biology of seed dormancy and germination of 46 species representing 11 of the 12 tribes in Convolvulaceae were compared in laboratory (mostly), field and greenhouse experiments. Seeds were tested for kind of dormancy and storage behavior; artificial or simulated natural treatments were applied to break physical dormancy (PY); the initial route of water entry (“water gap”) into seeds was identified; the morpho- anatomy of the water gap was compared in seeds of 17 species; ontogenetical differences between water gap and seed coat away from the hilum were described in Ipomoea lacunosa seeds; cycling of sensitivity to dormancy break was elucidated in seeds of I. lacunosa, I. hederacea, Cuscuta australis and Jaquemontia ovalifolia; and mechanism of opening of the water gap was determined for seeds of I. lacunosa and of I hederacea. Seeds of only three of the 46 species were nondormant. Two of these were recalcitrant (Maripa panamensis and Erycibe henryi), and the other one was orthodox (Bonamia menziesii). Seeds of the other 43 species were orthodox and had PY except those of Cuscuta europea, which also had physiological dormancy (PD) i.e. combinational dormancy (PY + PD). Two bulges adjacent to the micropyle were identified as the water gap in all seeds with PY except those of Cuscuta, in which the hilar fissure is the water gap. Anatomy of the bulges (water gap) adjacent to the micropyle differs from that of seed coat away from the bulges. A different sequence and phase of anticlinal and periclinal cell divisions during development created weak transitional zones between bulge - hilum and bulge - seed coat away from hilum. Water vapor pressure changes below the bulges caused formation of the opening(s) in water gap. Seeds of I. lacunosa I. hederacea, C. australis and J. ovalifolia cycle between sensitive and insensitive states to dormancy break, but not between PY and nondormancy. Seed dormancy and storage characteristics and anatomy and morphology of dormancy of seeds of Convolvulaceae closely follow the molecular phylogeny of the family. I suggest that PY in seeds of subfamily Convolvuloideae evolved from nondormant recalcitrant seeds of an ancestor closely related to Erycibeae. KEY WORDS, Convolvulaceae, phylogeny of seed dormancy, physical dormancy, seed dormancy breaking mechanism, sensitivity cycling to dormancy break Gehan Jayasuriya July 23, 2008 COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) By Kariyawasam Marthinna Gamage Gehan Jayasuriya Jerry M. Baskin Co-Director of Dissertation Carol C. Baskin Co-Director of Dissertation Brian C. Rymond Director of Graduate Studies July 23, 2008 RULES FOR THE USE OF DISSERTATIONS Unpublished dissertations submitted for the Doctor's degree and deposited in the University of Kentucky Library are as a rule open for inspection, but are to be used only with due regard to the rights of the authors. Bibliographical references may be noted, but quotations or summaries of parts may be published only with the permission of the author, and with the usual scholarly acknowledgments. Extensive copying or publication of the dissertation in whole or in part also requires the consent of the Dean of the Graduate School of the University of Kentucky. A library that borrows this dissertation for use by its patrons is expected to secure the signature of each user. Name Date _______________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ DISSERTATION Kariyawasam Marthinna Gamage Gehan Jayasuriya The Graduate School University of Kentucky 2008 COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) DISSERTATION A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Art and Sciences at the University of Kentucky By Kariyawasam Marthinna Gamage Gehan Jayasuriya Lexington, Kentucky Co-Directors: Dr. Jerry M. Baskin, Professor of Biology Dr. Carol C. Baskin, Professor of Biology and of Plant and Soil Sciences Lexington, Kentucky Copyright© Gehan Jayasuriya 2008 ACKNOWLEDGEMENTS The following dissertation, while an individual work, benefited from the insights and direction of several people. First and foremost, I thank my co-major Professors, Jerry Baskin and Carol Baskin, for their guidance, encouragement and friendship throughout my graduate studies. They recognized and developed my interest and ability to do research in biology, and their