Astronomy in India
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TOWARDS POSTAL EXCELLENCE the Report of the President's Commission on Postal Organization June 1968
TOWARDS POSTAL EXCELLENCE The Report of The President's Commission on Postal Organization June 1968 \ ... ~ ~ ..;,. - ..~ nu. For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price $1.25 2 THE PRESIDENT'S COMMISSION ON POSTAL ORGANIZATION I ~ FREDERICK R. KAPPEL-Chairman Ii Chairman, Board of Directors (retired) ) American Telephone and Telegraph Company GEORGE P. BAKER Dean Harvard University Graduate School of Business Administration DAVIn E. BELL Vice President The Ford Foundation FRED J. BORCH President General Electric Company DAVIn GINSBURG Partner Ginsburg and Feldman RALPH LAZARUS Chairman Board of Directors Federated Department Stores GEORGE MEANY President American Federation of Labor and Congress of Industrial Organizations J. IRWIN MILLER Chairman Board of Directors Cummins Engine Company W. BEVERLY MURPHY President Campbell Soup Company RUDOLPH A. PETERSON President Bank of America MURRAY COMAROW-Executive Director ii THE PRESIDENT'S COMMISSION ON POSTAL ORGANIZATION 1016 SIXTEENTH STREET, N.W., WASHINGTON, D.C. 20036 The President The White House Washington, D.C. 20500 Dear Mr. President: I have the honor of transmitting the Report of the President's Commission on Postal Organization in compliance with Executive Order 11341 dated April 8, 1967. You asked this Commission to "conduct the most searching and exhaustive review ever undertaken . ." of the American postal service. We have complied with your mandate. You asked us to "determine whether the postal system as presently organized is capable of meeting the demands of our growing economy and our expanding population." We have concluded that it is not. Our basic finding is that the procedures for administering the ordinary executive departments of Government are inappropriate for the Post Office. -
Compass Points News for the Public Purchasers Association of Northern Ohio Volume Two • Issue Seven • June 9, 2016
Compass Points News for the Public Purchasers Association of Northern Ohio Volume Two • Issue Seven • June 9, 2016 “We cannot solve our problems with the same thinking we used when we created them.” ~Albert Einstein I think it has been crazy up in here for quite some time already… our Cleveland Cavaliers are in a do-or-die struggle with the defending champion Golden State Warriors in the most anticipated REMATCH in a long time and you must sense the importance of it, both from an economical and sporting level. Our own Lake Erie Monsters of the American Hockey League, the minor league affiliate of the Columbus Blue Jackets of the NHL, posted a 14-2 record in route to the Calder Cup Championship series against the Hershey Bears, and as of this printing hold a 3-0 advantage with game 4 in Cleveland on Saturday night and in one short month, from July 18-21, an estimated 50,000 delegates, media and visitors will assemble in Cleveland, at the same venue that the Cavs and Monsters riled up the Cleveland populace, Quicken Loans Arena, more affectionately called “the Q” , for the 2016 Republican National Convention. In addition to the prestige of holding such an event, it is expected to generate in excess of $400 million to the local economy and, who knows what might happen with Mr. Trump leading the charge as the presumptive nominee for the Republican Party for President of the United States. Tell me something, Northern Ohio Public Procurement professional… what have you been doing lately?? You can bet that Public Procurement folks in Northern Ohio are feeling the pressure to secure and plan and provide the necessary goods, supplies and services to stroke an eager, boisterous crowd that will be converging on Northern Ohio, in the eyes of the world, to be part of the history that is about to unfold. -
Compass – Manual for Human Rights Education with Young People
