Tropinone Synthesis Via an Atypical Polyketide Synthase and P450-Mediated Cyclization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Iodine(V) Reagents in Organic Synthesis. Part 4. O-Iodoxybenzoic Acid As a Chemospecific Tool for Single Electron Transfer-Based Oxidation Processes K
Published on Web 02/16/2002 Iodine(V) Reagents in Organic Synthesis. Part 4. o-Iodoxybenzoic Acid as a Chemospecific Tool for Single Electron Transfer-Based Oxidation Processes K. C. Nicolaou,* T. Montagnon, P. S. Baran, and Y.-L. Zhong Contribution from the Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and Department of Chemistry and Biochemistry, UniVersity of California, San Diego, 9500 Gilman DriVe, La Jolla, California 92093 Received September 4, 2001 Abstract: o-Iodoxybenzoic acid (IBX), a readily available hypervalent iodine(V) reagent, was found to be highly effective in carrying out oxidations adjacent to carbonyl functionalities (to form R,â-unsaturated carbonyl compounds) and at benzylic and related carbon centers (to form conjugated aromatic carbonyl systems). Mechanistic investigations led to the conclusion that these new reactions are initiated by single electron transfer (SET) from the substrate to IBX to form a radical cation which reacts further to give the final products. Fine-tuning of the reaction conditions allowed remarkably selective transformations within multifunctional substrates, elevating the status of this reagent to that of a highly useful and chemoselective oxidant. Introduction In the preceding three papers,1-3 we have presented an array of useful transformations mediated by the iodine(V)-based reagents Dess-Martin periodinane (DMP), o-iodoxybenzoic acid (IBX), and Ac-IBX (see Figure 1). In the current paper, we expand on this theme with a description of a powerful new methodology which employs IBX for the facile and selective oxidation adjacent to carbonyl and aromatic moieties. -
Prof. J. Masson Gulland, F.R.S
702 NATURE November 22, 1947 Vol. 160 The general discussion was opened by Dr. W. K. Slater. He emphasized that the additional production OBITUARIES of food from sources in Great Britain means increased supplies of materials, for example, for additional Prof. J. Masson Gulland, F.R.S. factories and plant for extracting sugar-beet and for IT was with a sense of severe personal loss that housing poultry. The training of the human element his many friends learned of the untimely death of in more efficient methods of cultivation and of Prof. J. M. Gulland, who was a victim of the railway management of stock is likely to be a formidable accident at Goswick on October 26. He was a leading task. He asked whether a true appreciation of the figure in the chemical world, a pioneer worker in immediate future position in Great Britain is rather several important fields of organic chemistry and that the number of calories per person and the biochemistry, and a man of outstanding personal nutritional value of the average diet generally are charm. much more likely to fall than to rise ; and how far John Masson Gulland was born in Edinburgh in this fall could go without acute sequelre. 1898 and was the only son of the late Prof. G. Lovell Dr. N. C. Wright considered that a matter of Gulland, professor of medicine in the University of immediate importance is the prevention of wastage, Edinburgh. Gulland was much devoted to his native from whatever cause, of food already produced. We land, and above all to his native city, which ho must find out, for example, exactly what happens to frequently visited. -
Process for Producing Optically Active Tropinone Monocarboxylic Acid Derivative
Europäisches Patentamt *EP001118674A1* (19) European Patent Office Office européen des brevets (11) EP 1 118 674 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC (43) Date of publication: (51) Int Cl.7: C12P 17/10 25.07.2001 Bulletin 2001/30 (86) International application number: (21) Application number: 99929794.8 PCT/JP99/03754 (22) Date of filing: 12.07.1999 (87) International publication number: WO 00/18946 (06.04.2000 Gazette 2000/14) (84) Designated Contracting States: • NAKAMURA, Soichi, Nihon Medi-physics K. K. AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU Sodegaura-shi, Chiba 299-0241 (JP) MC NL PT SE • NAKAMURA, Daisaku Ichihara-shi, Chiba 299-0115 (JP) (30) Priority: 30.09.1998 JP 27786898 (74) Representative: Keen, Celia Mary (71) Applicant: Nihon Medi-Physics Co., Ltd. J.A. Kemp & Co. Nishinomiya-shi, Hyogo 662-0918 (JP) 14 South Square Gray’s Inn (72) Inventors: London WC1R 5JJ (GB) • NODE, Manabu Hirakata-shi, Osaka 573-1118 (JP) (54) PROCESS FOR PRODUCING OPTICALLY ACTIVE TROPINONE MONOCARBOXYLIC ACID DERIVATIVE (57) An optically active tropinonemonocarboxylic tained from natural cocaine, it was proved that the ob- acid ester derivative useful as an intermediate for syn- tained optically active tropinonemonocarboxylic acid es- thesis of optically active tropane derivatives was ob- ter derivative had the same absolute configuration as tained by reacting succindialdehyde with an organic that of natural cocaine. The yield of the optically active amine and acetonedicarboxylic acid ester to obtain a tropinonemonocarboxylic acid ester derivative from the tropinonedicarboxylic acid ester derivative, and then asymmetric dealkoxycarbonylation was 30 to 50 mol%, subjecting this derivative to enzyme-catalyzed asym- and its optical purity was 70 to 97%ee. -
Enzyme DHRS7
Toward the identification of a function of the “orphan” enzyme DHRS7 Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Selene Araya, aus Lugano, Tessin Basel, 2018 Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel edoc.unibas.ch Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von Prof. Dr. Alex Odermatt (Fakultätsverantwortlicher) und Prof. Dr. Michael Arand (Korreferent) Basel, den 26.6.2018 ________________________ Dekan Prof. Dr. Martin Spiess I. List of Abbreviations 3α/βAdiol 3α/β-Androstanediol (5α-Androstane-3α/β,17β-diol) 3α/βHSD 3α/β-hydroxysteroid dehydrogenase 17β-HSD 17β-Hydroxysteroid Dehydrogenase 17αOHProg 17α-Hydroxyprogesterone 20α/βOHProg 20α/β-Hydroxyprogesterone 17α,20α/βdiOHProg 20α/βdihydroxyprogesterone ADT Androgen deprivation therapy ANOVA Analysis of variance AR Androgen Receptor AKR Aldo-Keto Reductase ATCC American Type Culture Collection CAM Cell Adhesion Molecule CYP Cytochrome P450 CBR1 Carbonyl reductase 1 CRPC Castration resistant prostate cancer Ct-value Cycle threshold-value DHRS7 (B/C) Dehydrogenase/Reductase Short Chain Dehydrogenase Family Member 7 (B/C) DHEA Dehydroepiandrosterone DHP Dehydroprogesterone DHT 5α-Dihydrotestosterone DMEM Dulbecco's Modified Eagle's Medium DMSO Dimethyl Sulfoxide DTT Dithiothreitol E1 Estrone E2 Estradiol ECM Extracellular Membrane EDTA Ethylenediaminetetraacetic acid EMT Epithelial-mesenchymal transition ER Endoplasmic Reticulum ERα/β Estrogen Receptor α/β FBS Fetal Bovine Serum 3 FDR False discovery rate FGF Fibroblast growth factor HEPES 4-(2-Hydroxyethyl)-1-Piperazineethanesulfonic Acid HMDB Human Metabolome Database HPLC High Performance Liquid Chromatography HSD Hydroxysteroid Dehydrogenase IC50 Half-Maximal Inhibitory Concentration LNCaP Lymph node carcinoma of the prostate mRNA Messenger Ribonucleic Acid n.d. -
December Cume
Organic Cumulative Exam December 1, 2001 The Chemistry of Professor Eric Sorenson (PLEASE WRITE ALL ANSWERS ON THE FRONT PAGE OF THE EXAM) Professor Sorenson often derives ideas for his synthetic approaches by speculating on the reactions that are involved in the biosynthesis of the target molecule. That is, his synthetic approaches are "biomimetic". Sorenson also noted that this is not a new approach in organic synthesis. He cited Sir Robert Robinson's synthesis of tropinone. Long, long ago, Robinson took heed of the suggestion that enzymatic Mannich reactions might be involved in the biosynthesis of some alkaloids and used a Mannich reaction to prepare tropinone. (J. Chem. Soc. 1917, 762) 1. Give the structure of tropinone and show a detailed mechanism for the reaction: Hint: Remember that intramolecular reactions are faster than analogous intermolecular reactions. O O H+ H + CH3NH2 + H O Tropinone Hint: formula C8H13NO 2. Some questions regarding Professor Sorenson's synthesis of (-)-hispidospermidin (shown below): J. Am. Chem. Soc. 2000, 122, 9556. Reagents and conditions: (a) 2,4,6-triisopropylbenzenesulfonyl hydrazide, HCl (1.2 equiv), CH3CN, room temperature, 75%. (b) n-BuLi (2.05 equiv), Et2O/THF, -78 to -20 C; then MgBr2·OEt2, -78 C; then 7, -78 C to room temperature, 55% from 8. (c) SEMCl, n-Bu4NI, i-Pr2NEt, CH2Cl2, 50 C, ca. 100%. (d) Dibal-H, toluene, -78 C, 93%. (e) (COCl)2, DMSO, CH2Cl2, -78 C; then i-Pr2NEt, -78 C to room temperature, ca. 100%. (f) AcOH, room temperature, 2 d, 83% or AcOH, 80 C, 3 h, 87%. (g) (COCl)2, DMSO, CH2Cl2, -78 C; then i-Pr2NEt, -78 C to room temperature, ca. -
