Mathfest 2018

Total Page:16

File Type:pdf, Size:1020Kb

Mathfest 2018 Abstracts of Papers Presented at MathFest 2018 Denver, CO August 1 – 4, 2018 Published and Distributed by The Mathematical Association of America Contents Invited Addresses 1 Earle Raymond Hedrick Lecture Series by Gigliola Staffilani . 1 Nonlinear Dispersive Equations and the Beautiful Mathematics That Comes with Them Lecture 1: Thursday, August 2, 11:00–11:50 AM, Plaza Ballroom A, B, & C, Plaza Building Lecture 2: Friday, August 3, 10:30–11:20 AM, Plaza Ballroom A, B, & C, Plaza Building Lecture 3: Saturday, August 4, 10:00–10:50 AM, Plaza Ballroom A, B, & C, Plaza Building . 1 AMS-MAA Joint Invited Address . 1 Gravity’s Action on Light: A Mathematical Journey by Arlie Petters Thursday, August 2, 10:00–10:50 AM, Plaza Ballroom A, B, & C, Plaza Building . 1 MAA Invited Address . 1 Inclusion-exclusion in Mathematics: Who Stays in, Who Falls out, Why It Happens, and What We Should Do About It by Eugenia Cheng Friday, August 3, 11:30–12:20 AM, Plaza Ballroom A, B, & C, Plaza Building . 1 Snow Business: Scientific Computing in the Movies and Beyond by Joseph Teran Saturday, August 4, 11:00–11:50 AM, Plaza Ballroom A, B, & C, Plaza Building . 1 Mathematical Medicine: Modeling Disease and Treatment by Lisette de Pillis Thursday, August 2, 9:00–9:50 AM, Plaza Ballroom A, B, & C, Plaza Building . 2 MAA James R.C. Leitzel Lecture . 2 The Relationship between Culture and the Learning of Mathematics by Talitha Washington Saturday, August 4, 9:00–9:50 AM, Plaza Ballroom A, B, & C, Plaza Building . 2 AWM-MAA Etta Z. Falconer Lecture . 2 Finding Ellipses by Pamela Gorkin Friday, August 3, 9:30–10:20 AM, Plaza Ballroom A, B, & C, Plaza Building . 2 MAA Chan Stanek Lecture for Students . 2 FAIL: A Mathematician’s Apology by Laura Taalman Thursday, August 2, 1:30–2:20 PM, Plaza Ballroom A, B, & C, Plaza Building . 2 Pi Mu Epsilon J. Sutherland Frame Lecture . 3 The Singular Uniformity of Large Random Systems by Peter Winkler Wednesday, August 1, 8:00–8:50 PM, Plaza Ballroom A, B, & C, Plaza Building . 3 NAM David Harold Blackwell Lecture . 3 Continuous, Discrete, or Somewhere in Between: An Introduction to Time Scales with Applications by Raegan Higgins Friday, August 3, 1:30–2:20 PM, Plaza Ballroom A, B, & C, Plaza Building . 3 Alder Awards 4 Alder Awards Friday, August 3, 2:30–3:50 PM, Plaza Ballroom, A, B, & C, Plaza Building . 4 Creativity Amidst Adversity by Mohamed Omar Friday, August 3, 2:30–2:50 PM, Plaza Ballroom, A, B, & C, Plaza Building . 4 Way to Fail! by David Clark Friday, August 3, 3:00–3:20 PM, Plaza Ballroom, A, B, & C, Plaza Building . 4 Mathematics by Design by Chad Awtrey Friday, August 3, 3:30–3:50 PM, Plaza Ballroom, A, B, & C, Plaza Building . 4 iii iv Contents Invited Paper Sessions 5 The MAA Instructional Practices Guide in Action Thursday, August 2, 3:00–5:30 PM, Plaza Ballroom E, Plaza Building . 5 Bridging Network Science and Graph Theory Thursday, August 2, 1:30–4:20 PM, Grand Ballroom II, Tower Building . 6 Geometric Ideas and Where to Find Them Friday, August 3, 1:30–4:20 PM, Plaza Ballroom D, Plaza Building . 7 Modeling Biological Rhythms Friday, August 3, 1:30–4:50 PM, Plaza Ballroom E, Plaza Building . 