COMPASS Manual for human rights education with young people 2nd edition, updated in 2020 Written by Patricia Brander Laure De Witte Nazila Ghanea Rui Gomes Ellie Keen Anastasia Nikitina Justina Pinkeviciute Edited by Patricia Brander Ellie Keen Vera Juhász Annette Schneider Final editing and coordination by Rui Gomes Drawings by Pancho Specific contributions on content by Janina Arsenjeva, Éva Borbély-Nagy, Karina Chupina, Hanna Clayton, Annette Schneider, Györgyi Tóth The first edition of Compass (2002) was written by: Patricia Brander; Ellie Keen; Rui Gomes; Marie-Laure Lemineur ; Bárbara Oliveira Jana Ondrácková; Alessio Surian; Olena Suslova Compass has several companion publications for education for democratic citizenship and human rights education developed by the Education and Youth sectors of the Directorate of Democratic Participation of the Council of Europe. Please visit www.coe.int/compass for more information. The views expressed in this manual are the responsibility of the authors and do not necessarily reflect the opinions of the Council of Europe. Copyright of this publication is held by the Council of Europe. No parts of this publication may be reproduced or transmitted for commercial purposes in any form or by any means, electronic (CDRom, Internet, etc.) or mechanical including photocopying, recording or any information storage or retrieval system, without the permission in writing from the Publishing Division ([email protected]), Directorate of Communication of the Council of Europe (copy to the European Youth Centre Budapest, 1-3 Zivatar utca, H-1024 Budapest, Hungary; e-mail: [email protected]). Reproduction of material from this publication is authorised for non-commercial educational purposes only and on condition that the source is properly quoted. -
Ubiquitous Argonium \(Arh+\) in the Diffuse Interstellar Medium: A
A&A 566, A29 (2014) Astronomy DOI: 10.1051/0004-6361/201423727 & c ESO 2014 Astrophysics Ubiquitous argonium (ArH+) in the diffuse interstellar medium: A molecular tracer of almost purely atomic gas P. Schilke1, D. A. Neufeld2, H. S. P. Müller1, C. Comito1, E. A. Bergin3, D. C. Lis4;5, M. Gerin6, J. H. Black7, M. Wolfire8, N. Indriolo2, J. C. Pearson9, K. M. Menten10, B. Winkel10, Á. Sánchez-Monge1, T. Möller1, B. Godard6, and E. Falgarone6 1 I. Physikalisches Institut der Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany e-mail: [email protected] 2 The Johns Hopkins University, Baltimore, MD 21218, USA 3 Department of Astronomy, The University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042, USA 4 California Institute of Technology, Pasadena, CA 91125, USA 5 Sorbonne Universités, Université Pierre et Marie Curie, Paris 6, CNRS, Observatoire de Paris, UMR 8112 LERMA, Paris, France 6 LERMA, CNRS UMR 8112, Observatoire de Paris & École Normale Supérieure, 24 rue Lhomond, 75005 Paris, France 7 Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, 439 92 Onsala, Sweden 8 Astronomy Department, University of Maryland, College Park, MD 20742, USA 9 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA 10 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany Received 28 February 2014 / Accepted 29 March 2014 ABSTRACT Aims. We describe the assignment of a previously unidentified interstellar absorption line to ArH+ and discuss its relevance in the + context of hydride absorption in diffuse gas with a low H2 fraction. -
Brahmagupta, Mathematician Par Excellence
GENERAL ARTICLE Brahmagupta, Mathematician Par Excellence C R Pranesachar Brahmagupta holds a unique position in the his- tory of Ancient Indian Mathematics. He con- tributed such elegant results to Geometry and Number Theory that today's mathematicians still marvel at their originality. His theorems leading to the calculation of the circumradius of a trian- gle and the lengths of the diagonals of a cyclic quadrilateral, construction of a rational cyclic C R Pranesachar is involved in training Indian quadrilateral and integer solutions to a single sec- teams for the International ond degree equation are certainly the hallmarks Mathematical Olympiads. of a genius. He also takes interest in solving problems for the After the Greeks' ascendancy to supremacy in mathe- American Mathematical matics (especially geometry) during the period 7th cen- Monthly and Crux tury BC to 2nd century AD, there was a sudden lull in Mathematicorum. mathematical and scienti¯c activity for the next millen- nium until the Renaissance in Europe. But mathematics and astronomy °ourished in the Asian continent partic- ularly in India and the Arab world. There was a contin- uous exchange of information between the two regions and later between Europe and the Arab world. The dec- imal representation of positive integers along with zero, a unique contribution of the Indian mind, travelled even- tually to the West, although there was some resistance and reluctance to accept it at the beginning. Brahmagupta, a most accomplished mathematician, liv- ed during this medieval period and was responsible for creating good mathematics in the form of geometrical theorems and number-theoretic results. -