influence will be a light for the rest of my career as a scientist. I thank Prof. Robert L. Geneve and Prof. Dennis M. TeKrony for serving on my graduate committee and for their assistance and guidance in my research. Especially without the assistance of Prof. Robert L. Geneve, some parts of my research would not have been possible. I thank Prof. Willam W. Witt for representing the UK Graduate School at my dissertation defense, and Drs. Bruce Downie and Sharyn Perry for allowing me to use their laboratory facilities. Mr. Henry H. Southgate and Mr. Larry Rice provided valuable assistance with SEM and Mrs. Sharon T. Kester with sectioning and staining. I thank Dr. John Dickie and the Millennium Seed Bank Project, Royal Botanical Gardens, UK; Mr. Alvin Yoshinaga; Dr. Ching-Te Chein; Dr. Shun-Ying Chen; Mr. Carl Weekley; Dr. Jeff Walck; Dr. Siti Nur Hidiati; Dr. Julissa Roncal, Mr. John Geiger; and Mrs. Adriana Sautau and the Smithsonian Tropical Research Institute for collecting and sending me seeds for experiments reported in my dissertation. I thank Prof. NKB Adikaram and Dr. GAD Perera for allowing me to use the experimental facilities in the Department of Botany, University of Peradeniya, Sri Lanka, during my summer vacation in 2006. I thank the editors of Annals of Botany for permitting me to use data and figures, from papers I published in Annals of Botany, in my dissertation and the editors of Systematic Botany and Botanical Journal of the Linnean Society for permitting me to use, in modified from, figures published in their journals that helped to improve the quality of my dissertation. I thank Beverly Taulbee and other administrative staff members in the UK Biology Department for taking care of my administrative needs during my whole stay in the USA. I was fortunate to have a supportive and helpful fellow graduate student Miss. ii Xiaoxia Qu in my lab. This project would not have been possible without funding from the UK Graduate School and Biology Department, including a teaching assistantship and Ribble research funds. I received equally important assistance from my family and my friends. My wife, Isuru M. Gunathilaka, provided on-going support throughout the dissertation process. She has taken care of our son and my parents in Sri Lanka and given me inspiration during my stay in the USA. My father and mother, Mr. S.A. Jayasuriya & Mrs. A.P.B.I. Jayasuriya, instilled in me, from an early age, the desire and skills to obtain the Ph.D. iii TABLE OF CONTENTS Acknowledgements………………………………………………………………….…...ii
Recommended publications
  • Macrophyte Structure in Lotic-Lentic Habitats from Brazilian Pantanal
    Oecologia Australis 16(4): 782-796, Dezembro 2012 http://dx.doi.org/10.4257/oeco.2012.1604.05 MACROPHYTE STRUCTURE IN LOTIC-LENTIC HABITATS FROM BRAZILIAN PANTANAL Gisele Catian2*, Flávia Maria Leme2, Augusto Francener2, Fábia Silva de Carvalho2, Vitor Simão Galletti3, Arnildo Pott4, Vali Joana Pott4, Edna Scremin-Dias4 & Geraldo Alves Damasceno-Junior4 2Master, Program in Plant Biology, Federal University of Mato Grosso do Sul, Center for Biological Sciences and Health, Biology Department. Cidade Universitária, s/no – Caixa Postal: 549 – CEP: 79070-900, Campo Grande, MS, Brazil. 3Master, Program in Ecology and Conservation, Federal University of Mato Grosso do Sul, Center for Biological Sciences and Health, Biology Department. Cidade Universitária, s/no – Caixa Postal: 549 – CEP: 79070-900, Campo Grande, MS, Brazil. 4Lecturer, Program in Plant Biology, Federal University of Mato Grosso do Sul, Center for Biological Sciences and Health, Biology Department. Cidade Universitária, s/no – Caixa Postal: 549 – CEP: 79070-900, Campo Grande, MS, Brazil. E-mail: [email protected]*, [email protected], [email protected], [email protected], [email protected], arnildo. [email protected], [email protected], [email protected], [email protected] ABSTRACT The goal of this study was to compare the vegetation structure of macrophytes in an anabranch-lake system. Sampling was carried out at flood in three types of aquatic vegetation, (wild-rice, floating meadow and Polygonum bank) in anabranch Bonfim (lotic) and in lake Mandioré (lentic) in plots along transects, to estimate the percent coverage and record life forms of species. We collected 59 species in 50 genera and 28 families.
