Heat Unstable Wine Proteins and Their Interactions with Wine Polysaccharides

Total Page:16

File Type:pdf, Size:1020Kb

Heat Unstable Wine Proteins and Their Interactions with Wine Polysaccharides WÂll tr ,rr.$fTTtlS 2$. ;t- ay LIB&'$.KT tct tr.{il HEAT UNSTABLE WINE PROTEINS AND THEIR INTERACTIONS WITH WINE POLYSACCHARIDES by Elizabeth Joy Waters, BSc A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy Department of Plant Science The [Jniversity of Adelaide The Australian Wine Research Institute July I99L 1 Declaration I hereby declare that ttris thesis contains no material which has been accepted for the awa¡d of any other degree or diploma at any university. To the best of my knowledge and belief, no material described herein has been previously published or written by any other person except when due reference is made in the æxt. If accepæd for the awa¡d of Doctor of Philosophy, this thesis wilt be available for loan or photocopy Elizabeth Joy Waters ü Abstract Unstable grape juice and wine proteins can cause cloudiness or deposits in wine after bottling resulting in adverse effects on consumer acceptance. This is of concern to white wine producers and frning with bentonite to remove protein is an established winery practice. However, such methods are inconvenient, non-specific and can result in extensive flavour loss. In this study, proteins responsible for hazp, have been isolated and characterized, and their interaction with wine polysaccharides has been explored. An examination of the use of peptidases to remove such proæins was also undertaken. To get a reliable estimate of the concentration of grapo juice and wine proteins it was necessary to determine their amino acid composition. The commonly used Bradford dye- binding assay grossly underestimates the protein concentration by 50 to 807o and in addition, grape and wine phenolic compounds were found to strongly interfere. Using a chromogenic protein substrate it was established that fungal, animal and plant peptidases were active in grape juice and wine. However, at typical wine making temperatur€s (10-25oC), wine proteins were incompletely hydrolysed and material with Mt greater than 10,000 was still measurable. Thus potentially unstable proteins were still present in enzyme-treated juice after 7 days at25oC and in wine after 4 months at 15oC. In the case of the wine, both the control and treated wines showed decreases in protein content and bentonite requirements for stabilization, suggesting that the effects seen may have been due to the activity of endogenous grape peptidases. An initial fractionation of the proteins of a heat-unstable wine was obtained by a combination of salting out with (NH¿)ZSO4 and ultrafiltration. The least soluble fraction [4, precipitated with 607o saturation of (NII¿)ZSO4] was dominaæd by a proæin band of M¡ 32,000, the fraction salted out with 65 to 707o saturation of (NH4)2SO+ tBl had a major protein of M¡ 24,000, while the most soluble material [C, supernatant at707o saturation of (NH¿)zSO+ I comprised proteins of Mr 26,000 and 24,000 [E] together with a carbohydrate-rich fraction [D]. A micro heat test applied to the fractions showed that fractions B and E caused the most haze. The carbohydrate-nch component [D] was the most thermo-stable and could reduce the haze forming potential of E. The major proteins in fractions B and E were further purified by anion exchange chromatography to homogeneity, confirming that, although both proteins were important to wine haze, the l\4 24,000 protein gave more haze than the ìvlr 32,000 protein. lll The stabilizing effect of the carbohydrate-rich fraction [D] was found to apply to all wine proteins in addition to a standard protein, bovine serum albumin. The protection became greater, reducing the visible haziness induced by heating, as the ratio of added carbohydraæ-rich fraction to protein was increased The relationship between the extent of protection and