The Allergic Potential Arising from Proteinous Wine Fining Agents of Milk and Chicken Egg Albumen

Total Page:16

File Type:pdf, Size:1020Kb

The Allergic Potential Arising from Proteinous Wine Fining Agents of Milk and Chicken Egg Albumen JUSTUS-LIEBIG UNIVERSITY GIESSEN AND HOCHSCHULE GEISENHEIM UNIVERSITY THE ALLERGIC POTENTIAL ARISING FROM PROTEINOUS WINE FINING AGENTS OF MILK AND CHICKEN EGG ALBUMEN by MANUELLA WEBBER WITT M.Sc. Montpellier SupAgro, 2009 Submitted in partial fulfilment of the requirements for the degree of Dr. agr. 2014 THE ALLERGIC POTENTIAL ARISING FROM PROTEINOUS WINE FINING AGENTS OF MILK AND CHICKEN EGG ALBUMEN Submitted in partial fulfilment of the requirements for the degree of Dr. agr. 2014 First reviewer Prof Dr. Christmann Hochschule Geisenheim University (Professor for Œnology) Second reviewer Prof. Dr. Schnell Justus Liebig University of Giessen (Professor for General and Soil Microbiology) Declaration “I declare that the dissertation here submitted is entirely my own work, written without any illegitimate help by any third party and solely with materials as indicated in the dissertation. I have indicated in the text where I have used texts from already published sources, either word for word or in substance, and where I have made statements based on oral information given to me. At all times during the investigations carried out by me and described in the dissertation, I have followed the principles of good scientific practice as defined in the “Statutes of the Justus Liebig University Gießen for the Safeguarding of Good Scientific Practice” The 20th of March, 2014 Manuella Webber-Witt Note of thanks I met Prof. Dr. Monika Christmann in 2005 in Brazil. We had a friendly talk and it was the beginning of a long friendship and journey in my life. For all these years and for her patience I would like to thank Frau Christmann. Without her support my education in wine science would certainly not be the same. Vielen lieben Dank! I am grateful that Frau Prof. Dr Schnell accepted me at Justus-Liebig University Giessen. I thank all project partners from Hamburg, Frau Dr. Paschke-Kratzin, Marina Deckwart and Carsten Carstens, likewise the project partners from Munich, Prof Dr. Brockow and Dr. Lisa Eichhorn. For their special advice I would like to thank Frau Dr. Claudia Stein-Hammer, Herrn Dr. Jürgen Meinl and the company Erbsloeh, Begerow and Sartorius, Frau Dr. Ilona Schneider, Herrn Dr. Markus Lacorn and his team. Special thanks to Ms. Creina Stockley, from AWRI. For all co-workers and other departments of the Research Centre of Geisenheim, Herrn Prof. Dr. Dietrich, Isabela, Frau Kurbel, Herrn Dr. Patz, Dr. Volker Schäfer and Natascha. Mein Dank geht an Herrn Seckler für alle Ideen und zahlreichen Hilfestellungen, dem Kellerwirtschafts-Team, Herrn Prof. Dr. Jung und Christoph Schüßler sowie allen Mitarbeitern im Labor und im Keller, insbesondere Herrn Bern, Herrn Keller, und Herrn Weiler, die mir immer hilfsbereit zur Seite standen. For all my friends that supported me during this period, thank you all, Evelyn, Sophie, Carine, Robin, Fritz, Christina, Tanja, Oliver, Libby, Mark and Liz. I also thank for all students that helped, especially Malcolm Salvadori, Pablo, Joschi and wine tasters. Even if I fail to recall someone’s name I am thankful that you helped me during these four years. Ganz besonders möchte ich Ludwig Anselm und Maximilian danken, ohne deren Hilfe und Unterstützung ich meine Promotion nicht angefangen, bzw. die Zeit bis zum Ende nicht durchgestanden hätte. Obrigada pelo apoio moral e financeiro de minha família, além de todo amor e carinho que constantemente me oferecem. Eu dedico esta tese a vocês que são a base da minha educação. Muito obrigada mamãe Eloane, papai Rubem e mano Diogo. Obrigada pelas orações de todos e em especial ao Frei Moacir. Obrigada a todos amigos que de uma forma ou outra estiveram do meu lado, em especial às “Três-Marias”: Elba, Edna e Lorena. Ofereço à Deus todo meu esforço, trabalho e resultados deste trabalho, pois foi ele quem me concedeu a graça e os meios para chegar até aqui. The research project (AiF 16330 N) was funded under the program to promote Industrial Joint Research (IGF) of the Federal Ministry and Technology (via AiF) by Research Association of the German Food Industry (FEI) O amor de Deus repousa em mim. “The eternal mystery of the world is its comprehensibility” -Albert Einstein “Live as if you were to die tomorrow. Learn as if you were to live forever” -Mahatma Gandhi “It always seems impossible until it's done” -Nelson Mandela Table of Contents 1 Summary .......................................................................................................... 1 2 Introduction ...................................................................................................... 3 3 Literature survey ............................................................................................... 