8 Strategies to Synergize Culture in the Learning and Doing of Mathematics Saturday, August 4, 1:30–3:20 PM, Plaza Ballroom E, Plaza Building . 10 Category Theory for All Saturday, August 4, 1:30–4:20 PM, Plaza Ballroom D, Plaza Building . 11 Contributed Paper Sessions 13 A Number is Never an Answer: Developing Mathematical Thinking and Communication Through Writing Part A: Thursday, August 2, 1:30–5:45 PM, Governor’s Square 10, Plaza Building . 13 Part B: Friday, August 3, 9:00 AM - 12:15 AM–12:15 PM, Governor’s Square 10, Plaza Building . 15 Advancing Women in Mathematics: On the Ground Initiatives Thursday, August 2, 1:30–5:25 PM, Governor’s Square 14, Plaza Building . 17 Best Practices and Innovation in the Teaching of Discrete Mathematics Friday, August 3, 1:30–4:45 PM, Governor’s Square 10, Plaza Building . 20 Encouraging Effective Teaching Innovation Part A: Thursday, August 2, 9:00–11:55 AM, Governor’s Square 12, Plaza Building . 22 Part B: Thursday, August 2, 1:30–6:05 PM, Governor’s Square 12, Plaza Building . 24 Fostering Undergraduate Interdisciplinarity Friday, August 3, 1:30–6:25 PM, Governor’s Square 15, Plaza Building . 27 Great Circles, Great Problems Thursday, August 2, 1:30–5:25 PM, Governor’s Square 15, Plaza Building . 30 Inquiry-Based Learning and Teaching Part A: Friday, August 3, 9:30 AM–12:25 PM, Governor’s Square 14, Plaza Building . 32 Part B: Friday, August 3, 1:30–5:45 PM, Governor’s Square 14, Plaza Building . 34 Part C: Saturday, August 4, 9:00 AM–12:15 PM, Governor’s Square 14, Plaza Building . 36 Mastery Grading Part A: Thursday, August 2, 1:30–4:05 PM, Governor’s Square 11, Plaza Building . 38 Part B: Friday, August 3, 1:30–5:05 PM, Governor’s Square 11, Plaza Building . 40 Part C: Saturday, August 4, 1:30–3:05 PM, Governor’s Square 11, Plaza Building . 42 Mathematical Themes in a First-Year Seminar Thursday, August 2, 1:30–5:05 PM, Governor’s Square 16, Plaza Building . 43 Mathematics and the Life Sciences: Initiatives, Programs, Curricula Saturday, August 4, 1:30–3:25 PM, Governor’s Square 17, Plaza Building . 46 Mathematics Research Experiences for K–12 Teachers and Students Thursday, August 2, 1:30–3:45 PM, Governor’s Square 17, Plaza Building . 47 Modeling-Based Teaching and Learning in Differential Equations Courses Saturday, August 4, 1:00–4:55 PM, Governor’s Square 15, Plaza Building . 49 Priming the Calculus Pump: Fresh Approaches to Teaching First-Year Calculus Part A: Friday, August 3, 9:30 AM–12:25 PM, Governor’s Square 16, Plaza Building . 51 Part B: Friday, August 3, 1:30–5:25 PM, Governor’s Square 16, Plaza Building . 54 Part C: Saturday, August 4, 9:00–11:35 AM, Governor’s Square 16, Plaza Building . 56 Ready or Not: Corequisite Courses and Just-in-Time Review Friday, August 3, 1:30–5:05 PM, Governor’s Square 17, Plaza Building . 58 Recreational Mathematics: Puzzles, Card Tricks, Games, Gambling and Sports Part A: Friday, August 3, 10:30 AM–12:25 PM, Grand Ballroom II, Tower Building . 60 Part B: Friday, August 3, 1:30–5:15 PM, Grand Ballroom II, Tower Building . 61 Part C: Saturday, August 4, 9:00–11:35 AM, Grand Ballroom II, Tower Building . 