the concentration of added carbohydrate-rich fraction was not linear, and haze decrease diminished at high polysaccharide concentration. It was shown that haze was notreduced by preventing protein precipiøtion but by reducing the particle size of the heat-induce dhazn. The component in the carbohydrate-rich fraction which was responsible for haze protection were isolated by a combination of lectin affinity chromatography, anion exchange chromatography, and cation exchange chromatography. It was a macromolecule containing carbohydrate (96Vo), which was predominantly mannose (787o), and protein (47o). The amno acid composition of the protein component was dominated by the hydroxyl bearing amino acids, serine (317o) and threonine (I37o). iv Acknowledgements I sincerely thank my two supervisors, Dr Patrick V/illiams and Dr William Wallace, for their advice and encou¡agemenl I also gratefully acknowledge the Director of the Australian \Mine Research Institute, Prof. Terry Lee, and the Council of that Instituæ for granting permission and time to undertake the study. The Australian Grape and Wine Research Council is thanked for financial support. I wish to thank staff of the Deparnnent of Plant Science, The University of Adelaide, in particular Dr Max Tate for his help with sugar analyses, his inærest and infectious enthusiasm and many stimulating and helpful discussions. Ms Hilary Phillips, Ms Jenny Guerin and Mr Richard Batt are also thanked for their friendship and assistance with the Pharmacia FPLC system. My colleagues of the Australian Wine Research Institute are thanked for their friendship and help, in particular, Mr Vassilios Marinos for the gas chromatographic analyses and Mr Holger Gockowiak for assistance with ami¡s acid analysis. The donation of proanthocyanidin grape seed extract from Dr Christopher Somers is also acknowledged David Hewitt of the School of Chemical Technology, The University of South Australia and ttrat School a¡e ttranked for the use of the Malvern Autosizer particle sizing apparatus. Penfolds Wines, Nuriootpa and Lindemans Wines, Karadoc are acknowledged for their donation of grape juice and wine. Mr Blair Duncan, of Penfolds Wines is thanked for helpful discussions. Finally,I wish to thank my husband, Chris, for his loving support, understanding and encouragement. v Publications Part of the work described in this thesis of Elizabeth Joy Waters (formerly Modra) has been published: 1. Modra, E. J.; Williams, P. J. Are proteases active in wines and juices? Ausr. Grape grower Winemaker 1988, 292, 42-46. 2. Modra, E. J.; Williams, P. J.; Lee, T. H.; Wallace, W. Effect of commercial peptidases on must and wine. Proceedings,4emc Symposium Internatìottal d'Oerwlogíe: Actualités Oenologiques ; 15-17 June 1989; Ribéreau-Gayon, P.; Lonvaud, A.,Fds., Dunod: Paris, 1990; pp2l7-22L. 3. Waters, E. J.; Watlace, W.; Williams P. J. Peptidases in winemaking. Proceedíngs, SeventhAwtralianWine IndwtryTechnical Conference; 13-17 August 1989; \[il[ams, P. J.; Davidson, D.; I-ee, T. H., Eds.; Australian Industrial: Adelaide, SA, 1990: pp186- tgr. 4. Waters, E. J.; Watlace, W'.; Williams P. J. Heat haze characteristics of fractionated wine proteins. Anr. I. Ernl. Vitic.l99l,42, 123-127 . vr TABLE OF CONTENTS page Declaration i Abstract ü Acknowledgements iv Publications v Table of conænts vi List of Figures xüi List of Tables xvüi Abbreviations ixx 1 INTRODUCTION AND GENERAL LITERATURE REVIEW 1 IWINE 1.1 CLARITY OF 1 1.2 PROTEINS OF GRAPES, ruICES AND WINES 2 7.2.lEnzyme protein 3 l.2.lJ Peptidases 3 1.2.L.2 Polyphenoloxidases 4 1.2.1.3 Invertases 5 1.2.I.4 Glycosidases 6 I.2.2 Evidence for glycoproteins 7 1.2.3 Factors affecting protein concentration 8 l.2.4Heat instability 9 1.3 PROTEIN AGGREGATION 9 1.3.1 Beer chill haze 10 1.4 FINING FOR WINE CLARIFICATON 11 1.4.1 Bentonite fining for proæin removal T2 1.4.2 Other methods of protein removal t3 vll page 1.5 POLYSACCHARIDES OF GRAPES, JTTICES