5 3.1 Labelling in Europe .............................................................................................. 5 3.2 Legal situation for wine labelling .......................................................................... 6 3.3 Consumer protection ........................................................................................... 8 3.3.1 HACCP ...................................................................................................................... 9 3.3.2 Residue and contamination ................................................................................... 11 3.3.3 Threshold limit ....................................................................................................... 11 3.3.4 VITAL-Concept ....................................................................................................... 12 3.4 Food Reactions .................................................................................................. 15 3.4.1 Nonallergic food hypersensitivity (food intolerance) ............................................ 16 3.4.2 Food-induced allergic reactions (food allergy) ...................................................... 17 3.4.2.1 Symptoms ................................................................................................................. 20 3.4.2.2 Diagnosis ................................................................................................................... 20 3.4.2.3 Frequency of allergy .................................................................................................. 25 3.4.2.4 Treatment ................................................................................................................. 25 3.5 Allergens in wine ............................................................................................... 26 3.5.1 Grape origin ........................................................................................................... 26 3.5.2 Microorganism origin ............................................................................................ 27 3.5.2.1 Biogenic-amine ......................................................................................................... 27 3.5.2.2 Ethyl Carbamate and Ochratoxin A ........................................................................... 32 3.5.3 From additive or fining agent origin ...................................................................... 33 3.5.3.1 Sulphite (SO2) ............................................................................................................ 33 3.5.3.2 Fining agent origin..................................................................................................... 34 3.6 Wine fining treatments ...................................................................................... 34 3.6.1 Oenological use and aims of fining material ......................................................... 35 3.6.2 Goals of fining practice .......................................................................................... 36 3.6.3 OIV Guideline for good fining practice .................................................................. 39 3.6.4 Fining agents of organic origin .............................................................................. 40 3.6.4.1 Egg origin ................................................................................................................... 41 3.6.4.2 Lysozyme ................................................................................................................... 43 3.6.4.3 Milk origin ................................................................................................................. 46 3.6.4.4 Fish origin .................................................................................................................. 52 3.6.4.5 Animal gelatine origin ............................................................................................... 54 3.6.4.6 Vegetal origin ............................................................................................................ 56 3.6.4.7 Metatartaric acid (E353) ........................................................................................... 58 3.6.4.8 Carboxymethyl cellulose (CMC) ................................................................................ 59 3.6.4.9 Compounds – mixture of different fining agents ...................................................... 60 3.6.5 Fining agents of inorganic, mineral and synthetic origin ...................................... 60 3.6.5.1 Silica sol (Kieselsol) .................................................................................................... 60 3.6.5.2 Bentonite .................................................................................................................