63 Contents v Research in Undergraduate Mathematics Education (RUME) Thursday, August 2, 1:30–4:45 PM, Plaza Ballroom D, Plaza Building . 65 Teaching Undergraduate Mathematics with Primary Historical Sources Part A: Friday, August 3, 1:30–4:45 PM, Governor’s Square 12, Plaza Building . 67 Part B: Saturday, August 4, 1:30–5:30 PM, Governor’s Square 12, Plaza Building . 69 The Capstone Experience for Mathematics Majors Saturday, August 4, 1:30–3:45 PM, Governor’s Square 10, Plaza Building . 70 General Contributed Poster Sessions 73 General Contributed Poster Session I Thursday, August 2, 1:30–3:00 PM, Plaza Exhibit Hall . 73 General Contributed Poster Session II Thursday, August 2, 3:30–5:00 PM, Plaza Exhibit Hall . 79 General Contributed Poster Session III Friday, August 3, 1:00–2:30 PM, Plaza Exhibit Hall . 85 Graduate Student Session 93 Great Talks for a General Audience Saturday, August 4, 1:00–5:00 PM, Governer’s Square 9, 10, 14 . 93 PosterFest 2018 97 PosterFest Friday, August 3, 3:00–4:30 PM, Plaza Exhibit Hall . 97 Index of Speakers 101 Invited Addresses 1 Invited Addresses Earle Raymond Hedrick Lecture Series Gigliola Staffilani Massachusetts Institute of Technology Nonlinear Dispersive Equations and the Beautiful Mathematics That Comes with Them s Lecture 1: Thursday, August 2, 11:00–11:50 AM, Plaza Ballroom A, B, & C, Plaza Building Lecture 2: Friday, August 3, 10:30–11:20 AM, Plaza Ballroom A, B, & C, Plaza Building Lecture 3: Saturday, August 4, 10:00–10:50 AM, Plaza Ballroom A, B, & C, Plaza Building In these lectures I will give an overview of the rich mathematical structures that characterize the wave solutions of some of the most important nonlinear partial differential equations, such as the Schrodinger¨ equation. In doing so I will illustrate how beautiful pieces of mathematics, developed using different tools, not just coming from analysis, have been generated over the years in order to answer some of the most fundamental questions for these equations, such as existence and uniqueness of solutions for example. Along the way I will formulate open questions and possible new directions of investigation. AMS-MAA Joint Invited Address Thursday, August 2, 10:00–10:50 AM, Plaza Ballroom A, B, & C, Plaza Building Arlie Petters Duke University Gravity’s Action on Light: A Mathematical Journey The gravitational fields of stars, black holes, and galaxies act on light propagating near them, casting magnification patterns in space. Such optical phenomena have wide-ranging physical applications, including detecting extrasolar planets and testing for a fifth dimension of the universe. Assuming no background in astrophysics or cosmology, this talk will take you on a mathematical journey unveiling the intriguing properties of these beautiful magnification patterns. MAA Invited Address Friday, August 3, 11:30–9:50 AM, Plaza Ballroom A, B, & C, Plaza Building Eugenia Cheng School of the Art Institute of Chicago Inclusion-exclusion in Mathematics: Who Stays in, Who Falls out, Why It Happens, and What We Should Do About It The question of why women are under-represented in mathematics is complex and there are no simple answers, only many contributing factors.