AND WINES L4 1.5.1 Pectins t4 1.5.2 Neutral polysaccharides 15 1.5.3 Yeast-derived polysaccharides t9 1.5.4 Polysaccharides from other sources 22 1.6 AIMS OF THIS STUDY 22 2 ESTIMATION OF GRAPE JUICE AND WINE PROTEIN CONCENTRATION 24 2.1 INTRODUCTION AND LITERATURE REVIEV/ 24 2.2 EXPERIMENTAL 27 2.2.1 Materials 27 2.2.2UItafiltration 27 2.2.3 IJtgh Performance Liquid Chromarography (HPLC) 28 2.2.4 Bradford protein assay 28 2.2.5 Acid hydrolysis of purified grape proteins 29 2.3 RESULTS 30 2.3.1 UV absorbance 30 2.3.2 T\e Bradford as say 33 2.3.2.1Effect of monomeric phenolic compounds 33 2.3.2.2 Effect of polymeric phenolic compounds 33 2.3.2.3 Effect of bound polymeric phenolic compounds 33 2.3.2.4 Effect of ultrafiltration 37 2.3.2.5 Time course of dye-binding 4l 2.3.3 Acid hydrolysis 44 2.3.3.1 Total grape protein 44 2.3.3.2 Purified wine protein 44 2.4 DISCUSSION 47 vrll page 3 REMOVAL OF GRAPE JUICE AND WINE PROTEIN BY PEPTIDASE TREATMENT 50 3.1 INTRODUCTION AND LITERATURE REVIEV/ 50 3.2 EXPERIMENTAL 52 3.2.1 Materials 52 3.2.2General Methods 54 3.2.2.t Heat Test 54 3.2.2.2 Bentonite fining 54 3.2.3 Assay of peptidase activity with casein 54 3.2.4 Assay of peptidase activity with HPA 55 3.2.5 Preparation of peptidase inhibitors 55 3.3 RESULTS 56 3.3.1 Peptidase activity of the commercial enzymes in buffer 56 3.3.1.1 Effect of temperature s6 3.3.L.2 Effect of glucose, fructose and ethanol 56 3.3.2 Peptidase activity on HPA in juice and wine 62 3.3.3 Peptidase activity on grape proteins 66 3.3.3.I In buffer 66 3.3.3.2In juice 66 3.3.3.3In wine 69 3.3.4 Inhibition of peptidase activity 74 3.4 DISCUSSION 77 lx page 4 IDENTIFICATION OF UNSTABLE PROTEIN 82 4.1 INTRODUCTION AND LITERATURE REVIEW 82 4.2 EXPERIMENTAL 85 4.2.1 Materials 85 4.2.2 General methods 86 4.2.2.I Sodium dodecyl sulphate polyacrylamide
Recommended publications
  • The Wine Proteins: Origin, Characteristics and Functionality Andrea Curioni
    The wine proteins: origin, characteristics and functionality Andrea Curioni Dipartimento di Biotecnologie Agrarie Centro interdipartimentale per la Ricerca in Viticoltura ed Enologia (CIRVE) Università di Padova 1 The CIRVE campus in Conegliano 2 Protein Structure / Functionality Aminoacid sequence Protein Protein structure • Size • Charge • Hydrophobicity Proprieties Functionality Environment Detectable • pH • Solvent effects • Ionic strength • Temperature • Etc. 3 Proteins in wine Implications in wine –Hazing of white wines (negative) –“Mouthfeel” and aroma –Foam volume and stability The wine proteins Tarragona 2011 4 Protein Haze in wine Serious quality defect Prevention: Protein removal by bentonite treatments Bottled wine Flocculation Coagulation Precipitation Bentonite Other methods? several drawbacks: • Loss of aroma Knowledge is • Cost needed • Waste • ….. The wine proteins Tarragona 2011 5 Wine Proteins: Origin Where do the wine proteins came from? The wine proteins Tarragona 2011 6 Wine Proteins: Origin • The wine proteins derive from Grape (mainly): involved in wine hazing Microorganisms The wine proteins Tarragona 2011 7 Grape Proteins • Accumulate after veraison – with sugars • Low quantity – ≈ hundreds mg/Kg • heterogeneous - > 300 components • Few main components Pocock et al. (2000) JAFC 48, 1637 The wine proteins Tarragona 2011 8 The Grape Proteins similar in all the varieties Sarry et al., 2004 Proteomics, 4, 201 pH The wine proteins Tarragona 2011 9 Grape Proteins: Identification by MS PR-proteins Sarry et al., 2004 Proteomics, 4, 201 10 The wine proteins Tarragona 2011 Grape Proteins: the main components Pathogenesis related (PR)-Proteins – THAUMATIN-LIKE PROTEINS (TLP, PR 5) • ≈ 24 kDa – CHITINASES (PR 3) • ≈ 30 kDa – Osmotins – Beta-(1,3)-glucanases The wine proteins Tarragona 201111 Thaumatin-like Proteins (TLP) • Antifungal activity • Expressed mainly in the berry • Several types – main: VvTL1 (constitutive) – minor : VvTL2 (less present in healthy grapes), .