    [Show full text]
  • Appendix Color Plates of Solanales Species
    Appendix Color Plates of Solanales Species The first half of the color plates (Plates 1–8) shows a selection of phytochemically prominent solanaceous species, the second half (Plates 9–16) a selection of convol- vulaceous counterparts. The scientific name of the species in bold (for authorities see text and tables) may be followed (in brackets) by a frequently used though invalid synonym and/or a common name if existent. The next information refers to the habitus, origin/natural distribution, and – if applicable – cultivation. If more than one photograph is shown for a certain species there will be explanations for each of them. Finally, section numbers of the phytochemical Chapters 3–8 are given, where the respective species are discussed. The individually combined occurrence of sec- ondary metabolites from different structural classes characterizes every species. However, it has to be remembered that a small number of citations does not neces- sarily indicate a poorer secondary metabolism in a respective species compared with others; this may just be due to less studies being carried out. Solanaceae Plate 1a Anthocercis littorea (yellow tailflower): erect or rarely sprawling shrub (to 3 m); W- and SW-Australia; Sects. 3.1 / 3.4 Plate 1b, c Atropa belladonna (deadly nightshade): erect herbaceous perennial plant (to 1.5 m); Europe to central Asia (naturalized: N-USA; cultivated as a medicinal plant); b fruiting twig; c flowers, unripe (green) and ripe (black) berries; Sects. 3.1 / 3.3.2 / 3.4 / 3.5 / 6.5.2 / 7.5.1 / 7.7.2 / 7.7.4.3 Plate 1d Brugmansia versicolor (angel’s trumpet): shrub or small tree (to 5 m); tropical parts of Ecuador west of the Andes (cultivated as an ornamental in tropical and subtropical regions); Sect.
    [Show full text]
  • Medicinal Uses and Biological Activities of Argyreia Speciosa
    Indian Journal of Natural Products and Resources Vol. 2(3), September 2011, pp. 286-291 Medicinal uses and biological activities of Argyreia speciosa Sweet (Hawaiian Baby Woodrose) An Overview Ancy Joseph*, Samuel Mathew, Baby P Skaria and E C Sheeja Aromatic and Medicinal Plants Research Station (Kerala Agricultural University), Odakkali, Asamannoor Post-683 549 Ernakulam District, Kerala, India Received 2 June 2010; Accepted 16 November 2010 Argyreia speciosa Sweet (Family Convolvulaceae) is an important ‘rasayana’ herb used extensively as an adaptogen in the Ayurvedic system of medicine. It is commonly known as Hawaiian Baby Woodrose, Elephant creeper or Woolly morning glow in English and in Sanskrit, it is called as Vridhadaraka meaning ‘anti-aging’. It is a large climber growing throughout India. It has been assigned various medicinal properties by Ayurvedic Materia Medica. The root is regarded as an alternative tonic and used in cases of rheumatism and neurological disorders. A wide range of phytochemicals has been isolated from the plant and possesses various traditional and tribal uses for cure of human ailments. Pharmacological activities such as anti-oxidant, anti-inflammatory, anti-rheumatic, immunomodulatory, adaptogenic and hepatoprotective have also been reported. Adverse side effects have made the use of many modern medicines limited and it is worthwhile to explore the possibility of this drug for the treatment of liver, rhueumatic and neurological complaints. This article reviews studies on medicinal uses on this important herb. Keywords: Argyreia speciosa, Argyreia nervosa, Antimicrobial, Antioxidant, Adaptogenic, Elephant creeper, Hawaiian Baby Woodrose; Immunomodulation, Woolly morning glow, Vridhadaraka. IPC code; Int. cl. (2011.01) A61K 36/39 Introduction with white pubescence.