Recommended publications
  • Arxiv:1911.09220V2 [Cs.MS] 13 Jul 2020
    MFEM: A MODULAR FINITE ELEMENT METHODS LIBRARY ROBERT ANDERSON, JULIAN ANDREJ, ANDREW BARKER, JAMIE BRAMWELL, JEAN- SYLVAIN CAMIER, JAKUB CERVENY, VESELIN DOBREV, YOHANN DUDOUIT, AARON FISHER, TZANIO KOLEV, WILL PAZNER, MARK STOWELL, VLADIMIR TOMOV Lawrence Livermore National Laboratory, Livermore, USA IDO AKKERMAN Delft University of Technology, Netherlands JOHANN DAHM IBM Research { Almaden, Almaden, USA DAVID MEDINA Occalytics, LLC, Houston, USA STEFANO ZAMPINI King Abdullah University of Science and Technology, Thuwal, Saudi Arabia Abstract. MFEM is an open-source, lightweight, flexible and scalable C++ library for modular finite element methods that features arbitrary high-order finite element meshes and spaces, support for a wide variety of dis- cretization approaches and emphasis on usability, portability, and high-performance computing efficiency. MFEM's goal is to provide application scientists with access to cutting-edge algorithms for high-order finite element mesh- ing, discretizations and linear solvers, while enabling researchers to quickly and easily develop and test new algorithms in very general, fully unstructured, high-order, parallel and GPU-accelerated settings. In this paper we describe the underlying algorithms and finite element abstractions provided by MFEM, discuss the software implementation, and illustrate various applications of the library. arXiv:1911.09220v2 [cs.MS] 13 Jul 2020 1. Introduction The Finite Element Method (FEM) is a powerful discretization technique that uses general unstructured grids to approximate the solutions of many partial differential equations (PDEs). It has been exhaustively studied, both theoretically and in practice, in the past several decades [1, 2, 3, 4, 5, 6, 7, 8]. MFEM is an open-source, lightweight, modular and scalable software library for finite elements, featuring arbitrary high-order finite element meshes and spaces, support for a wide variety of discretization approaches and emphasis on usability, portability, and high-performance computing (HPC) efficiency [9].
    [Show full text]
  • MFEM: a Modular Finite Element Methods Library
    MFEM: A Modular Finite Element Methods Library Robert Anderson1, Andrew Barker1, Jamie Bramwell1, Jakub Cerveny2, Johann Dahm3, Veselin Dobrev1,YohannDudouit1, Aaron Fisher1,TzanioKolev1,MarkStowell1,and Vladimir Tomov1 1Lawrence Livermore National Laboratory 2University of West Bohemia 3IBM Research July 2, 2018 Abstract MFEM is a free, lightweight, flexible and scalable C++ library for modular finite element methods that features arbitrary high-order finite element meshes and spaces, support for a wide variety of discretization approaches and emphasis on usability, portability, and high-performance computing efficiency. Its mission is to provide application scientists with access to cutting-edge algorithms for high-order finite element meshing, discretizations and linear solvers. MFEM also enables researchers to quickly and easily develop and test new algorithms in very general, fully unstructured, high-order, parallel settings. In this paper we describe the underlying algorithms and finite element abstractions provided by MFEM, discuss the software implementation, and illustrate various applications of the library. Contents 1 Introduction 3 2 Overview of the Finite Element Method 4 3Meshes 9 3.1 Conforming Meshes . 10 3.2 Non-Conforming Meshes . 11 3.3 NURBS Meshes . 12 3.4 Parallel Meshes . 12 3.5 Supported Input and Output Formats . 13 1 4 Finite Element Spaces 13 4.1 FiniteElements....................................... 14 4.2 DiscretedeRhamComplex ................................ 16 4.3 High-OrderSpaces ..................................... 17 4.4 Visualization . 18 5 Finite Element Operators 18 5.1 DiscretizationMethods................................... 18 5.2 FiniteElementLinearSystems . 19 5.3 Operator Decomposition . 23 5.4 High-Order Partial Assembly . 25 6 High-Performance Computing 27 6.1 Parallel Meshes, Spaces, and Operators . 27 6.2 Scalable Linear Solvers .