Monographs on Datura Stramonium L
The School of Pharmaceutical and Biomedical Sciences Pokhara University, P. O. Box 427, Lekhnath, Kaski, NEPAL Monographs on Datura stramonium L Submitted By Bhakta Prasad Gaire Bachelor in Pharmaceutical Sciences (5th Batch) Roll No. 29/2005 [2008] [TYPE THE COMPANY ADDR ESS ] A Plant Monograph on Dhaturo (Datura stramonium L.) Prepared by Bhakta Prasad Gaire Roll No. 29/2005 Submitted to The School of Pharmaceutical and Biomedical Sciences Pokhara University, Dhungepatan-12, Lekhnath, Kaski, NEPAL 2008 ii PREFACE Datura was quite abundantly available in my village (Kuwakot-8, Syangja) since the days of my ancestors. Although it's medicinal uses were not so clear and established at that time, my uncle had a belief that when given along with Gaja, it'll cure diarrhea in cattle. But he was very particular of its use in man and was constantly reminding me not to take it, for it can cause madness. I, on the other hand was very curious and often used to wonder how it looks and what'll actually happen if I take it. This curiosity was also fuelled by other rumours floating around in the village, of the cases of mass hysteria which happened when people took Datura with Panchamrit and Haluwa during Shivaratri and Swasthani Puja. It was in 2052 B.S (I was in class 3 at that time) when an incident happened. One day I came earlier from school (around 2'0 clock), only to find nobody at home. The door was locked and I frantically searched for my mother and sister, but in vain. -
Tropane and Granatane Alkaloid Biosynthesis: a Systematic Analysis
Office of Biotechnology Publications Office of Biotechnology 11-11-2016 Tropane and Granatane Alkaloid Biosynthesis: A Systematic Analysis Neill Kim Texas Tech University Olga Estrada Texas Tech University Benjamin Chavez Texas Tech University Charles Stewart Jr. Iowa State University, [email protected] John C. D’Auria Texas Tech University Follow this and additional works at: https://lib.dr.iastate.edu/biotech_pubs Part of the Biochemical and Biomolecular Engineering Commons, and the Biotechnology Commons Recommended Citation Kim, Neill; Estrada, Olga; Chavez, Benjamin; Stewart, Charles Jr.; and D’Auria, John C., "Tropane and Granatane Alkaloid Biosynthesis: A Systematic Analysis" (2016). Office of Biotechnology Publications. 11. https://lib.dr.iastate.edu/biotech_pubs/11 This Article is brought to you for free and open access by the Office of Biotechnology at Iowa State University Digital Repository. It has been accepted for inclusion in Office of Biotechnology Publicationsy b an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Tropane and Granatane Alkaloid Biosynthesis: A Systematic Analysis Abstract The tropane and granatane alkaloids belong to the larger pyrroline and piperidine classes of plant alkaloids, respectively. Their core structures share common moieties and their scattered distribution among angiosperms suggest that their biosynthesis may share common ancestry in some orders, while they may be independently derived in others. Tropane and granatane alkaloid diversity arises from the myriad modifications occurring ot their core ring structures. Throughout much of human history, humans have cultivated tropane- and granatane-producing plants for their medicinal properties. This manuscript will discuss the diversity of their biological and ecological roles as well as what is known about the structural genes and enzymes responsible for their biosynthesis. -
Genus Mandragora (Solanaceae)
Bull. not. Hist. Mus. Land. (Bot.) 28(1): 17^0 Issued 25 June 1998 A revision of the genus Mandragora (Solanaceae) STEFAN UNGRICHT* SANDRA KNAPP AND JOHN R. PRESS Department of Botany, Tne~Natural History Museum, Cromwell Road, London SW7 5BD * Present address: Waldmatt 6, CH-5242 Birr, Switzerland CONTENTS Introduction 17 Mythological and medicinal history 18 Taxonomic history 18 Materials and methods 19 Material examined 19 Taxonomic concepts 20 Morphometrics 21 Cladistics 22 Results and discussion 22 Species delimitations using morphometric analyses 22 Phylogeny 26 Biogeography 26 Taxonomic treatment 29 Mandragora L 29 Key to the species of Mandragora 30 1. Mandragora officinarum L 30 2. Mandragora turcomanica Mizg 33 3. Mandragora caulescens C.B. Clarke 34 References 36 Exsiccatae 38 Taxonomic index ... 