Current Bibliography of David Pingree (As of July 2003)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sripati: an Eleventh-Century Indian Mathematician
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector HlSTORlA MATHEMATICA 12 (1985). 2.544 Sripati: An Eleventh-Century Indian Mathematician KRIPA NATH SINHA University of Kalyani, P.O. Kalyani, District Nadia, West Bengal, India Srlpati (fl. A.D. 1039-1056) is best known for his writings on astronomy, arithmetic, mensuration, and algebra. This article discusses Sripati’s arithmetic, the Ganitatilaka, as well as the arithmetical and algebraic chapters of the SiddhdntaSekhara. In addition to discussing the kinds of problems considered by Srlpati and the techniques he used to solve them, the article considers the sources upon which Sripati drew. A glossary of Indian treatises and technical terms is provided. o 1985 Academic PKSS. IOC. Srlpati (actif vers 1039-1056 ap. J.C.) est surtout connu pour ses Ccrits sur I’astronomie, I’arithmetique, le toise, et I’algebre. Dans cet article, nous abordons I’arithmetique de Sripati, le Ganitatilaka, de m&me que les chapitres arithmetiques et algebriques de son SiddhrintaSekh’ara. En plus d’aborder les types de problemes Ctudies par Sripati et les techniques qu’il a employees pour les resoudre, nous exminons aussi les sources auxquelles Srlpati fait appel. Un glossaire des trait& et des termes techniques indiens complete cet article. 0 1985 Academic Press, Inc. Sripati, der zwischen 1039 und 1056 wirkte, ist vor allem durch seine Schriften tiber Astronomie, Arithmetik, Mensuration und Algebra bekannt. In diesem Beitrag werden seine Arithmetik, die Gavitatilaka, und die arithmetischen und algebraischen Kapitel aus SiddhhtaSekhara behandelt. Neben der Art der Probleme, die Srlpati studierte, und den von ihm verwendeten Losungsmethoden werden such die von ihm benutzten Quellen be- trachtet. -
Notices of the American Mathematical Society June/July 2006
of the American Mathematical Society ... (I) , Ate._~ f.!.o~~Gffi·u. .4-e.e..~ ~~~- •i :/?I:(; $~/9/3, Honoring J ~ rt)d ~cLra-4/,:e~ o-n. /'~7 ~ ~<A at a Gift from fL ~ /i: $~ "'7/<J/3. .} -<.<>-a.-<> ~e.Lz?-1~ CL n.y.L;; ro'T>< 0 -<>-<~:4z_ I Kumbakonam li .d. ~ ~~d a. v#a.d--??">ovt<.·c.-6 ~~/f. t:JU- Lo,.,do-,......) ~a page 640 ~!! ?7?.-L ..(; ~7 Ca.-uM /3~~-d~ .Y~~:Li: ~·e.-l a:.--nd '?1.-d- p ~ .di.,r--·c/~ C(c£~r~~u . J~~~aq_ f< -e-.-.ol ~ ~ ~/IX~ ~ /~~ 4)r!'a.. /:~~c~ •.7~ The Millennium Grand Challenge .(/.) a..Lu.O<"'? ...0..0~ e--ne_.o.AA/T..C<.r~- /;;; '7?'E.G .£.rA-CLL~ ~ ·d ~ in Mathematics C>n.A..U-a.A-d ~~. J /"-L .h. ?n.~ ~?(!.,£ ~ ~ &..ct~ /U~ page 652 -~~r a-u..~~r/a.......<>l/.k> 0?-t- ~at o ~~ &~ -~·e.JL d ~~ o(!'/UJD/ J;I'J~~Lcr~~ 0 ??u£~ ifJ>JC.Qol J ~ ~ ~ -0-H·d~-<.() d Ld.orn.J,k, -F-'1-. ~- a-o a.rd· J-c~.<-r:~ rn-u-{-r·~ ~'rrx ~~/ ~-?naae ~~ a...-'XS.otA----o-n.<l C</.J.d:i. ~~~ ~cL.va- 7 ??.L<A) ~ - Ja/d ~~ ./1---J- d-.. ~if~ ~0:- ~oj'~ t1fd~u: - l + ~ _,. :~ _,. .~., -~- .. =- ~ ~ d.u. 7 ~'d . H J&."dIJ';;;::. cL. r ~·.d a..L- 0.-n(U. jz-o-cn-...l- o~- 4; ~ .«:... ~....£.~.:: a/.l~!T cLc.·£o.-4- ~ d.v. /-)-c~ a;- ~'>'T/JH'..,...~ ~ d~~ ~u ~ ~ a..t-4. l& foLk~ '{j ~~- e4 -7'~ -£T JZ~~c~ d.,_ .&~ o-n ~ -d YjtA:o ·C.LU~ ~or /)-<..,.,r &-. -
Mathematicians
MATHEMATICIANS [MATHEMATICIANS] Authors: Oliver Knill: 2000 Literature: Started from a list of names with birthdates grabbed from mactutor in 2000. Abbe [Abbe] Abbe Ernst (1840-1909) Abel [Abel] Abel Niels Henrik (1802-1829) Norwegian mathematician. Significant contributions to algebra and anal- ysis, in particular the study of groups and series. Famous for proving the insolubility of the quintic equation at the age of 19. AbrahamMax [AbrahamMax] Abraham Max (1875-1922) Ackermann [Ackermann] Ackermann Wilhelm (1896-1962) AdamsFrank [AdamsFrank] Adams J Frank (1930-1989) Adams [Adams] Adams John Couch (1819-1892) Adelard [Adelard] Adelard of Bath (1075-1160) Adler [Adler] Adler August (1863-1923) Adrain [Adrain] Adrain Robert (1775-1843) Aepinus [Aepinus] Aepinus Franz (1724-1802) Agnesi [Agnesi] Agnesi Maria (1718-1799) Ahlfors [Ahlfors] Ahlfors Lars (1907-1996) Finnish mathematician working in complex analysis, was also professor at Harvard from 1946, retiring in 1977. Ahlfors won both the Fields medal in 1936 and the Wolf prize in 1981. Ahmes [Ahmes] Ahmes (1680BC-1620BC) Aida [Aida] Aida Yasuaki (1747-1817) Aiken [Aiken] Aiken Howard (1900-1973) Airy [Airy] Airy George (1801-1892) Aitken [Aitken] Aitken Alec (1895-1967) Ajima [Ajima] Ajima Naonobu (1732-1798) Akhiezer [Akhiezer] Akhiezer Naum Ilich (1901-1980) Albanese [Albanese] Albanese Giacomo (1890-1948) Albert [Albert] Albert of Saxony (1316-1390) AlbertAbraham [AlbertAbraham] Albert A Adrian (1905-1972) Alberti [Alberti] Alberti Leone (1404-1472) Albertus [Albertus] Albertus Magnus -
Using Crowdsourcing to Prioritize Bicycle Network Improvements
GEORGIA DOT RESEARCH PROJECT 14-39 FINAL REPORT USING CROWDSOURCING TO PRIORITIZE BICYCLE NETWORK IMPROVEMENTS OFFICE OF RESEARCH 15 KENNEDY DRIVE FOREST PARK, GA 30297-2534 This page intentionally left blank. GDOT Research Project RP14-39 Final Report Using Crowdsourcing to Prioritize Bicycle Network Improvements By Dr. Kari E. Watkins Assistant Professor School of Civil and Environmental Engineering Georgia Institute of Technology Dr. Chris LeDantec Assistant Professor School of Literature, Media and Communication Georgia Institute of Technology Contract with Georgia Department of Transportation In cooperation with U.S. Department of Transportation Federal Highway Administration April 2016 The contents of this report reflect the views of the author(s) who is (are) responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Georgia Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. i This page intentionally left blank. ii 1.Report No.: 2. Government Accession No.: 3. Recipient's Catalog No.: FHWA-GA-16-1439 4. Title and Subtitle: 5. Report Date: Using Crowdsourcing to Prioritize Bicycle April 2016 Network Improvements 6. Performing Organization Code 7. Author(s): 8. Performing Organ. Report No.: Dr. Kari E. Watkins, PE (P.I.), Dr. Chris LeDantec (co-P.I), Aditi Misra, Mariam Asad, Charlene Mingus, Cary Bearn, Alex Poznanski, Anhong Guo, Rohit Ammanamanchi, Vernon Gentry, Aaron Gooze 9. Performing Organization Name and Address: 10. Work Unit No. Georgia Institute of Technology 11. Contract or Grant No.: School of Civil and Environmental Engineering GDOT Research Project No. -
Al-Biruni: a Great Muslim Scientist, Philosopher and Historian (973 – 1050 Ad)
Al-Biruni: A Great Muslim Scientist, Philosopher and Historian (973 – 1050 Ad) Riaz Ahmad Abu Raihan Muhammad bin Ahmad, Al-Biruni was born in the suburb of Kath, capital of Khwarizmi (the region of the Amu Darya delta) Kingdom, in the territory of modern Khiva, on 4 September 973 AD.1 He learnt astronomy and mathematics from his teacher Abu Nasr Mansur, a member of the family then ruling at Kath. Al-Biruni made several observations with a meridian ring at Kath in his youth. In 995 Jurjani ruler attacked Kath and drove Al-Biruni into exile in Ray in Iran where he remained for some time and exchanged his observations with Al- Khujandi, famous astronomer which he later discussed in his work Tahdid. In 997 Al-Biruni returned to Kath, where he observed a lunar eclipse that Abu al-Wafa observed in Baghdad, on the basis of which he observed time difference between Kath and Baghdad. In the next few years he visited the Samanid court at Bukhara and Ispahan of Gilan and collected a lot of information for his research work. In 1004 he was back with Jurjania ruler and served as a chief diplomat and a spokesman of the court of Khwarism. But in Spring and Summer of 1017 when Sultan Mahmud of Ghazna conquered Khiva he brought Al-Biruni, along with a host of other scholars and philosophers, to Ghazna. Al-Biruni was then sent to the region near Kabul where he established his observatory.2 Later he was deputed to the study of religion and people of Kabul, Peshawar, and Punjab, Sindh, Baluchistan and other areas of Pakistan and India under the protection of an army regiment. -