Recommended publications
  • The Wine Proteins: Origin, Characteristics and Functionality Andrea Curioni
    The wine proteins: origin, characteristics and functionality Andrea Curioni Dipartimento di Biotecnologie Agrarie Centro interdipartimentale per la Ricerca in Viticoltura ed Enologia (CIRVE) Università di Padova 1 The CIRVE campus in Conegliano 2 Protein Structure / Functionality Aminoacid sequence Protein Protein structure • Size • Charge • Hydrophobicity Proprieties Functionality Environment Detectable • pH • Solvent effects • Ionic strength • Temperature • Etc. 3 Proteins in wine Implications in wine –Hazing of white wines (negative) –“Mouthfeel” and aroma –Foam volume and stability The wine proteins Tarragona 2011 4 Protein Haze in wine Serious quality defect Prevention: Protein removal by bentonite treatments Bottled wine Flocculation Coagulation Precipitation Bentonite Other methods? several drawbacks: • Loss of aroma Knowledge is • Cost needed • Waste • ….. The wine proteins Tarragona 2011 5 Wine Proteins: Origin Where do the wine proteins came from? The wine proteins Tarragona 2011 6 Wine Proteins: Origin • The wine proteins derive from Grape (mainly): involved in wine hazing Microorganisms The wine proteins Tarragona 2011 7 Grape Proteins • Accumulate after veraison – with sugars • Low quantity – ≈ hundreds mg/Kg • heterogeneous - > 300 components • Few main components Pocock et al. (2000) JAFC 48, 1637 The wine proteins Tarragona 2011 8 The Grape Proteins similar in all the varieties Sarry et al., 2004 Proteomics, 4, 201 pH The wine proteins Tarragona 2011 9 Grape Proteins: Identification by MS PR-proteins Sarry et al., 2004 Proteomics, 4, 201 10 The wine proteins Tarragona 2011 Grape Proteins: the main components Pathogenesis related (PR)-Proteins – THAUMATIN-LIKE PROTEINS (TLP, PR 5) • ≈ 24 kDa – CHITINASES (PR 3) • ≈ 30 kDa – Osmotins – Beta-(1,3)-glucanases The wine proteins Tarragona 201111 Thaumatin-like Proteins (TLP) • Antifungal activity • Expressed mainly in the berry • Several types – main: VvTL1 (constitutive) – minor : VvTL2 (less present in healthy grapes), .
    [Show full text]
  • Brewing Industry - Preparation of Isinglass Finings
    Solutions for Your TOUGHEST MIXING Applications in FOOD Brewing Industry - Preparation of Isinglass Finings THE FIRST NAME IN HIGH SHEAR MIXERS Brewing Industry - Preparation of Isinglass Finings Lager beer is brewed using “bottom fermenting” yeast which sinks during fermentation. A storage period follows to ensure all the yeast has sunk to the bottom. Demands for a shorter storage period and increased productivity in large-scale breweries has led to the use of finings to accelerate sedimentation. The use of isinglass finings was originally confined to traditional British and Irish beers, brewed with “top fermenting” yeast which rises during fermentation. Spent yeast and other solids are precipitated by the addition of finings, either in the barrel (with traditional “cask conditioned” beer) or in bulk prior to filtering. Isinglass is a protein obtained from several varieties of fish. When added to the beer, the isinglass particles attract the yeast and tannins. The finings sink to the bottom, precipitating the solids to leave the beer clear and bright. The Process Isinglass can be supplied in a number of forms: • Ready-to-use liquid. • Concentrated liquid. • Dried floculated particles. • Powder. • Freeze-dried powder/granules. Although liquid forms are easy to use, there are advantages in buying finings in dried form: • Improved shelf life and temperature tolerance. • Solutions can be prepared to meet demand. • Reduced storage requirements. • Formulation can be adjusted to give optimum results in a particular type of beer. Solutions are generally prepared separately before addition to the beer. A typical process using a conventional agitator would be as follows: • The vessel is charged with liquor and the agitator is started.
    [Show full text]
  • The Role and Use of Non-Saccharomyces Yeasts in Wine Production
    The Role and Use of Non-Saccharomyces Yeasts in Wine Production N.P. Jolly1*, O.P.H. Augustyn1 and I.S. Pretorius2** (1) ARC Infruitec-Nietvoorbij***, Private Bag X5026, 7599 Stellenbosch, South Africa. (2) Institute for Wine Biotechnology, Department of Viticulture & Oenology, Stellenbosch University, Private Bag X1, 7602 Matieland (Stellenbosch), South Africa. Submitted for publication: September 2005 Accepted for publication: April 2006 Key words: Non-Saccharomyces, yeasts, vineyards, cellars, fermentation, wine. The contribution by the numerous grape-must-associated non-Saccharomyces yeasts to wine fermentation has been debated extensively. These yeasts, naturally present in all wine fermentations, are metabolically active and their metabolites can impact on wine quality. Although often seen as a source of microbial spoilage, there is substantial contrary evidence pointing to a positive contribution by these yeasts. The role of non-Saccharomyces yeasts in wine fermentation is therefore receiving increasing attention by wine microbiologists in Old and New World wine producing countries. Species that have been investigated for wine production thus far include those from the Candida, Kloeckera, Hanseniaspora, Zygosaccharomyces, Schizosaccharomyces, Torulaspora, Brettanomyces, Saccharomycodes, Pichia and Williopsis genera. In this review the use and role of non-Saccharomyces yeast in wine production is presented and research trends are discussed. INTRODUCTION roles of the numerous non-Saccharomyces yeasts normally asso- ciated with grape must and wine. These yeasts, naturally present Wine is the product of a complex biological and biochemical in all wine fermentations to a greater or lesser extent, are meta- interaction between grapes (grape juice) and different microor- bolically active and their metabolites can impact on wine quality.