    [Show full text]
  • On the Density of Nice Friedmans
    On the density of nice Friedmans Michael Brand [email protected] Monash University School of IT Clayton, VIC 3800 Australia May 26, 2018 Abstract A Friedman number is a positive integer which is the result of an expression combining all of its own digits by use of the four basic op- erations, exponentiation and digit concatenation. A “nice” Friedman number is a Friedman number for which the expression constructing the number from its own digits can be represented with the original order of the digits unchanged. One of the fundamental questions re- garding Friedman numbers, and particularly regarding nice Friedman numbers, is how common they are among the integers. In this paper, we prove that nice Friedman numbers have density 1, when considered in binary, ternary or base four. arXiv:1310.2390v1 [math.NT] 9 Oct 2013 1 Introduction Friedman numbers [2, 3] are numbers that can be computed from their own digits, each digit used exactly once, by use of the four basic arithmetic opera- tions, exponentiation and digit concatenation (as long as digit concatenation is not the only operation used). Parentheses can be used at will. An example of a Friedman number is 25, which can be represented as 52. An example of a non-Friedman number is any power of 10, because no power of 10 can 1 be expressed as the result of a computation using only arithmetic operations and exponentiation if the initial arguments in the computation are a smaller power of 10 and several zeros. Several interesting subsets of Friedman numbers have been defined since the introduction of Friedman numbers.
    [Show full text]
  • FELICITY: a MATLAB/C++ TOOLBOX for DEVELOPING FINITE ELEMENT METHODS and SIMULATION MODELING\Ast
    SIAM J. SCI.COMPUT. \bigcircc 2018 Society for Industrial and Applied Mathematics Vol. 40, No. 2, pp. C234{C257 FELICITY: A MATLAB/C++ TOOLBOX FOR DEVELOPING FINITE ELEMENT METHODS AND SIMULATION MODELING\ast SHAWN W. WALKERy Abstract. This paper describes a MATLAB/C++ finite element toolbox, called FELICITY, for simulating various types of systems of partial differential equations (e.g., coupled elliptic/parabolic problems) using the finite element method. It uses MATLAB in an object-oriented way for high-level manipulation of data structures in finite element codes, while utilizing a domain-specific language (DSL) and code generation to automate low-level tasks such as matrix assembly (via the MATLAB mex interface). We describe the fundamental functionality of the toolbox's MATLAB interface, such as using higher order Lagrange (simplicial) meshes, defining finite element spaces, allocating degrees- of-freedom, assembling discrete bilinear and linear forms, and interpolation over meshes. Moreover, we describe in-depth how automatic code generation is implemented in FELICITY. Two example problems and their implementation are provided to demonstrate the ability of FELICITY to solve coupled problems with interacting subdomains of different co-dimension. Future improvements are also discussed. Key words. finite elements, coupled systems, geometric flows, code generation, MATLAB, open source software AMS subject \bfc \bfl \bfa \bfs \bfifi\bfc\bfa\bft\bfo\bfn. 68N30, 65N30, 65M60, 68N19, 68N20 DOI. 10.1137/17M1128745 1. Introduction. The development of numerical methods to solve partial dif- ferential equations (PDEs) continues to advance to address new domain areas and problems of increasing complexity. With this, the number of software packages has increased to address the needs for researching new methods and simulating large prob- lems.
    [Show full text]
  • Discover Linear Algebra Incomplete Preliminary Draft
    Discover Linear Algebra Incomplete Preliminary Draft Date: November 28, 2017 L´aszl´oBabai in collaboration with Noah Halford All rights reserved. Approved for instructional use only. Commercial distribution prohibited. c 2016 L´aszl´oBabai. Last updated: November 10, 2016 Preface TO BE WRITTEN. Babai: Discover Linear Algebra. ii This chapter last updated August 21, 2016 c 2016 L´aszl´oBabai. Contents Notation ix I Matrix Theory 1 Introduction to Part I 2 1 (F, R) Column Vectors 3 1.1 (F) Column vector basics . 3 1.1.1 The domain of scalars . 3 1.2 (F) Subspaces and span . 6 1.3 (F) Linear independence and the First Miracle of Linear Algebra . 8 1.4 (F) Dot product . 12 1.5 (R) Dot product over R ................................. 14 1.6 (F) Additional exercises . 14 2 (F) Matrices 15 2.1 Matrix basics . 15 2.2 Matrix multiplication . 18 2.3 Arithmetic of diagonal and triangular matrices . 22 2.4 Permutation Matrices . 24 2.5 Additional exercises . 26 3 (F) Matrix Rank 28 3.1 Column and row rank . 28 iii iv CONTENTS 3.2 Elementary operations and Gaussian elimination . 29 3.3 Invariance of column and row rank, the Second Miracle of Linear Algebra . 31 3.4 Matrix rank and invertibility . 33 3.5 Codimension (optional) . 34 3.6 Additional exercises . 35 4 (F) Theory of Systems of Linear Equations I: Qualitative Theory 38 4.1 Homogeneous systems of linear equations . 38 4.2 General systems of linear equations . 40 5 (F, R) Affine and Convex Combinations (optional) 42 5.1 (F) Affine combinations .