40 SYNOPSIS. The Old World genus Mandragora L. (Solanaceae) is revised for the first time across its entire geographical range. The introduction reviews the extensive mythological and medicinal as well as the taxonomic history of the genus. On morphological and phenological grounds three geographically widely disjunct species can be distinguished: the Mediterranean M. officinarum L., the narrowly local Turkmenian endemic M. turcomanica Mizg. and the Sino-Himalayan M caulescens C.B. Clarke. The generic monophyly of Mandragora L. as traditionally circumscribed is supported by cladistic analysis of morphological data. The ecological and historical phytogeography of the genus is discussed and alternative biogeographical scenarios are evaluated. Finally, a concise taxonomic treatment of the taxa is provided, based on the evidence of the preceeding analyses. INTRODUCTION The long history of mythology and medicinal use of the mandrake combined with the variable morphology and phenology have led to The nightshade family (Solanaceae) is a cosmopolitan but predomi- considerable confusion in the classification of Mandragora. -
Metabolic Enzyme/Protease
Inhibitors, Agonists, Screening Libraries www.MedChemExpress.com Metabolic Enzyme/Protease Metabolic pathways are enzyme-mediated biochemical reactions that lead to biosynthesis (anabolism) or breakdown (catabolism) of natural product small molecules within a cell or tissue. In each pathway, enzymes catalyze the conversion of substrates into structurally similar products. Metabolic processes typically transform small molecules, but also include macromolecular processes such as DNA repair and replication, and protein synthesis and degradation. Metabolism maintains the living state of the cells and the organism. Proteases are used throughout an organism for various metabolic processes. Proteases control a great variety of physiological processes that are critical for life, including the immune response, cell cycle, cell death, wound healing, food digestion, and protein and organelle recycling. On the basis of the type of the key amino acid in the active site of the protease and the mechanism of peptide bond cleavage, proteases can be classified into six groups: cysteine, serine, threonine, glutamic acid, aspartate proteases, as well as matrix metalloproteases. Proteases can not only activate proteins such as cytokines, or inactivate them such as numerous repair proteins during apoptosis, but also expose cryptic sites, such as occurs with β-secretase during amyloid precursor protein processing, shed various transmembrane proteins such as occurs with metalloproteases and cysteine proteases, or convert receptor agonists into antagonists and vice versa such as chemokine conversions carried out by metalloproteases, dipeptidyl peptidase IV and some cathepsins. In addition to the catalytic domains, a great number of proteases contain numerous additional domains or modules that substantially increase the complexity of their functions. -
The Genus Datura L. (Solanaceae) in Mexico and Spain – Ethnobotanical T Perspective at the Interface of Medical and Illicit Uses
Journal of Ethnopharmacology 219 (2018) 133–151 Contents lists available at ScienceDirect Journal of Ethnopharmacology journal homepage: www.elsevier.com/locate/jethpharm Review The genus Datura L. (Solanaceae) in Mexico and Spain – Ethnobotanical T perspective at the interface of medical and illicit uses Guillermo Beníteza, Martí March-Salasb, Alberto Villa-Kamelc, Ulises Cháves-Jiménezc, ⁎ Javier Hernándezc, Nuria Montes-Osunad, Joaquín Moreno-Chocanoa, Paloma Cariñanosa,e, a Department of Botany, Faculty of Pharmacy, University of Granada, Campus de Cartuja, E-18071 Granada, Spain b National Museum of Natural Sciences of Madrid (MNCN-CSIC), E-28006 Madrid, Spain c Ethnobotany Laboratory, National School of Anthropology and History (ENAH), 14030 Mexico , Mexico d Department of Crop Protection, Institute of Sustainable Agriculture, Superior Council of Scientific Investigations (CSIC), Campus Alameda del Obispo, E-14004 Córdoba, Spain e Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, E-18071 Granada, Spain ARTICLE INFO ABSTRACT Keywords: Ethnopharmacological relevance: The different species of the genus Datura have been used traditionally by some Ethnobotany