    [Show full text]
  • Nightshade”—A Hierarchical Classification Approach to T Identification of Hallucinogenic Solanaceae Spp
    Talanta 204 (2019) 739–746 Contents lists available at ScienceDirect Talanta journal homepage: www.elsevier.com/locate/talanta Call it a “nightshade”—A hierarchical classification approach to T identification of hallucinogenic Solanaceae spp. using DART-HRMS-derived chemical signatures ∗ Samira Beyramysoltan, Nana-Hawwa Abdul-Rahman, Rabi A. Musah Department of Chemistry, State University of New York at Albany, 1400 Washington Ave, Albany, NY, 12222, USA ARTICLE INFO ABSTRACT Keywords: Plants that produce atropine and scopolamine fall under several genera within the nightshade family. Both Hierarchical classification atropine and scopolamine are used clinically, but they are also important in a forensics context because they are Psychoactive plants abused recreationally for their psychoactive properties. The accurate species attribution of these plants, which Seed species identifiction are related taxonomically, and which all contain the same characteristic biomarkers, is a challenging problem in Metabolome profiling both forensics and horticulture, as the plants are not only mind-altering, but are also important in landscaping as Direct analysis in real time-mass spectrometry ornamentals. Ambient ionization mass spectrometry in combination with a hierarchical classification workflow Chemometrics is shown to enable species identification of these plants. The hierarchical classification simplifies the classifi- cation problem to primarily consider the subset of models that account for the hierarchy taxonomy, instead of having it be based on discrimination between species using a single flat classification model. Accordingly, the seeds of 24 nightshade plant species spanning 5 genera (i.e. Atropa, Brugmansia, Datura, Hyocyamus and Mandragora), were analyzed by direct analysis in real time-high resolution mass spectrometry (DART-HRMS) with minimal sample preparation required.
    [Show full text]
  • Typification and Nomenclature of the Convolvulaceae in N. L. Burman's Flora Indica, with an Introduction to the Burman Collect
    Candollea 60(2): 445-467 (2005) Typification and nomenclature of the Convolvulaceae in N. L. Burman’s Flora Indica, with an introduction to the Burman collection at Geneva GEORGES W. STAPLES & FERNAND JACQUEMOUD ABSTRACT STAPLES, G. W. & F. JACQUEMOUD (2005). Typification and nomenclature of the Convol- vulaceae in N. L. Burman’s Flora Indica, with an introduction to the Burman collection at Geneva. Candollea 60: 445-467. In English, English and French abstracts. The history and current status of the Burman Herbarium conserved at Geneva (G) are reviewed. Lectotypifications are made for seven Burman names in Convolvulaceae, Convolvulus angularis Burm. f., C. mollis Burm. f., C. nervosus Burm. f., C. uniflorus Burm. f., C. vitifolius Burm. f., Evolvulus emarginatus Burm. f., Ipomoea paniculata Burm. f., and an eighth name is neotypified, Porana volubilis Burm. f. A new lectotype for Convolvulus gemellus Burm. f. is selected. The discovery of the heretofore missing holotype of Ipomoea sagittifolia Burm. f. requires a name change for the widespread Old World species, I. sepiaria Roxb., which has recently undergone several name changes, latterly to I. marginata (Desr.) Manitz. RÉSUMÉ STAPLES, G. W. & F. JACQUEMOUD (2005). Typification et nomenclature des Convolvulaceae dans la Flora Indica de N. L. Burman, précédées d’une introduction aux collections Burman déposées à Genève. Candollea 60: 445-467. En anglais, résumés anglais et français. Les auteurs présentent l’histoire et la situation actuelle de l’herbier Burman conservé à Genève (G). Sept noms de la famille des Convolvulaceae publiés par Burman sont lectotypifiés, Convolvulus angularis Burm. f., C. mollis Burm. f., C.