Minutes of the Meeting of the Expert Committee Held on 14Th, 15Th,17Th and 18Th October, 2013 Under the Performing Arts Grants Scheme (PAGS)
No.F.10-01/2012-P.Arts (Pt.) Ministry of Culture P. Arts Section Minutes of the Meeting of the Expert Committee held on 14th, 15th,17th and 18th October, 2013 under the Performing Arts Grants Scheme (PAGS). The Expert Committee for the Performing Arts Grants Scheme (PAGS) met on 14th, 15th ,17thand 18th October, 2013 to consider renewal of salary grants to existing grantees and decide on the fresh applications received for salary and production grants under the Scheme, including review of certain past cases, as recommended in the earlier meeting. The meeting was chaired by Smt. Arvind Manjit Singh, Joint Secretary (Culture). A list of Expert members present in the meeting is annexed. 2. On the opening day of the meeting ie. 14th October, inaugurating the meeting, Sh. Sanjeev Mittal, Joint Secretary, introduced himself to the members of Expert Committee and while welcoming the members of the committee informed that the Ministry was putting its best efforts to promote, develop and protect culture of the country. As regards the Performing Arts Grants Scheme(earlier known as the Scheme of Financial Assistance to Professional Groups and Individuals Engaged for Specified Performing Arts Projects; Salary & Production Grants), it was apprised that despite severe financial constraints invoked by the Deptt. Of Expenditure the Ministry had ensured a provision of Rs.48 crores for the Repertory/Production Grants during the current financial year which was in fact higher than the last year’s budgetary provision. 3. Smt. Meena Balimane Sharma, Director, in her capacity as the Member-Secretary of the Expert Committee, thereafter, briefed the members about the salient features of various provisions of the relevant Scheme under which the proposals in question were required to be examined by them before giving their recommendations. -
Scandinavian Journal Byzantine Modern Greek
SCANDINAVIAN JOURNAL OF SCANDINAVIAN JOURNAL OF BYZANTINE AND MODERN GREEK STUDIES 4 • 2018 JOURNAL OF BYZANTINE SCANDINAVIAN BYZANTINE AND MODERN GREEK STUDIES Barbara Crostini 9 Greek Astronomical Manuscripts: New Perspectives from Swedish Collections Filippo Ronconi 19 Manuscripts as Stratified Social Objects Anne Weddigen 41 Cataloguing Scientific Miscellanies: the Case of Parisinus Graecus 2494 Alberto Bardi 65 Persian Astronomy in the Greek Manuscript Linköping kl. f. 10 Dmitry Afinogenov 89 Hellenistic Jewish texts in George the Monk: Slavonic Testimonies Alexandra Fiotaki & Marika Lekakou 99 The perfective non-past in Modern Greek: a corpus study Yannis Smarnakis 119 Thessaloniki during the Zealots’ Revolt (1342-1350): Power, Political Violence and the Transformation of the Urban Space David Wills 149 “The nobility of the sea and landscape”: John Craxton and Greece 175 Book Reviews ISSN 2002-0007 No 4 • 2018 Persian Astronomy in the Greek Manuscript Linköping kl. f. 10* Alberto Bardi his paper is a study of an astronomical text redacted in Greek, contained in the fifteenth-century manuscript Linköping kl. f. 10 T(henceforth F). This text consists of a coherent group of instruc- tions on how to use a structured set of astronomical tables stemming from Islamic tradition, redacted primarily in Persian in the thirteenth century, then translated by Byzantine scholars into Greek, and spread among Byzantine scholars from the beginning of the fourteenth century.1 2. Astronomical texts and tables between the Il-khanate and Byzantium In the thirteenth century, astronomical tables stemming from Persia were mostly produced by Islamic scholars. The area, stretched out today between Iran and Azerbaijan, was ruled by the Mongols of the Il-Kha- nids dynasty. -
An Unpublished Translator's Preface to a Brontologion (Petrop.Bibl.Publ