    [Show full text]
  • National Collegiate ) Athletic Association ) No
    Case 4:14-md-02541-CW Document 941 Filed 07/25/18 Page 1 of 119 PAGES 1 - 118 UNITED STATES DISTRICT COURT NORTHERN DISTRICT OF CALIFORNIA BEFORE THE HONORABLE CLAUDIA WILKEN, JUDGE IN RE: NATIONAL COLLEGIATE ) ATHLETIC ASSOCIATION ) NO. 14-MD-2541 CW ATHLETIC GRANT-IN-AID CAP ) ANTITRUST LITIGATION ) ) MARTIN JENKINS, ET AL., ) NO. C-14-2758 CW ) PLAINTIFFS, ) ) THURSDAY, JULY 19, 2018 VS. ) ) NATIONAL COLLEGIATE ) OAKLAND, CALIFORNIA ATHLETIC ASSOCIATION, ET AL.) ) PRETRIAL CONFERENCE DEFENDANTS. ) ____________________________) REPORTER'S TRANSCRIPT OF PROCEEDINGS FOR PLAINTIFFS: HAGENS BERMAN SOBOL SHAPIRO LLP 1918 EIGHTH AVENUE, SUITE 3300 SEATTLE, WASHINGTON 98101 BY: STEVE W. BERMAN, ESQUIRE JEFF D. FRIEDMAN, ESQUIRE WINSTON & STRAWN LLP 200 PARK AVENUE NEW YORK, NEW YORK 10166 BY: JEFFREY L. KESSLER, ESQUIRE JOSEPH A. LITMAN, ESQUIRE DAVID L. GREENSPAN, ESQUIRE (APPEARANCES CONTINUED) REPORTED BY: DIANE E. SKILLMAN, CSR NO. 4909 OFFICIAL COURT REPORTER TRANSCRIPT PRODUCED BY COMPUTER-AIDED TRANSCRIPTION DIANE E. SKILLMAN, OFFICIAL COURT REPORTER, USDC Case 4:14-md-02541-CW Document 941 Filed 07/25/18 Page 2 of 119 2 1 FOR PLAINTIFFS: WINSTON & STRAWN LLP 101 CALIFORNIA STREET 2 SAN FRANCISCO, CALIFORNIA 94111 BY: SEAN D. MEENAN, ESQUIRE 3 JEANIFER E. PARSIGIAN, ESQUIRE 4 FOR PLAINTIFFS : PEARSON SIMON WARSHAW LLP 44 MONTGOMERY STREET, SUITE 2450 5 SAN FRANCISCO, CALIFORNIA 94104 BY: BENJAMIN E. SHIFTAN, ESQUIRE 6 BRUCE L. SIMON, ESQUIRE 7 PRITZKER LEVINE LLP 8 180 GRAND AVNEUE, SUITE 1390 OAKLAND, CALIFORNIA 94612 9 BY: ELIZABETH C. PRITZKER, ESQUIRE 10 11 FOR DEFENDANT WILKINSON WALSH + ESKOVITZ NCAA: 2001 M STREET NW, 10TH FLOOR 12 WASHINGTON, DC 20036 BY: BETH A.