    [Show full text]
  • Aniseia Martinicensis (Jacq.) Choisy
    Aniseia martinicensis (Jacq.) Choisy Identifiants : 2497/animar Association du Potager de mes/nos Rêves (https://lepotager-demesreves.fr) Fiche réalisée par Patrick Le Ménahèze Dernière modification le 05/10/2021 Classification phylogénétique : Clade : Angiospermes ; Clade : Dicotylédones vraies ; Clade : Astéridées ; Clade : Lamiidées ; Ordre : Solanales ; Famille : Convolvulaceae ; Classification/taxinomie traditionnelle : Règne : Plantae ; Sous-règne : Tracheobionta ; Division : Magnoliophyta ; Classe : Magnoliopsida ; Ordre : Solanales ; Famille : Convolvulaceae ; Genre : Aniseia ; Synonymes : Aniseia uniflora Choisy, Convolvulus martinicensis Jacq, Convolvulus uniflorus Burm.f, Ipomoea uniflora Roem. & Schult, Ipomoea uniflora Choisy, Ipomoea martinicensis G.F.W. Meyer, et d'autres ; Nom(s) anglais, local(aux) et/ou international(aux) : Ulan puteh, , Anndat trakuet, Lidah patong, Lotombo, Venthiruthali, Vor andatt trokourt ; Rapport de consommation et comestibilité/consommabilité inférée (partie(s) utilisable(s) et usage(s) alimentaire(s) correspondant(s)) : Parties comestibles : feuilles, légumes{{{0(+x) (traduction automatique) | Original : Leaves, Vegetable{{{0(+x) La plante entière est consommée en période de pénurie alimentaire. Les feuilles sont utilisées comme légume Partie testée : feuilles{{{0(+x) (traduction automatique) Original : Leaves{{{0(+x) Taux d'humidité Énergie (kj) Énergie (kcal) Protéines (g) Pro- Vitamines C (mg) Fer (mg) Zinc (mg) vitamines A (µg) 0 0 0 0 0 0 0 néant, inconnus ou indéterminés. Illustration(s) (photographie(s) et/ou dessin(s)): Page 1/3 Autres infos : dont infos de "FOOD PLANTS INTERNATIONAL" : Statut : C'est un aliment de famine{{{0(+x) (traduction automatique). Original : It is a famine food{{{0(+x). Distribution : Une plante tropicale. Cela peut être dans les marécages ou les forêts ouvertes. Il pousse près du niveau de la mer. C'est surtout près de la côte{{{0(+x) (traduction automatique).
    [Show full text]
  • Las Especies Del Género Alyogyne Alef. (Malvaceae, Malvoideae) Cultivadas En España
    Las especies del género Alyogyne Alef. (Malvaceae, Malvoideae) cultivadas en España © 2008-2019 José Manuel Sánchez de Lorenzo-Cáceres www.arbolesornamentales.es El género Alyogyne Alef. comprende arbustos perennes, con indumento denso o de pelos esparcidos, con las hojas alternas, pecioladas, enteras, palmatilobadas o muy divididas, con estípulas diminutas y caedizas. Las flores son solitarias, axilares, sobre pedicelos largos y articulados. El epicáliz posee 4-10(-12) segmentos unidos en la base; el cáliz consta de 5 sépalos, más largos que el epicáliz, y la corola es más o menos acampanada, regular, formada por 5 pétalos obovados de color blan- co, rosa, lila o púrpura, adnatos a la base de la columna estaminal, cubiertos de pelos estrellados externamente. El androceo posee numerosos estambres (50-100) dispuestos en verticilos, con los filamentos unidos formando una columna que rodea al estilo, y las anteras uniloculares, dehiscentes por suturas longitudinales. El gineceo posee un ovario súpero, con 3-5 lóculos, cada uno de los cuales encierra 3-10 rudimentos seminales. Los estilos están unidos casi hasta el ápice, dividiéndose finalmente en 5 estigmas. El fruto es una cápsula dehis- cente por 3-5 valvas, conteniendo numerosas semillas (3-50) de pequeño tamaño, reniformes o globosas, glabras o pelosas. El nombre procede del griego alytos = unido y gyne = mujer, en alu- sión a los estilos unidos. Según Lewton (1915), el nombre debería ser Allogyne, del griego állos = otro, diferente y gyne = mujer, hembra, en alusión a la diferencia con Hibiscus en cuanto a los estilos. Realmente esta es la gran diferencia con el género Hibiscus, donde los estilos se separan por debajo de los estigmas, mientras que en Alyogyne están unidos justo hasta llegar a los estig- mas, momento en que se dividen.