    [Show full text]
  • The Role and Use of Non-Saccharomyces Yeasts in Wine Production
    The Role and Use of Non-Saccharomyces Yeasts in Wine Production N.P. Jolly1*, O.P.H. Augustyn1 and I.S. Pretorius2** (1) ARC Infruitec-Nietvoorbij***, Private Bag X5026, 7599 Stellenbosch, South Africa. (2) Institute for Wine Biotechnology, Department of Viticulture & Oenology, Stellenbosch University, Private Bag X1, 7602 Matieland (Stellenbosch), South Africa. Submitted for publication: September 2005 Accepted for publication: April 2006 Key words: Non-Saccharomyces, yeasts, vineyards, cellars, fermentation, wine. The contribution by the numerous grape-must-associated non-Saccharomyces yeasts to wine fermentation has been debated extensively. These yeasts, naturally present in all wine fermentations, are metabolically active and their metabolites can impact on wine quality. Although often seen as a source of microbial spoilage, there is substantial contrary evidence pointing to a positive contribution by these yeasts. The role of non-Saccharomyces yeasts in wine fermentation is therefore receiving increasing attention by wine microbiologists in Old and New World wine producing countries. Species that have been investigated for wine production thus far include those from the Candida, Kloeckera, Hanseniaspora, Zygosaccharomyces, Schizosaccharomyces, Torulaspora, Brettanomyces, Saccharomycodes, Pichia and Williopsis genera. In this review the use and role of non-Saccharomyces yeast in wine production is presented and research trends are discussed. INTRODUCTION roles of the numerous non-Saccharomyces yeasts normally asso- ciated with grape must and wine. These yeasts, naturally present Wine is the product of a complex biological and biochemical in all wine fermentations to a greater or lesser extent, are meta- interaction between grapes (grape juice) and different microor- bolically active and their metabolites can impact on wine quality.
    [Show full text]
  • The Path to Bottling
    TANKS The Path to Bottling www.laffort.com YOUR ACCESS TO 120 YEARS OF WINEMAKING INNOVATION Save it in your favourites now for 24/7 access to ! PRODUCT INFORMATION SHEETS QUALITY DOCUMENTS ( HACCP & ISO ) PRODUCT SAFETY SHEETS RESEARCH PAPERS DECISION MAKING TOOLS CATALOGUE DOWNLOADS PERSONALISED NUTRITION PUBLISHED ARTICLES CALCULATOR CERTIFICATES OF ANALYSIS ORGANIC CERTIFICATIONS TRAINING VIDEOS LAFFORT® PLANT BASED INNOVATIONS LAFFORT® unrivalled technical resources is delivering the most scientifically advanced oenological solutions from plant derived products. VEGAN FRIENDLY & ORGANIC THEY’RE NOT JUST OPTIONS THEY’RE SUPERIOR SOLUTIONS These symbols are a guide to your LAFFORT® products properties. GANI TAL OR LERGE OR C E IG L N G I A E N V A L E L E S E R UIT ABLE RGEN F F R E E Organic certification bodies have different criteria for certification and products may differ from one certification body to another. Please contact your certifying agent to confirm a products organic certification. PROTECTING YOUR WHITE WINE MANAGEMENT WHITE WINE PROTECTING YOUR WHITE WINE - A TRADITIONAL APPROACH White wines are vulnerable to oxidation and microbial changes post alcoholic fermentation. Microbial and anti-oxidative control of white wines is a first step to getting wines ready for bottling and/or storage. Threats of oxygen on finished white wines; • Proliferation of acetic acid bacteria. • Proliferation of Brettanomyces bruxellensis. • Browning caused by the oxidation of hydroxycinnamic acids and key phenolic acids. • Oxidation of aroma producing thiols rendering them non volatile. To prevent the oxidation of these phenolic compounds, an anti-oxidative mechanism needs to be put in place.