General Index
General Index Italic page numbers refer to illustrations. Authors are listed in ical Index. Manuscripts, maps, and charts are usually listed by this index only when their ideas or works are discussed; full title and author; occasionally they are listed under the city and listings of works as cited in this volume are in the Bibliograph- institution in which they are held. CAbbas I, Shah, 47, 63, 65, 67, 409 on South Asian world maps, 393 and Kacba, 191 "Jahangir Embracing Shah (Abbas" Abywn (Abiyun) al-Batriq (Apion the in Kitab-i balJriye, 232-33, 278-79 (painting), 408, 410, 515 Patriarch), 26 in Kitab ~urat ai-arc!, 169 cAbd ai-Karim al-Mi~ri, 54, 65 Accuracy in Nuzhat al-mushtaq, 169 cAbd al-Rabman Efendi, 68 of Arabic measurements of length of on Piri Re)is's world map, 270, 271 cAbd al-Rabman ibn Burhan al-Maw~ili, 54 degree, 181 in Ptolemy's Geography, 169 cAbdolazlz ibn CAbdolgani el-Erzincani, 225 of Bharat Kala Bhavan globe, 397 al-Qazwlni's world maps, 144 Abdur Rahim, map by, 411, 412, 413 of al-BlrunI's calculation of Ghazna's on South Asian world maps, 393, 394, 400 Abraham ben Meir ibn Ezra, 60 longitude, 188 in view of world landmass as bird, 90-91 Abu, Mount, Rajasthan of al-BlrunI's celestial mapping, 37 in Walters Deniz atlast, pl.23 on Jain triptych, 460 of globes in paintings, 409 n.36 Agapius (Mabbub) religious map of, 482-83 of al-Idrisi's sectional maps, 163 Kitab al- ~nwan, 17 Abo al-cAbbas Abmad ibn Abi cAbdallah of Islamic celestial globes, 46-47 Agnese, Battista, 279, 280, 282, 282-83 Mu\:lammad of Kitab-i ba/Jriye, 231, 233 Agnicayana, 308-9, 309 Kitab al-durar wa-al-yawaqft fi 11m of map of north-central India, 421, 422 Agra, 378 n.145, 403, 436, 448, 476-77 al-ra~d wa-al-mawaqft (Book of of maps in Gentil's atlas of Mughal Agrawala, V. -
Indian Mathematics
Indian Mathemtics V. S. Varadarajan University of California, Los Angeles, CA, USA UCLA, March 3-5, 2008 Abstract In these two lectures I shall talk about some Indian mathe- maticians and their work. I have chosen two examples: one from the 7th century, Brahmagupta, and the other, Ra- manujan, from the 20th century. Both of these are very fascinating figures, and their histories illustrate various as- pects of mathematics in ancient and modern times. In a very real sense their works are still relevant to the mathe- matics of today. Some great ancient Indian figures of Science Varahamihira (505–587) Brahmagupta (598-670) Bhaskara II (1114–1185) The modern era Ramanujan, S (1887–1920) Raman, C. V (1888–1970) Mahalanobis, P. C (1893–1972) Harish-Chandra (1923–1983) Bhaskara represents the peak of mathematical and astro- nomical knowledge in the 12th century. He reached an un- derstanding of calculus, astronomy, the number systems, and solving equations, which were not to be achieved any- where else in the world for several centuries...(Wikipedia). Indian science languished after that, the British colonial occupation did not help, but in the 19th century there was a renaissance of arts and sciences, and Indian Science even- tually reached a level comparable to western science. BRAHMAGUPTA (598–670c) Some quotations of Brahmagupta As the sun eclipses the stars by its brilliancy, so the man of knowledge will eclipse the fame of others in assemblies of the people if he proposes algebraic problems, and still more, if he solves them. Quoted in F Cajori, A History of Mathematics A person who can, within a year, solve x2 92y2 =1, is a mathematician. -
BABYLONIAN ASTRONOMY* by W.M. O'neil Though the Modern Western