    [Show full text]
  • The Path to Bottling
    TANKS The Path to Bottling www.laffort.com YOUR ACCESS TO 120 YEARS OF WINEMAKING INNOVATION Save it in your favourites now for 24/7 access to ! PRODUCT INFORMATION SHEETS QUALITY DOCUMENTS ( HACCP & ISO ) PRODUCT SAFETY SHEETS RESEARCH PAPERS DECISION MAKING TOOLS CATALOGUE DOWNLOADS PERSONALISED NUTRITION PUBLISHED ARTICLES CALCULATOR CERTIFICATES OF ANALYSIS ORGANIC CERTIFICATIONS TRAINING VIDEOS LAFFORT® PLANT BASED INNOVATIONS LAFFORT® unrivalled technical resources is delivering the most scientifically advanced oenological solutions from plant derived products. VEGAN FRIENDLY & ORGANIC THEY’RE NOT JUST OPTIONS THEY’RE SUPERIOR SOLUTIONS These symbols are a guide to your LAFFORT® products properties. GANI TAL OR LERGE OR C E IG L N G I A E N V A L E L E S E R UIT ABLE RGEN F F R E E Organic certification bodies have different criteria for certification and products may differ from one certification body to another. Please contact your certifying agent to confirm a products organic certification. PROTECTING YOUR WHITE WINE MANAGEMENT WHITE WINE PROTECTING YOUR WHITE WINE - A TRADITIONAL APPROACH White wines are vulnerable to oxidation and microbial changes post alcoholic fermentation. Microbial and anti-oxidative control of white wines is a first step to getting wines ready for bottling and/or storage. Threats of oxygen on finished white wines; • Proliferation of acetic acid bacteria. • Proliferation of Brettanomyces bruxellensis. • Browning caused by the oxidation of hydroxycinnamic acids and key phenolic acids. • Oxidation of aroma producing thiols rendering them non volatile. To prevent the oxidation of these phenolic compounds, an anti-oxidative mechanism needs to be put in place.
    [Show full text]
  • The Path to Bottling
    The Path to Bottling www.laffort.com YOUR ACCESS TO 120 YEARS OF WINEMAKING INNOVATION Save it in your favourites now for 24/7 access to ! PRODUCT INFORMATION SHEETS QUALITY DOCUMENTS ( HACCP & ISO ) PRODUCT SAFETY SHEETS RESEARCH PAPERS DECISION MAKING TOOLS CATALOGUE DOWNLOADS PERSONALISED NUTRITION PUBLISHED ARTICLES CALCULATOR CERTIFICATES OF ANALYSIS ORGANIC CERTIFICATIONS TRAINING VIDEOS LAFFORT® PLANT BASED INNOVATIONS LAFFORT® unrivalled technical resources is delivering the most scientifically advanced oenological solutions from plant derived products. VEGAN FRIENDLY & ORGANIC THEY’RE NOT JUST OPTIONS THEY’RE SUPERIOR SOLUTIONS These symbols are a guide to your LAFFORT® products properties. GANI TAL OR LERGE OR C E IG L N G I A E N V A L E L E S E R UIT ABLE RGEN F F R E E Organic certification bodies have different criteria for certification and products may differ from one certification body to another. Please contact your certifying agent to confirm a products organic certification. PROTECTING YOUR WHITE WINE MANAGEMENT WHITE WINE PROTECTING YOUR WHITE WINE - A TRADITIONAL APPROACH White wines are vulnerable to oxidation and microbial changes post alcoholic fermentation. Microbial and anti-oxidative control of white wines is a first step to getting wines ready for bottling and/or storage. Threats of oxygen on finished white wines; • Proliferation of acetic acid bacteria. • Proliferation of Brettanomyces bruxellensis. • Browning caused by the oxidation of hydroxycinnamic acids and key phenolic acids. • Oxidation of aroma producing thiols rendering them non volatile. To prevent the oxidation of these phenolic compounds, an anti-oxidative mechanism needs to be put in place.