    [Show full text]
  • The Path to Bottling
    The Path to Bottling www.laffort.com YOUR ACCESS TO 120 YEARS OF WINEMAKING INNOVATION Save it in your favourites now for 24/7 access to ! PRODUCT INFORMATION SHEETS QUALITY DOCUMENTS ( HACCP & ISO ) PRODUCT SAFETY SHEETS RESEARCH PAPERS DECISION MAKING TOOLS CATALOGUE DOWNLOADS PERSONALISED NUTRITION PUBLISHED ARTICLES CALCULATOR CERTIFICATES OF ANALYSIS ORGANIC CERTIFICATIONS TRAINING VIDEOS LAFFORT® PLANT BASED INNOVATIONS LAFFORT® unrivalled technical resources is delivering the most scientifically advanced oenological solutions from plant derived products. VEGAN FRIENDLY & ORGANIC THEY’RE NOT JUST OPTIONS THEY’RE SUPERIOR SOLUTIONS These symbols are a guide to your LAFFORT® products properties. GANI TAL OR LERGE OR C E IG L N G I A E N V A L E L E S E R UIT ABLE RGEN F F R E E Organic certification bodies have different criteria for certification and products may differ from one certification body to another. Please contact your certifying agent to confirm a products organic certification. PROTECTING YOUR WHITE WINE MANAGEMENT WHITE WINE PROTECTING YOUR WHITE WINE - A TRADITIONAL APPROACH White wines are vulnerable to oxidation and microbial changes post alcoholic fermentation. Microbial and anti-oxidative control of white wines is a first step to getting wines ready for bottling and/or storage. Threats of oxygen on finished white wines; • Proliferation of acetic acid bacteria. • Proliferation of Brettanomyces bruxellensis. • Browning caused by the oxidation of hydroxycinnamic acids and key phenolic acids. • Oxidation of aroma producing thiols rendering them non volatile. To prevent the oxidation of these phenolic compounds, an anti-oxidative mechanism needs to be put in place.
    [Show full text]
  • Estudio Químico-Sensorial De La Composición No Volátil De Los Vinos
    TESIS DOCTORAL Título Estudio químico-sensorial de la composición no volátil de los vinos. Influencia de técnicas de aclareo en el perfil fenólico y organoléptico de los vinos Autor/es Ana Gonzalo Diago Director/es Purificación Fernández Zurbano y Marta María Inés Dizy Soto Facultad Facultad de Ciencias, Estudios Agroalimentarios e Informática Titulación Departamento Química Curso Académico 2013-2014 Estudio químico-sensorial de la composición no volátil de los vinos. Influencia de técnicas de aclareo en el perfil fenólico y organoléptico de los vinos, tesis doctoral de Ana Gonzalo Diago, dirigida por Purificación Fernández Zurbano y Marta María Inés Dizy Soto (publicada por la Universidad de La Rioja), se difunde bajo una Licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 Unported. Permisos que vayan más allá de lo cubierto por esta licencia pueden solicitarse a los titulares del copyright. © El autor © Universidad de La Rioja, Servicio de Publicaciones, 2014 publicaciones.unirioja.es E-mail: [email protected] DEPARTAMENTO DE QUÍMICA UNIVERSIDAD DE LA RIOJA ÁREA DE QUÍMICA ANALÍTICA Estudio químico-sensorial de la composición no volátil de los vinos. Influencia de técnicas de aclareo en el perfil fenólico y organoléptico de los vinos. Memoria presentada por ANA GONZALO DIAGO para optar al grado de Doctor con Mención de Doctor Internacional Mayo 2014 Dirigida por los profesores Dra. Purificación FERNÁNDEZ ZURBANO Dra. Marta DIZY SOTO INFORME DIRECTORES PRESENTACIÓN TESIS DOCTORAL Dña. Purificación FERNÁNDEZ ZURBANO, Profesora Titular del Departamento de Química, Área Química Analítica, de la Universidad de La Rioja y Dña. Marta DIZY SOTO, Profesora Titular del Departamento de Agricultura y Alimentación, de la Universidad de La Rioja CERTIFICAN Que la presente memoria, titulada “Estudio químico-sensorial de la composición no volátil de los vinos.