o BABYLONIAN ASTRONOMY* By W.M. O'Neil Though the modern western world had heard of the Chaldaeans in the Old Testament as soothsayers and astrologers and students of Hellenistic astronomy knew of references to Babylonian observations of eclipses and the like, it is only during the last three quarters of a century but especially during the last half century that modern scholars, following the decipherment of the cuneiform writing on clay tablets, have begun to reveal the richness of Babylonian astronomy. They have, however, a long way yet to go. First, only a fraction of the materials scattered throughout the western world have been studied and interpreted. Fragments of the one tablet are sometimes in different museums; this adds to the difficulty. Second, the materials are usually fragmentary: a few pages torn from a book as it were or even only a few parts of pages (See Plate 1). Otto Neugebauer, perhaps the greatest scholar recently working on Babylonian astronomy, says that it is impossible yet to write an adequate history of Babylonian astronomy and suggests that it may never be possible. How many of the needed basic texts have crumbled into dust after acquisition by small museums unable to give them the needed care? , how many are lying unstudied in the multitudinous collections in the Middle East, in Europe and in North America? or are still lying in the ground?, are questions to which the answers are unknown. Nevertheless, through the work of Neugebauer, his predecessors and younger scholars taking over from him, some outlines of the history and the methods of Babylonian astronomy are becoming clearer. -
Principal Facts of the Earth's Magnetism and Methods Of
• * Class Book « % 9 DEPARTMENT OF COMMERCE U. S. COAST AND GEODETIC SURVEY E. LESTER JONES, Superintendent PRINCIPAL FACTS OF THE EARTH’S MAGNETISM AND METHODS OF DETERMIN¬ ING THE TRUE MERIDIAN AND THE MAGNETIC DECLINATION [Reprinted from United States Magnetic Declination Tables and Isogonic Charts for 1902] [Reprinted from edition of 1914] WASHINGTON GOVERNMENT PRINTING OFFICE 1919 ( COAST AND GEODETIC SURVEY OFFICE. DEPARTMENT OF COMMERCE U. S. COAST AND GEODETIC SURVEY »» E. LESTER JONES, Superintendent PRINCIPAL FACTS OF THE EARTH’S MAGNETISM AND METHODS OF DETERMIN¬ ING THE TRUE MERIDIAN AND THE MAGNETIC DECLINATION [Reprinted from United States Magnetic Declination Tables and Isogonic Charts for 1902 ] i [ Reprinted from edition of 1914] WASHINGTON GOVERNMENT PRINTING OFFICE 4 n; «f B. AUG 29 1913 ft • • * C c J 4 CONTENTS. Page. Preface. 7 Definitions. 9 Principal Facts Relating to the Earth’s Magnetism. Early History of the Compass. Discovery of the Lodestone. n Discovery of Polarity of Lodestone. iz Introduction of the Compass..... 15 Improvement of the Compass by Petrius Peregrinus. 16 Improvement of the Compass by Flavio Gioja. 20 Derivation of the word Compass. 21 Voyages of Discovery. 21 Compass Charts. 21 Birth of the Science of Terrestrial Magnetism. Discovery of the Magnetic Declination at Sea. 22 Discovery of the Magnetic Declination on Land. 25 Early Methods for Determining the Magnetic Declination and the Earliest Values on Land. 26 Discovery of the Magnetic Inclination. 30 The Earth, a Great Magnet. Gilbert’s “ De Magnete ”.'. 34 The Variations of the Earth’s Magnetism. Discovery of Secular Change of Magnetic Declination. 38 Characteristics of the Secular Change. -
The Roots of Astronomy
The Roots of Astronomy • Already in the stone and bronze ages, human cultures realized the cyclic nature of motions in the sky. • Monuments dating back to ~ 3000 B.C. show alignments with astronomical significance. • Those monuments were probably used as calendars or even to predict eclipses. Stonehenge • Constructed: 3000 – 1800 B.C. Summer solstice Heelstone • Alignments with locations of sunset, sunrise, moonset and moonrise at summer and winter solstices • Probably used as calendar. Other Examples All Over the World Big Horn Medicine Wheel (Wyoming) Other Examples All Over the World (2) Caracol (Maya culture, approx. A.D. 1000) Ancient Greek Astronomers (1) • Unfortunately, there are no written documents about the significance of stone and bronze age monuments. • First preserved written documents about ancient astronomy are from ancient Greek philosophy. • Greeks tried to understand the motions of the sky and describe them in terms of mathematical (not physical!) models. Ancient Greek Astronomers (2) Models were generally wrong because they were based on wrong “first principles”, believed to be “obvious” and not questioned: 1. Geocentric Universe: Earth at the Center of the Universe. 2. “Perfect Heavens”: Motions of all celestial bodies described by motions involving objects of “perfect” shape, i.e., spheres or circles. Ancient Greek Astronomers (3) • Eudoxus (409 – 356 B.C.): Model of 27 nested spheres • Aristotle (384 – 322 B.C.), major authority of philosophy until the late middle ages: Universe can be divided in 2 parts: 1. Imperfect, -