    [Show full text]
  • Loranthaceae1
    Flora of South Australia 5th Edition | Edited by Jürgen Kellermann LORANTHACEAE1 P.J. Lang2 & B.A. Barlow3 Aerial hemi-parasitic shrubs on branches of woody plants attached by haustoria; leaves mostly opposite, entire. Inflorescence terminal or lateral; flowers bisexual; calyx reduced to an entire, lobed or toothed limb at the apex of the ovary, without vascular bundles; corolla free or fused, regular or slightly zygomorphic, 4–6-merous, valvate; stamens as many as and opposite the petals, epipetalous, anthers 2- or 4-locular, mostly basifixed, immobile, introrse and continuous with the filament but sometimes dorsifixed and then usually versatile, opening by longitudinal slits; pollen trilobate; ovary inferior, without differentiated locules or ovules. Fruit berry-like; seed single, surrounded by a copious viscous layer. Mistletoes. 73 genera and around 950 species widely distributed in the tropics and south temperate regions with a few species in temperate Asia and Europe. Australia has 12 genera (6 endemic) and 75 species. Reference: Barlow (1966, 1984, 1996), Nickrent et al. (2010), Watson (2011). 1. Petals free 2. Anthers basifixed, immobile, introrse; inflorescence axillary 3. Inflorescence not subtended by enlarged bracts more than 20 mm long ....................................... 1. Amyema 3: Inflorescence subtended by enlarged bracts more than 20 mm long which enclose the buds prior to anthesis ......................................................................................................................... 2. Diplatia 2: Anthers dorsifixed, versatile; inflorescence terminal ........................................................................... 4. Muellerina 1: Petals united into a curved tube, more deeply divided on the concave side ................................................ 3. Lysiana 1. AMYEMA Tiegh. Bull. Soc. Bot. France 41: 499 (1894). (Greek a-, negative; myeo, I instruct, initiate; referring to the genus being not previously recognised; cf.