    [Show full text]
  • Mofem: an Open Source, Parallel Finite Element Library
    MoFEM: An open source, parallel finite element library Kaczmarczyk, Ł., Ullah, Z., Lewandowski, K., Meng, X., Zhou, X-Y., Athanasiadis, I., Nguyen, H., Chalons- Mouriesse, C-A., Richardson, E. J., Miur, E., Shvarts, A. G., Wakeni, M., & Pearce, C. J. (2020). MoFEM: An open source, parallel finite element library. The Journal of Open Source Software, 5(45). https://doi.org/doi.org/10.21105/joss.01441 Published in: The Journal of Open Source Software Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2020 The Authors. This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:06.
    [Show full text]
  • Living Proof Book
    Living Proof Stories of Resilience Along the Mathematical Journey 2010 Mathematics Subject Classification. Primary: 01A70, 01A80 The cover was designed by Ute Kraidy (ute-kraidy.com). Library of Congress Cataloging-in-Publication Data Names: Henrich, Allison K., 1980- editor. | Lawrence, Emille D., 1979- editor. | Pons, Matthew A., editor. | Taylor, David George, 1979- editor. Title: Living proof : stories of resilience along the mathematical journey / Allison K. Henrich, Emille D. Lawrence, Matthew A. Pons, David G. Taylor, editors. Description: Providence, Rhode Island : American Mathematical Society : Mathematical Association of America, [2019] | Includes bibliographical references. Identifiers: LCCN 2019015090 | ISBN 9781470452810 (alk. paper) Subjects: LCSH: Mathematics--Study and teaching--Social aspects. | Education--Social aspects. | Minorities--Education. | Academic achievement. | Student aspirations. | AMS: History and biography -- History of mathematics and mathematicians -- Biographies, obituaries, personalia, bibliographies. msc | History and biography -- History of mathematics and mathematicians -- Sociology (and profession) of mathematics. msc Classification: LCC QA11 .L7285 2019 | DDC 510--dc23 LC record available at https://lccn.loc.gov/2019015090 Copying and reprinting: Permission is granted to quote brief passages from this pub- lication in reviews, provided the customary acknowledgment of the source is given. Systematic copying, multiple reproduction and distribution are permitted under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license. Republication/reprinting and derivative use of any ma- terial in this publication is permitted only under license from the American Math- ematical Society. Contact [email protected] with permissions inquiries. © 2019 American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government.
    [Show full text]
  • Download Special Issue
    Scientific Programming Scientific Programming Techniques and Algorithms for Data-Intensive Engineering Environments Lead Guest Editor: Giner Alor-Hernandez Guest Editors: Jezreel Mejia-Miranda and José María Álvarez-Rodríguez Scientific Programming Techniques and Algorithms for Data-Intensive Engineering Environments Scientific Programming Scientific Programming Techniques and Algorithms for Data-Intensive Engineering Environments Lead Guest Editor: Giner Alor-Hernández Guest Editors: Jezreel Mejia-Miranda and José María Álvarez-Rodríguez Copyright © 2018 Hindawi. All rights reserved. This is a special issue published in “Scientific Programming.” All articles are open access articles distributed under the Creative Com- mons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board M. E. Acacio Sanchez, Spain Christoph Kessler, Sweden Danilo Pianini, Italy Marco Aldinucci, Italy Harald Köstler, Germany Fabrizio Riguzzi, Italy Davide Ancona, Italy José E. Labra, Spain Michele Risi, Italy Ferruccio Damiani, Italy Thomas Leich, Germany Damian Rouson, USA Sergio Di Martino, Italy Piotr Luszczek, USA Giuseppe Scanniello, Italy Basilio B. Fraguela, Spain Tomàs Margalef, Spain Ahmet Soylu, Norway Carmine Gravino, Italy Cristian Mateos, Argentina Emiliano Tramontana, Italy Gianluigi Greco, Italy Roberto Natella, Italy Autilia Vitiello, Italy Bormin Huang, USA Francisco Ortin, Spain Jan Weglarz, Poland Chin-Yu Huang, Taiwan Can Özturan, Turkey
    [Show full text]
  • Hexaflexagons, Probability Paradoxes, and the Tower of Hanoi