Ligo-India Proposal for an Interferometric Gravitational-Wave Observatory
LIGO-INDIA PROPOSAL FOR AN INTERFEROMETRIC GRAVITATIONAL-WAVE OBSERVATORY IndIGO Indian Initiative in Gravitational-wave Observations PROPOSAL FOR LIGO-INDIA !"#!$ Indian Initiative in Gravitational wave Observations http://www.gw-indigo.org II Title of the Project LIGO-INDIA Proposal of the Consortium for INDIAN INITIATIVE IN GRAVITATIONAL WAVE OBSERVATIONS IndIGO to Department of Atomic Energy & Department of Science and Technology Government of India IndIGO Consortium Institutions Chennai Mathematical Institute IISER, Kolkata IISER, Pune IISER, Thiruvananthapuram IIT Madras, Chennai IIT, Kanpur IPR, Bhatt IUCAA, Pune RRCAT, Indore University of Delhi (UD), Delhi Principal Leads Bala Iyer (RRI), Chair, IndIGO Consortium Council Tarun Souradeep (IUCAA), Spokesperson, IndIGO Consortium Council C.S. Unnikrishnan (TIFR), Coordinator Experiments, IndIGO Consortium Council Sanjeev Dhurandhar (IUCAA), Science Advisor, IndIGO Consortium Council Sendhil Raja (RRCAT) Ajai Kumar (IPR) Anand Sengupta(UD) 10 November 2011 PROPOSAL FOR LIGO-INDIA II PROPOSAL FOR LIGO-INDIA LIGO-India EXECUTIVE SUMMARY III PROPOSAL FOR LIGO-INDIA IV PROPOSAL FOR LIGO-INDIA This proposal by the IndIGO consortium is for the construction and subsequent 10- year operation of an advanced interferometric gravitational wave detector in India called LIGO-India under an international collaboration with Laser Interferometer Gravitational–wave Observatory (LIGO) Laboratory, USA. The detector is a 4-km arm-length Michelson Interferometer with Fabry-Perot enhancement arms, and aims to detect fractional changes in the arm-length smaller than 10-23 Hz-1/2 . The task of constructing this very sophisticated detector at the limits of present day technology is facilitated by the amazing opportunity offered by the LIGO Laboratory and its international partners to provide the complete design and all the key components required to build the detector as part of the collaboration. -
Greek Sculpture and the Four Elements Art
University of Massachusetts Amherst ScholarWorks@UMass Amherst Greek Sculpture and the Four Elements Art 7-1-2000 Greek Sculpture and the Four Elements [full text, not including figures] J.L. Benson University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/art_jbgs Part of the History of Art, Architecture, and Archaeology Commons Benson, J.L., "Greek Sculpture and the Four Elements [full text, not including figures]" (2000). Greek Sculpture and the Four Elements. 1. Retrieved from https://scholarworks.umass.edu/art_jbgs/1 This Article is brought to you for free and open access by the Art at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Greek Sculpture and the Four Elements by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Cover design by Jeff Belizaire About this book This is one part of the first comprehensive study of the development of Greek sculpture and painting with the aim of enriching the usual stylistic-sociological approaches through a serious, disciplined consideration of the basic Greek scientific orientation to the world. This world view, known as the Four Elements Theory, came to specific formulation at the same time as the perfected contrapposto of Polykleitos and a concern with the four root colors in painting (Polygnotos). All these factors are found to be intimately intertwined, for, at this stage of human culture, the spheres of science and art were not so drastically differentiated as in our era. The world of the four elements involved the concepts of polarity and complementarism at every level.