pre-Columbian civilizations, as well as in medieval rituals linked to magic and witchcraft in both Mexico and Cross-cultural study Europe. It is also noteworthy the use of different alkaloids obtained from the plants for medicinal purposes in the Historical study treatment of various groups of diseases, especially of the respiratory and muscularskeletal systems. Scopolamine Aim of the study: A review of the ethnobotanical uses of the genus Datura in Mexico and Spain has been con- Hyoscine ducted. We focus on the medicinal and ritualistic uses included in modern ethnobotanical studies, emphasizing the historical knowledge from post-colonial American Codices and medieval European texts. -
Title Structural Basis for the Reaction of Tropinone Reductase-II Analyzed
Structural Basis for the Reaction of Tropinone Reductase-II Title Analyzed by X-ray Crystallography( Dissertation_全文 ) Author(s) Yamashita, Atsuko Citation 京都大学 Issue Date 1998-05-25 URL https://doi.org/10.11501/3138614 Right Type Thesis or Dissertation Textversion author Kyoto University Structural Basis for the Reaction of Tropinone Reductase-II Analyzed by X-ray Crystallography Atsuko Yamashita 1998 Contents Contents Contents Abbreviations iv CHAPTER 1 General Introduction 1 CHAPTER 2 Crystallization and Preliminary Crystallographic Study of Tropinone Reductase-11 5 2-1. Introduction 5 2-2. Experimental Procedures 6 Materials 6 Overproduction 7 Purification 7 Measurement of TR-II Activity 8 Crystallization 8 X -ray Diffraction Experiments 8 2-3. Results and Discussion 9 Purification of TR-II 9 Crystallization of TR-II 10 X-ray Diffraction Data Collection using Flash-Cooling Method 12 Crystallographic Data of TR-II Crystals 14 CHAPTER 3 Crystal Structure of Tropinone Reductase-11 17 3-1. Introduction 17 3-2. Experimental Procedures 19 Materials 19 - 1 - Contents Contents N-Terminal Amino Acid Sequence Analysis 19 CHAPTER 5 Preparation of Heavy Atom Derivative Crystals 19 General Conclusion 69 X-ray Diffraction Data Collection 21 Phase Determination 21 Acknow ledgernen ts 71 Phase Improvement and Model Building 21 Structure Refinement 23 References 73 3-3. Results 23 Structure Determination and Refinement 23 List of Publications 77 Subunit Structure 33 Dimer Structure 36 3-4. Discussion 37 Comparison of Crystal Structures between TR-II and TR-I 37 Implication for Stereospecificity of TRs 41 CHAPTER 4 Crystal Structure of Tropinone Reductase-11 Cornplexed with NADP+ and Pseudotropine 4 7 4-1. -
Ethnopharmacological Investigations of Phytochemical Constituents
International Journal of Scientific & Engineering Research Volume 10, Issue 3, March-2019 589 ISSN 2229-5518 Ethnopharmacological Investigations of Phytochemical Constituents Isolated from the Genus Atropa Mannawar Hussain a, Waseem Akram, b Jaleel Ahmad, b Taha Bin Qasim, c Rukhsana Bibi c All Address; Department of Applied Chemistry Government College University, Faisalabad a, Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University, Multan b, Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University Multan b Department of Chemistry Government College University Lahore b Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University Multan c Email; [email protected] Cell no 923460655538a [email protected] b [email protected] b [email protected] c [email protected] c Corresponding Author; Mannawar Hussain Abstract Medicinal plants play a vital role in the development of human culture. Medicinal plantsIJSER are a source of traditional medicine, and many modern medicines come directly from plants. According to WHO the world's people in progressing countries 80 percent rely on traditional medicine for their primary health care more over about 85% of traditional medication involves the make use of plant extracts. Herb and shrubs of the genus Atropa (Solonaceae) inhabitate various ecosystems in worldwide. This review present a complete study of the text on, phytochemistry, pharmacognosy and traditional biological meditional uses of Atropa. Atropa genus contain many chemical constituents like, flavonoids, phenolic compounds like Alkoloids, alcohols, terpenes and flavonoids have been identified in this genus. Some published studies have shown a broad spectrum of biological and pharmacological activities, including anticancer, antioxidant, anti-tumor agent, antibacterial, antimicrobial, antifungal and antiviral effects.