    HEXAFLEXAGONS, PROBABILITY PARADOXES, AND THE TOWER OF HANOI For 25 of his 90 years, Martin Gard- ner wrote “Mathematical Games and Recreations,” a monthly column for Scientific American magazine. These columns have inspired hundreds of thousands of readers to delve more deeply into the large world of math- ematics. He has also made signifi- cant contributions to magic, philos- ophy, debunking pseudoscience, and children’s literature. He has produced more than 60 books, including many best sellers, most of which are still in print. His Annotated Alice has sold more than a million copies. He continues to write a regular column for the Skeptical Inquirer magazine. (The photograph is of the author at the time of the first edition.) THE NEW MARTIN GARDNER MATHEMATICAL LIBRARY Editorial Board Donald J. Albers, Menlo College Gerald L. Alexanderson, Santa Clara University John H. Conway, F.R. S., Princeton University Richard K. Guy, University of Calgary Harold R. Jacobs Donald E. Knuth, Stanford University Peter L. Renz From 1957 through 1986 Martin Gardner wrote the “Mathematical Games” columns for Scientific American that are the basis for these books. Scientific American editor Dennis Flanagan noted that this column contributed substantially to the success of the magazine. The exchanges between Martin Gardner and his readers gave life to these columns and books. These exchanges have continued and the impact of the columns and books has grown. These new editions give Martin Gardner the chance to bring readers up to date on newer twists on old puzzles and games, on new explanations and proofs, and on links to recent developments and discoveries.
    [Show full text]
  • Magnification Cross Sections for the Elliptic Umbilic Caustic Surface
    Magnification Cross Sections for the Elliptic Umbilic Caustic Surface Amir B. Aazami Department of Mathematics & Computer Science, Clark University, Worcester, MA 01610; [email protected] Charles R. Keeton Department of Physics & Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019; [email protected] Arlie O. Petters Departments of Mathematics and Physics, Duke University, Science Drive, Durham, NC 27708-0320; [email protected] In gravitational lensing, magnification cross sections characterize the probability that a light source will have magnification greater than some fixed value, which is useful in a variety of applications. The (area) cross section is known to scale as µ−2 for fold caustics and µ−2:5 for cusp caustics. We aim to extend these results to higher-order caustic singularities, focusing on the elliptic umbilic, which can be manifested in lensing systems with two or three galaxies. The elliptic umbilic has a caustic surface, and we show that the volume cross section scales as µ−2:5 in the two-image region and µ−2 in the four-image region, where µ is the total unsigned magnification. In both cases our results are supported both numerically and analytically. I. INTRODUCTION Magnification cross sections are an important tool in gravitational lensing. Knowing the magnification cross section allows one to determine the probability that a light source will have magnification greater than some fixed value. This in turn gives information about the accuracy of cosmological models, since these predict different probabilities regarding source magnifications (see Schneider et al. 1992 [1], Kaiser 1992 [2], Bartelmann et al.
    [Show full text]
  • Combinatorial Game Theory
    Combinatorial Game Theory Aaron N. Siegel Graduate Studies MR1EXLIQEXMGW Volume 146 %QIVMGER1EXLIQEXMGEP7SGMIX] Combinatorial Game Theory https://doi.org/10.1090//gsm/146 Combinatorial Game Theory Aaron N. Siegel Graduate Studies in Mathematics Volume 146 American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE David Cox (Chair) Daniel S. Freed Rafe Mazzeo Gigliola Staffilani 2010 Mathematics Subject Classification. Primary 91A46. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-146 Library of Congress Cataloging-in-Publication Data Siegel, Aaron N., 1977– Combinatorial game theory / Aaron N. Siegel. pages cm. — (Graduate studies in mathematics ; volume 146) Includes bibliographical references and index. ISBN 978-0-8218-5190-6 (alk. paper) 1. Game theory. 2. Combinatorial analysis. I. Title. QA269.S5735 2013 519.3—dc23 2012043675 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to [email protected]. c 2013 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government.
    [Show full text]