    [Show full text]
  • 27April12acquatic Plants
    International Plant Protection Convention Protecting the world’s plant resources from pests 01 2012 ENG Aquatic plants their uses and risks Implementation Review and Support System Support and Review Implementation A review of the global status of aquatic plants Aquatic plants their uses and risks A review of the global status of aquatic plants Ryan M. Wersal, Ph.D. & John D. Madsen, Ph.D. i The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of speciic companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.All rights reserved. FAO encourages reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to [email protected] or to the Chief, Publishing Policy and Support Branch, Ofice of Knowledge Exchange,
    [Show full text]
  • Alyogyne Huegelii (Endl.) SCORE: -2.0 RATING: Low Risk Fryxell
    TAXON: Alyogyne huegelii (Endl.) SCORE: -2.0 RATING: Low Risk Fryxell Taxon: Alyogyne huegelii (Endl.) Fryxell Family: Malvaceae Common Name(s): lilac hibiscus Synonym(s): Hibiscus huegelii var. wrayae (Lindl.) HibiscusBenth. wrayae Lindl. Assessor: Chuck Chimera Status: Assessor Approved End Date: 3 May 2018 WRA Score: -2.0 Designation: L Rating: Low Risk Keywords: Shrub, Ornamental, Unarmed, Non-Toxic, Insect-Pollinated Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) Intermediate tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 n Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 n 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) n 401 Produces
    [Show full text]
  • Newsletter No
    Newsletter No. 167 June 2016 Price: $5.00 AUSTRALASIAN SYSTEMATIC BOTANY SOCIETY INCORPORATED Council President Vice President Darren Crayn Daniel Murphy Australian Tropical Herbarium (ATH) Royal Botanic Gardens Victoria James Cook University, Cairns Campus Birdwood Avenue PO Box 6811, Cairns Qld 4870 Melbourne, Vic. 3004 Australia Australia Tel: (+61)/(0)7 4232 1859 Tel: (+61)/(0) 3 9252 2377 Email: [email protected] Email: [email protected] Secretary Treasurer Leon Perrie John Clarkson Museum of New Zealand Te Papa Tongarewa Queensland Parks and Wildlife Service PO Box 467, Wellington 6011 PO Box 975, Atherton Qld 4883 New Zealand Australia Tel: (+64)/(0) 4 381 7261 Tel: (+61)/(0) 7 4091 8170 Email: [email protected] Mobile: (+61)/(0) 437 732 487 Councillor Email: [email protected] Jennifer Tate Councillor Institute of Fundamental Sciences Mike Bayly Massey University School of Botany Private Bag 11222, Palmerston North 4442 University of Melbourne, Vic. 3010 New Zealand Australia Tel: (+64)/(0) 6 356- 099 ext. 84718 Tel: (+61)/(0) 3 8344 5055 Email: [email protected] Email: [email protected] Other constitutional bodies Hansjörg Eichler Research Committee Affiliate Society David Glenny Papua New Guinea Botanical Society Sarah Matthews Heidi Meudt Advisory Standing Committees Joanne Birch Financial Katharina Schulte Patrick Brownsey Murray Henwood David Cantrill Chair: Dan Murphy, Vice President Bob Hill Grant application closing dates Ad hoc adviser to Committee: Bruce Evans Hansjörg Eichler Research
    [Show full text]
  • DRAFT 25/10/90; Plant List Updated Oct. 1992; Notes Added June 2021
    DRAFT 25/10/90; plant list updated Oct. 1992; notes added June 2021. PRELIMINARY REPORT ON THE CONSERVATION VALUES OF OPEN COUNTRY PADDOCK, BOOLARDY STATION Allan H. Burbidge and J.K. Rolfe INTRODUCTION Boolardy Station is situated about 150 km north of Yalgoo and 140 km west-north-west of Cue, in the Shire of Murchison, Western Australia. Open Country Paddock (about 16 000 ha) is in the south-east corner of the station, at 27o05'S, 116o50'E. The most prominent named feature is Coolamooka Hill, near the eastern boundary of the paddock. There are no conservation reserves in this region, although there are some small reserves set aside for various other purposes. Previous biological data for the station consist of broad scale vegetation mapping and land system mapping. Beard (1976) mapped the entire Murchison region at 1: 1 000 000. The Open Country Paddock area was mapped as supporting mulga woodlands and shrublands. More detailed mapping of land system units for rangeland assessment purposes has been carried out more recently at a scale of 1: 40 000 (Payne and Curry in prep.). Seven land systems were identified in open Country Paddock (Fig. 1). Apart from these studies, no detailed biological survey work appears to have been done in the area. Open Country Paddock has been only lightly grazed by domestic stock because of the presence of Kite-leaf Poison (Gastrolobium laytonii) and a lack of fresh water. Because of this and the generally good condition of the paddock and presence of a wide range of plant species, P.J.
    [Show full text]