    [Show full text]
  • Science Sixtyfourth64 National Conference a Platform for Progress
    science sixtyfourth64 national conference a platform for progress 64th ASEV National Conference June 24–28, 2013 Portola Hotel and Monterey Conference Center Monterey, California USA TECHNICAL ABSTRACTS american society for enology and viticulture 2013 National Conference Technical Abstracts Oral Presentation Abstracts Wednesday, June 26 Enology — Flavor/Analysis ....................................................................59–62 Viticulture — Rootstocks .......................................................................63–66 Enology — Micro/Molecular Biology ....................................................67–70 Viticulture — Pests & Diseases ..............................................................71–74 Enology — Sensory/Sensory Impacts .....................................................75–78 Viticulture — Environmental Impacts ..................................................79–82 Enology — Flavor: Impact of Yeast and Bacteria ....................................83–86 Viticulture — General ...........................................................................87–90 Thursday, June 27 Enology — Wine Stability and Oxidation ..............................................91–93 Viticulture — Cultural Practices ............................................................94–96 Enology — Tannins (Part I) .................................................................97–100 Viticulture — Water Relations ...........................................................101–105 Enology — Tannins (Part II) ..............................................................106–108
    [Show full text]
  • Documentation Austrian Wine 2006
    DOCUMENTATION AUSTRIAN W INE 2006 Table of contents 1 Austria œ the wine country 1.1 Austria‘s wine-gr wing regi ns and wine-gr wing areas 1 1.2 Grape varieties in Austria 5 1.2.1 Breakd wn by share of area in percent 5 1.2.2 Grape varieties - Brief descripti n .1 1.2.. Devel pment f the area under cultivati n until 1111 .5 1.. Devel pment of the climate 1161-2002 .6 1.2 W ine-gr wers in Austria - A current overall view .1 1.5 The 2006 harvest 22 1.6 The 2005 vintage 25 1.3 Brief characterisati n of the vintages 2002 back t 1160 23 1.8 Assessment of the 2005-111. vintages 55 2 The Austrian wine industry 2.1 Ec n mic imp rtance of the wine industry in Austria 56 2.2 The harvest 2006 (Status Oct ber 20066 51 2.. 7arvests 1160-2005 61 2.2 8ualit9tswein (8uality wine6 in Austria 2005 65 2.5 Austria‘s wine supply 2005 68 2.6 Devel pment f grape and wine prices 31 2.3 General regulati ns f r wine pr ducti n 32 2.8 EU-Measures f r the Restructuring and C nversi n of Vineyards 32 2.1 The Austrian W ine B ards 80 2.10 The :alue f Origin 8. 2.11 DAC: the l gical key t Austrian wine 82 2.12 8uesti ns and Answers - a Guide 86 3 The Austrian market ..1 C nsumpti n of D mestic Wine and Sparkling W ine 81 ..1.1 C nsumpti n of D mestic Wine 81 ..1.2 D mestic C nsumpti n f Sparkling Wine 1110-2005 10 ..1.