Natural Omens in Byzantine Literature: An Unpublished Translator’s Preface to a Brontologion (Petrop.Bibl.Publ. 575) Elizabeth A. Fisher YZANTINE AUTHORS reflect the popular belief that God communicated with man through natural events, if only B human understanding could discern the message. Several writers of the tenth century illustrate this attitude by presenting unusual natural events as a metaphor or as a predictive indicator of human events. Theophanes Continuatus, for example, de- scribes the appearance of a remarkable star or comet at the birth and death of Constantine the Porphyrogennetos.1 Similarly, at the beginning of his History Leo the Deacon notes the coinci- dence of disruptive events in both the natural and the political spheres. Astral portents, earthquakes, lightning, and torrential rain simultaneous with many wars and the abandonment of cities and whole regions motivated the popular inference that the Second Coming was imminent.2 In the Life of St. Basil the Younger, the narrator Gregory notes that the sun appeared to drip blood when the rebel followers of Constantine Doukas (d. 913) entered Constantinople, predicting great slaughter.3 Although Christian Byzantium scorned pagan superstition 1 Theoph. Cont. 6.48, in D. Sullivan, The Rise and Fall of Nikephoros II Phokas: Five Contemporary Texts in Annotated Translations (Leiden 2019) 49–51. I am grateful to Prof. Sullivan for this reference. 2 A.-M. Talbot and D. Sullivan with G. Dennis and S. McGrath, The His- tory of Leo the Deacon: Byzantine Military Expansion in the Tenth Century (Washington 2005) 55–56. Cf. Matt 4:6–8, Mk 13:7–8, Lk 21:10–11, and Acts 2:19–20. -
Aryabhatiya with English Commentary
ARYABHATIYA OF ARYABHATA Critically edited with Introduction, English Translation. Notes, Comments and Indexes By KRIPA SHANKAR SHUKLA Deptt. of Mathematics and Astronomy University of Lucknow in collaboration with K. V. SARMA Studies V. V. B. Institute of Sanskrit and Indological Panjab University INDIAN NATIONAL SCIENCE ACADEMY NEW DELHI 1 Published for THE NATIONAL COMMISSION FOR THE COMPILATION OF HISTORY OF SCIENCES IN INDIA by The Indian National Science Academy Bahadur Shah Zafar Marg, New Delhi— © Indian National Science Academy 1976 Rs. 21.50 (in India) $ 7.00 ; £ 2.75 (outside India) EDITORIAL COMMITTEE Chairman : F. C. Auluck Secretary : B. V. Subbarayappa Member : R. S. Sharma Editors : K. S. Shukla and K. V. Sarma Printed in India At the Vishveshvaranand Vedic Research Institute Press Sadhu Ashram, Hosbiarpur (Pb.) CONTENTS Page FOREWORD iii INTRODUCTION xvii 1. Aryabhata— The author xvii 2. His place xvii 1. Kusumapura xvii 2. Asmaka xix 3. His time xix 4. His pupils xxii 5. Aryabhata's works xxiii 6. The Aryabhatiya xxiii 1. Its contents xxiii 2. A collection of two compositions xxv 3. A work of the Brahma school xxvi 4. Its notable features xxvii 1. The alphabetical system of numeral notation xxvii 2. Circumference-diameter ratio, viz., tz xxviii table of sine-differences xxviii . 3. The 4. Formula for sin 0, when 6>rc/2 xxviii 5. Solution of indeterminate equations xxviii 6. Theory of the Earth's rotation xxix 7. The astronomical parameters xxix 8. Time and divisions of time xxix 9. Theory of planetary motion xxxi - 10. Innovations in planetary computation xxxiii 11. -
Kamala¯Kara Commentary on the Work, Called Tattvavivekodāharan
K related to the Siddhānta-Tattvaviveka, one a regular Kamala¯kara commentary on the work, called Tattvavivekodāharan. a, and the other a supplement to that work, called Śes.āvasanā, in which he supplied elucidations and new K. V. SARMA material for a proper understanding of his main work. He held the Sūryasiddhānta in great esteem and also wrote a Kamalākara was one of the most erudite and forward- commentary on that work. looking Indian astronomers who flourished in Varanasi Kamalākara was a critic of Bhāskara and his during the seventeenth century. Belonging to Mahar- Siddhāntaśiroman. i, and an arch-rival of Munīśvara, a ashtrian stock, and born in about 1610, Kamalākara close follower of Bhāskara. This rivalry erupted into came from a long unbroken line of astronomers, bitter critiques on the astronomical front. Thus Ranga- originally settled at the village of Godā on the northern nātha, younger brother of Kamalākara, wrote, at the . banks of the river Godāvarī. Towards AD 1500, the insistence of the latter, a