    [Show full text]
  • Estudio Químico-Sensorial De La Composición No Volátil De Los Vinos
    TESIS DOCTORAL Título Estudio químico-sensorial de la composición no volátil de los vinos. Influencia de técnicas de aclareo en el perfil fenólico y organoléptico de los vinos Autor/es Ana Gonzalo Diago Director/es Purificación Fernández Zurbano y Marta María Inés Dizy Soto Facultad Facultad de Ciencias, Estudios Agroalimentarios e Informática Titulación Departamento Química Curso Académico 2013-2014 Estudio químico-sensorial de la composición no volátil de los vinos. Influencia de técnicas de aclareo en el perfil fenólico y organoléptico de los vinos, tesis doctoral de Ana Gonzalo Diago, dirigida por Purificación Fernández Zurbano y Marta María Inés Dizy Soto (publicada por la Universidad de La Rioja), se difunde bajo una Licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 Unported. Permisos que vayan más allá de lo cubierto por esta licencia pueden solicitarse a los titulares del copyright. © El autor © Universidad de La Rioja, Servicio de Publicaciones, 2014 publicaciones.unirioja.es E-mail: [email protected] DEPARTAMENTO DE QUÍMICA UNIVERSIDAD DE LA RIOJA ÁREA DE QUÍMICA ANALÍTICA Estudio químico-sensorial de la composición no volátil de los vinos. Influencia de técnicas de aclareo en el perfil fenólico y organoléptico de los vinos. Memoria presentada por ANA GONZALO DIAGO para optar al grado de Doctor con Mención de Doctor Internacional Mayo 2014 Dirigida por los profesores Dra. Purificación FERNÁNDEZ ZURBANO Dra. Marta DIZY SOTO INFORME DIRECTORES PRESENTACIÓN TESIS DOCTORAL Dña. Purificación FERNÁNDEZ ZURBANO, Profesora Titular del Departamento de Química, Área Química Analítica, de la Universidad de La Rioja y Dña. Marta DIZY SOTO, Profesora Titular del Departamento de Agricultura y Alimentación, de la Universidad de La Rioja CERTIFICAN Que la presente memoria, titulada “Estudio químico-sensorial de la composición no volátil de los vinos.
    [Show full text]
  • Enartis News – FAQ on Wine Fining
    ENARTIS NEWS FAQ ON WINE FINING WHY FINING? HOW TO CHOOSE THE RIGHT FINING Fining agents can be used for many purposes in AGENT winemaking, including clarification, filterability Bench trials are essential to determine what fining improvement, prevention of haze and sediment agents to use and their dosages. To set up bench formation, organoleptic profile improvement, color trials, follow these steps: adjustment and removal of undesirable elements or flavors. The fining process is therefore a crucial • Prepare fining agent solution in water as stage in the production of all wine types. recommended on the technical data sheet. For liquid products, use solution as is or dilute, if HOW DOES FINING WORK? necessary. Each fining agent has specific properties and reacts • Label each sample bottle. Keep one untreated with various wine constituents depending on its sample as a control. origin, density of charge, molecular weight and • Fill samples with wine and leave some space for chemical properties. the addition. Fining involves two crucial reactions: • Add the fining agent solution. Flocculation: molecular interactions based on • Mix immediately after addition. Top each bottle charge, chemical bonds, absorption or adsorption with wine and mix again. of compounds and formation of flocculates. • Store wine at winery temperature for settling Sedimentation: flocculates formed are not soluble (usually 1-2 days). and heavier than wine/juice. They settle with time. • Evaluate the results (turbidity, volume of lees, WHAT ARE THE MAIN FACTORS THAT color, sensory, stability, etc.) INFLUENCE FINING EFFECTIVENESS? HOW TO EVALUATE FINING RESULTS Product preparation and addition, temperature, pH, Depending on the goal, several parameters can be wine redox potential and previous fining treatments used to evaluate the results of a fining treatment: are factors that can influence the effectiveness of turbidity, volume of lees, filterability, color intensity fining.