    [Show full text]
  • Contribution À L'étude Des Protéines Des Moûts Et Des Vins De
    UNIVERSITE DE REIMS CHAMPAGNE-ARDENNE U.F.R. DES SCIENCES EXACTES & NATURELLES Laboratoire d'Oenologie et de Chimie Appliquée THESE Présentée par Thierry DAMBROUCK En vue de l'obtention du grade de Docteur d'Université Spécialité : Biologie et Biochimie Appliquée Option : Oenologie Contribution à l'étude des protéines des moûts et des vins de Champagne Détermination de leur origine Etude d'une glycoprotéine majeure, l'invertase de raisin Soutenue publiquement le 18 octobre 2004 devant la commission d'examen Rapporteurs : M. B. DONÈCHE Professeur- Faculté d'Snologie de Bordeaux II M. M. MOUTOUNET Dir. Recherches - INRA de Montpellier Examinateurs : M. C. FLAHAUT Maître de Conférences, Lens M. P. JEANDET Professeur, Reims, Directeur de thèse M. R. MARCHAL Maître de Conférences, Reims, Co-Directeur de thèse M. B. ROBILLARD Docteur, Chef de Projet Moët et Chandon, Epernay M. J.-P. ZANETTA Dir. Recherches, CNRS Lille-1, Co-Directeur de thèse UNIVERSITE DE REIMS CHAMPAGNE-ARDENNE U.F.R. DES SCIENCES EXACTES & NATURELLES Laboratoire d'Oenologie et de Chimie Appliquée THESE présentée par Thierry DAMBROUCK En vue de l'obtention du grade de Docteur d'Université Spécialité : Biologie et Biochimie Appliquée Option : Oenologie Contribution à l'étude des protéines des moûts et des vins de Champagne Détermination de leur origine Etude d'une glycoprotéine majeure, l'invertase de raisin Soutenue publiquement le 18 octobre 2004 devant la commission d'examen Rapporteurs : M. B. DONECHE Professeur - Faculté d'oenologie de Bordeaux II M. M. MOUTOUNET Dir. Recherches - INRA de Montpellier Examinateurs : M. C. FLARAUT Maître de Conférences, Lens M. P. JEANDET Professeur, Reims, Directeur de thèse M.
    [Show full text]
  • The Allergic Potential Arising from Proteinous Wine Fining Agents of Milk and Chicken Egg Albumen
    JUSTUS-LIEBIG UNIVERSITY GIESSEN AND HOCHSCHULE GEISENHEIM UNIVERSITY THE ALLERGIC POTENTIAL ARISING FROM PROTEINOUS WINE FINING AGENTS OF MILK AND CHICKEN EGG ALBUMEN by MANUELLA WEBBER WITT M.Sc. Montpellier SupAgro, 2009 Submitted in partial fulfilment of the requirements for the degree of Dr. agr. 2014 THE ALLERGIC POTENTIAL ARISING FROM PROTEINOUS WINE FINING AGENTS OF MILK AND CHICKEN EGG ALBUMEN Submitted in partial fulfilment of the requirements for the degree of Dr. agr. 2014 First reviewer Prof Dr. Christmann Hochschule Geisenheim University (Professor for Œnology) Second reviewer Prof. Dr. Schnell Justus Liebig University of Giessen (Professor for General and Soil Microbiology) Declaration “I declare that the dissertation here submitted is entirely my own work, written without any illegitimate help by any third party and solely with materials as indicated in the dissertation. I have indicated in the text where I have used texts from already published sources, either word for word or in substance, and where I have made statements based on oral information given to me. At all times during the investigations carried out by me and described in the dissertation, I have followed the principles of good scientific practice as defined in the “Statutes of the Justus Liebig University Gießen for the Safeguarding of Good Scientific Practice” The 20th of March, 2014 Manuella Webber-Witt Note of thanks I met Prof. Dr. Monika Christmann in 2005 in Brazil. We had a friendly talk and it was the beginning of a long friendship and journey in my life. For all these years and for her patience I would like to thank Frau Christmann.
    [Show full text]
  • Protein Stabilization of Wine
    PROTEIN STABILISATION OF WINE Presented as a Thesis for the Degree of Master of Science (Food Technology) of The University of New South Wales by Paul Joseph Tyson Submitted: June 1982 DECLARATION The candidate Paul Joseph Tyson, hereby declares that none of the work presented in this thesis has been submitted to any other University or Institutio~Jo\:ee. ACKNOWLEDGEMENTS There are many people to whom my sincere gratitude and appreciation is owed without whose help this study could not have been completed. I particularly would like to thank Dr. T.H.Lee, associate professor, School of Food Technology, University of New South Wales, for his willing assistance and advice during the course of this study and for his valuable suggestions and editing during the preparation of this thesis. I am indebted to Waters Associates for the loan of the HPLC system, the use of their laboratory facilities and to their staff for their willing assistance. I particularly want to thank Mr Roy Day, and Mr Brian Walker. I would like to thank Mcwilliams Wines Pty Ltd, for allowing me the time, opportunity and the use of the Yenda Research Laboratory, for this project. I particularly want to thank Mr Doug Mcwilliam for his assistance at Yenda. I owe a great deal of thanks to my parents for their support and encouragement during this project. I would also like to thank Mrs G.Dias and Mrs C.Petroulakis for their expert typing of this thesis and Mr.David Duckworth for his exce1lent draughting of the figures. - ii - SUMMARY Soluble protein is generally considered to be responsible for the formation of amorphous type clouds and deposits in wine.