critique on Munīśvara’s Bhangī family migrated to Varanasi and came to be regarded as method (winding method) of true planets, entitled . reputed astronomers and astrologers. Kamalākara Bhangī-vibhangī (Defacement of the Bhangi), to which . studied traditional Hindu astronomy under his elder Munīśvara replied with a Khand.ana (Counter). Munīś- brother Divākara, but extended the range of his studies vara attacked the theory of precession advocated by to Islamic astronomy, particularly to the school of Kamalākara, and Ranganātha refuted the criticisms of his Ulugh Beg of Samarkand. He also studied Greek brother in his Loha-gola-khan. -
A Study on the Encoding Systems in Vedic Era and Modern Era 1K
International Journal of Pure and Applied Mathematics Volume 114 No. 7 2017, 425-433 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu Special Issue ijpam.eu A Study on the Encoding Systems in Vedic Era and Modern Era 1K. Lakshmi Priya and 2R. Parameswaran 1Department of Mathematics, School of Arts and Sciences, Amrita University, Kochi. [email protected] 2Department of Mathematics, School of Arts and Sciences, Amrita University, Kochi. [email protected] Abstract Encoding is the action of transferring a message in to codes. In this paper I present a study on the encoding systems in vedic era and modern era. The Sanskrit verses written in the vedic era are not just the praises of the Gods they are also numerical codes. In ancient India there were three means of recording numerals in Sanskrit words which are Katapayadi system, Bhutasamkhya system and Aryabhata numeration. These systems were used by many ancient mathematicians in India. In this paper the Katapayadi system used in vedic times is applied to modern ciphers– Vigenere Cipher and Affine Cipher. Key Words:Katapayadi system, vigenere cipher, affine cipher. 425 International Journal of Pure and Applied Mathematics Special Issue 1. Introduction Encoding is the process of transforming messages into an arrangement required for data transmission, storage and compression/decompression. In cryptography, encryption is the method of transforming information using an algorithm to make it illegible to anyone except those owning special information, usually called as a key. In vedic era, Sanskrit is the language used. It is supposed to be the ancient language, from which most of the modern dialects are developed. -
Astronomy in India
TRADITIONSKnowledg & PRACTICES OF INDIA e Textbook for Class XI Module 1 Astronomy in India CENTRAL BOARD OF SECONDARY EDUCATION Shiksha Kendra, 2, Community Centre, Preet Vihar, Delhi-110 092 India TRADITIONSKnowledg & PRACTICESe OF INDIA Textbook for Class XI Module 1 Astronomy in India CENTRAL BOARD OF SECONDARY EDUCATION Shiksha Kendra, 2, Community Centre, Preet Vihar, Delhi-110 092 India No part of this publication may be reproduced or stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical photocopying, recording or otherwise, without the prior permission of the Central Board of Secondary Education (CBSE). Preface India has a rich tradition of intellectual inquiry and a textual heritage that goes back to several hundreds of years. India was magnificently advanced in knowledge traditions and practices during the ancient and medieval times. The intellectual achievements of Indian thought are found across several fields of study in ancient Indian texts ranging from the Vedas and the Upanishads to a whole range of scriptural, philosophical, scientific, technical and artistic sources. As knowledge of India's traditions and practices has become restricted to a few erudite scholars who have worked in isolation, CBSE seeks to introduce a course in which an effort is made to make it common knowledge once again. Moreover, during its academic interactions and debates at key meetings with scholars and experts, it was decided that CBSE may introduce a course titled ‘Knowledge Traditions and Practices of India’ as a new Elective for classes XI - XII from the year 2012-13. It has been felt that there are many advantages of introducing such a course in our education system.