    [Show full text]
  • On the Density of Nice Friedmans
    On the density of nice Friedmans Michael Brand [email protected] Monash University School of IT Clayton, VIC 3800 Australia May 26, 2018 Abstract A Friedman number is a positive integer which is the result of an expression combining all of its own digits by use of the four basic op- erations, exponentiation and digit concatenation. A “nice” Friedman number is a Friedman number for which the expression constructing the number from its own digits can be represented with the original order of the digits unchanged. One of the fundamental questions re- garding Friedman numbers, and particularly regarding nice Friedman numbers, is how common they are among the integers. In this paper, we prove that nice Friedman numbers have density 1, when considered in binary, ternary or base four. arXiv:1310.2390v1 [math.NT] 9 Oct 2013 1 Introduction Friedman numbers [2, 3] are numbers that can be computed from their own digits, each digit used exactly once, by use of the four basic arithmetic opera- tions, exponentiation and digit concatenation (as long as digit concatenation is not the only operation used). Parentheses can be used at will. An example of a Friedman number is 25, which can be represented as 52. An example of a non-Friedman number is any power of 10, because no power of 10 can 1 be expressed as the result of a computation using only arithmetic operations and exponentiation if the initial arguments in the computation are a smaller power of 10 and several zeros. Several interesting subsets of Friedman numbers have been defined since the introduction of Friedman numbers.
    [Show full text]
  • Finishing Processes: from Brilli(A)Nt to Ha(Z)Y
    Finishing Processes: From Brilli(A)nt to Ha(Z)y John Mallett Aaron Moberger Lead Cellar Operator Cellar Manager Mass Bay Brewing Co. Mass Bay Brewing Co. Objectives Provide overview of finishing processes Review finishing and stabilization regimens for: Pilsner English Ale Witbier New England Style IPA How to tweak your equipment to suit several different styles Performing efficient changeovers between styles Goals of Finishing Appearance While appearances vary significantly, still an integral component of style Indication of whether we finished the beer to our standards Stability Should be the same when we would pull it off the shelf as it was on day one Flavor Remove bitterness, “roughness”, yeast and/or hop bite Results based as much on design and upstream processes as on day-of finishing process How? Conditioning Finings Select Separation removal of particles • In tank • Centrifuge • Filter General Recommendations Start from your end goal and work backward Pay attention to upstream practices Set up templates for producing similar styles Put a premium on operator training Conditioning Time Temperature Colloidal stability Protein/polyphenol complexes, precipitation Flocculation and sedimentation of yeast Finings Overview Typically work by binding either to yeast/proteins or tannins/polyphenols Proteins: isinglass, silica, tannic acid Tannins: PVPP Some products are a combination Larger, denser particles settle faster Hot and cold side options Yield and chill proofing benefits Separation – Settling Settling in fermentation vessel, bright
    [Show full text]
  • National Collegiate ) Athletic Association ) No
    Case 4:14-md-02541-CW Document 941 Filed 07/25/18 Page 1 of 119 PAGES 1 - 118 UNITED STATES DISTRICT COURT NORTHERN DISTRICT OF CALIFORNIA BEFORE THE HONORABLE CLAUDIA WILKEN, JUDGE IN RE: NATIONAL COLLEGIATE ) ATHLETIC ASSOCIATION ) NO. 14-MD-2541 CW ATHLETIC GRANT-IN-AID CAP ) ANTITRUST LITIGATION ) ) MARTIN JENKINS, ET AL., ) NO. C-14-2758 CW ) PLAINTIFFS, ) ) THURSDAY, JULY 19, 2018 VS. ) ) NATIONAL COLLEGIATE ) OAKLAND, CALIFORNIA ATHLETIC ASSOCIATION, ET AL.) ) PRETRIAL CONFERENCE DEFENDANTS. ) ____________________________) REPORTER'S TRANSCRIPT OF PROCEEDINGS FOR PLAINTIFFS: HAGENS BERMAN SOBOL SHAPIRO LLP 1918 EIGHTH AVENUE, SUITE 3300 SEATTLE, WASHINGTON 98101 BY: STEVE W. BERMAN, ESQUIRE JEFF D. FRIEDMAN, ESQUIRE WINSTON & STRAWN LLP 200 PARK AVENUE NEW YORK, NEW YORK 10166 BY: JEFFREY L. KESSLER, ESQUIRE JOSEPH A. LITMAN, ESQUIRE DAVID L. GREENSPAN, ESQUIRE (APPEARANCES CONTINUED) REPORTED BY: DIANE E. SKILLMAN, CSR NO. 4909 OFFICIAL COURT REPORTER TRANSCRIPT PRODUCED BY COMPUTER-AIDED TRANSCRIPTION DIANE E. SKILLMAN, OFFICIAL COURT REPORTER, USDC Case 4:14-md-02541-CW Document 941 Filed 07/25/18 Page 2 of 119 2 1 FOR PLAINTIFFS: WINSTON & STRAWN LLP 101 CALIFORNIA STREET 2 SAN FRANCISCO, CALIFORNIA 94111 BY: SEAN D. MEENAN, ESQUIRE 3 JEANIFER E. PARSIGIAN, ESQUIRE 4 FOR PLAINTIFFS : PEARSON SIMON WARSHAW LLP 44 MONTGOMERY STREET, SUITE 2450 5 SAN FRANCISCO, CALIFORNIA 94104 BY: BENJAMIN E. SHIFTAN, ESQUIRE 6 BRUCE L. SIMON, ESQUIRE 7 PRITZKER LEVINE LLP 8 180 GRAND AVNEUE, SUITE 1390 OAKLAND, CALIFORNIA 94612 9 BY: ELIZABETH C. PRITZKER, ESQUIRE 10 11 FOR DEFENDANT WILKINSON WALSH + ESKOVITZ NCAA: 2001 M STREET NW, 10TH FLOOR 12 WASHINGTON, DC 20036 BY: BETH A.
    [Show full text]
  • Science Sixtyfourth64 National Conference a Platform for Progress
    science sixtyfourth64 national conference a platform for progress 64th ASEV National Conference June 24–28, 2013 Portola Hotel and Monterey Conference Center Monterey, California USA TECHNICAL ABSTRACTS american society for enology and viticulture 2013 National Conference Technical Abstracts Oral Presentation Abstracts Wednesday, June 26 Enology — Flavor/Analysis ....................................................................59–62 Viticulture — Rootstocks .......................................................................63–66 Enology — Micro/Molecular Biology ....................................................67–70 Viticulture — Pests & Diseases ..............................................................71–74 Enology — Sensory/Sensory Impacts .....................................................75–78 Viticulture — Environmental Impacts ..................................................79–82 Enology — Flavor: Impact of Yeast and Bacteria ....................................83–86 Viticulture — General ...........................................................................87–90 Thursday, June 27 Enology — Wine Stability and Oxidation ..............................................91–93 Viticulture — Cultural Practices ............................................................94–96 Enology — Tannins (Part I) .................................................................97–100 Viticulture — Water Relations ...........................................................101–105 Enology — Tannins (Part II) ..............................................................106–108
    [Show full text]
  • Fining Agents 101 a Wine Circle Tutorial and Tas Ng
    Fining Agents 101 A Wine Circle Tutorial and Tasng Contribu)ons by: John Osler Allan Jost Pat and Terry Rowell Jim and Ann Drysdale 12 November 2017 Fining Agents 101 2 Acknowledgement • Thanks to Pat Othen For her assistance in providing some oF the smaller carboys involved in the experiment. Fining Agents 101 3 Mo)vaons • Members oF the Wine Circle omit various fining agents. What, iF any, are the effects? – “…some fining agents also reduce astringency or bierness, remove off-odors, and strip out browning caused by oxidaon….With some fining agents there is a trade-off; while removing suspended solids and doing the job they were intended for, they may also strip or remove some color, body, taste and aroma from the wine...” [WineMaker Magazine] Fining Agents 101 4 Fining vs Filtraon • Fining is the process where a substance (fining agent) is added to the wine to create an adsorbent, enzymac or ionic bond with the suspended par)cles, producing larger molecules and larger par)cles that will precipitate out oF the wine more readily and rapidly. • Fining can remove soluble substances such as polymerized tannins, coloring phenols and proteins. • Filtraon can only remove par)culates (such as dead yeast cells and grape Fragments). Fining Agents 101 5 Types oF Fining Agents Organic compounds: generally animal based, the most common organic compounds used include egg whites, gelan, and isinglass obtained From the bladders oF fish Pulverized minerals and solid materials: can also be used, with bentonite clay being one oF the most common, thanks to its effec)veness in absorbing proteins and some bacteria.
    [Show full text]