    [Show full text]
  • Heat-Unstable Proteins in Wine. I. Characterization and Removal by Bentonite Fining and Heat Treatment JUINN-CHIN HSU ~ and DAVID A
    Heat-Unstable Proteins in Wine. I. Characterization and Removal by Bentonite Fining and Heat Treatment JUINN-CHIN HSU ~ and DAVID A. HEATHERBELL 2 The effect of bentonite fining on the total proteins and the heat-unstable (80°C, 6 h; 4°C, 12 h) proteins in GewLirztraminer, White Riesling, Sauvignon blanc, and Sylvaner wines was investigated. Protein molecular weights (MW), isoelectric points (pl), and glycoproteins were determined by using lithium dodecyl sulfate polyacrylamide gel electrophoresis (LDS PAGE) and two-dimensional isoelectric focusing-lithium dodecyl sulfate (IF-LDS) electrophoretic techniques with silver staining as well as protein blotting for glycoprotein detection. Rel- ative concentrations of proteins in stained gels were determined by laser scanning densitometry. Bentonite fining tends to remove the higher pl (5.8- 8.0) and intermediate MW (32 000- 45 000) protein fractions first. How- ever, these represent only a small proportion of the soluble proteins. In general, it is necessary to remove the lower pl (4.1 - 5.8), lower MW (12 600 and 20 000- 30 000) fractions, which contain glycoproteins and represent the major component of the proteins, to protein stabilize wines to heat testing. Protein fractions with MW of 60 000 to 65 000 and having a wide range of pl (4.1 - 8.0) were highly resistant to removal by bentonite fining and remained in protein-stabilized wine. In addition, trace amounts of fractions with MW of 28 000 may remain in GewiJrztraminer and White Riesling wines and 25 000 in Sauvignon blanc wines. Unstable proteins precipitated by heat tests were recovered and analyzed.
    [Show full text]
  • The Role and Use of Non-Saccharomycesyeasts in Wine
    The Role and Use of Non-Saccharomyces Yeasts in Wine Production N.P. Jolly1*, O.P.H. Augustyn1 and I.S. Pretorius2** (1) ARC Infruitec-Nietvoorbij***, Private Bag X5026, 7599 Stellenbosch, South Africa. (2) Institute for Wine Biotechnology, Department of Viticulture & Oenology, Stellenbosch University, Private Bag X1, 7602 Matieland (Stellenbosch), South Africa. Submitted for publication: September 2005 Accepted for publication: April 2006 Key words: Non-Saccharomyces, yeasts, vineyards, cellars, fermentation, wine. The contribution by the numerous grape-must-associated non-Saccharomyces yeasts to wine fermentation has been debated extensively. These yeasts, naturally present in all wine fermentations, are metabolically active and their metabolites can impact on wine quality. Although often seen as a source of microbial spoilage, there is substantial contrary evidence pointing to a positive contribution by these yeasts. The role of non-Saccharomyces yeasts in wine fermentation is therefore receiving increasing attention by wine microbiologists in Old and New World wine producing countries. Species that have been investigated for wine production thus far include those from the Candida, Kloeckera, Hanseniaspora, Zygosaccharomyces, Schizosaccharomyces, Torulaspora, Brettanomyces, Saccharomycodes, Pichia and Williopsis genera. In this review the use and role of non-Saccharomyces yeast in wine production is presented and research trends are discussed. INTRODUCTION roles of the numerous non-Saccharomyces yeasts normally asso- ciated with grape must and wine. These yeasts, naturally present Wine is the product of a complex biological and biochemical in all wine fermentations to a greater or lesser extent, are meta- interaction between grapes (grape juice) and different microor- bolically active and their metabolites can impact on wine quality.
    [Show full text]