Methyl Halide Production in Fungi Gail D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
UC San Diego Electronic Theses and Dissertations
UC San Diego UC San Diego Electronic Theses and Dissertations Title Vanadium-dependent bromoperoxidase in a marine Synechococcus / Permalink https://escholarship.org/uc/item/34x4t8rp Author Johnson, Todd Laurel Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Vanadium-dependent bromoperoxidase in a marine Synechococcus A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Marine Biology by Todd L. Johnson Committee in charge: Brian Palenik, Chair Bianca Brahamsha, Co-Chair Lihini Aluwihare James Golden Jens Mühle Bradley Moore 2013 Copyright Todd L. Johnson, 2013 All rights reserved. The dissertation of Todd L. Johnson is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ________________________________________________________ ________________________________________________________ ________________________________________________________ ________________________________________________________ ________________________________________________________ Co-Chair ________________________________________________________ Chair University of California, San Diego 2013 iii DEDICATION To Janet, Tim, and Andrew Johnson, for unconditional love and support. iv TABLE OF CONTENTS Signature Page……………………………………………………………………………iii Dedication ………………………………………………………………………………..iv Table of Contents………………………………………………………………………….v List -
How Many Fungi Make Sclerotia?
fungal ecology xxx (2014) 1e10 available at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/funeco Short Communication How many fungi make sclerotia? Matthew E. SMITHa,*, Terry W. HENKELb, Jeffrey A. ROLLINSa aUniversity of Florida, Department of Plant Pathology, Gainesville, FL 32611-0680, USA bHumboldt State University of Florida, Department of Biological Sciences, Arcata, CA 95521, USA article info abstract Article history: Most fungi produce some type of durable microscopic structure such as a spore that is Received 25 April 2014 important for dispersal and/or survival under adverse conditions, but many species also Revision received 23 July 2014 produce dense aggregations of tissue called sclerotia. These structures help fungi to survive Accepted 28 July 2014 challenging conditions such as freezing, desiccation, microbial attack, or the absence of a Available online - host. During studies of hypogeous fungi we encountered morphologically distinct sclerotia Corresponding editor: in nature that were not linked with a known fungus. These observations suggested that Dr. Jean Lodge many unrelated fungi with diverse trophic modes may form sclerotia, but that these structures have been overlooked. To identify the phylogenetic affiliations and trophic Keywords: modes of sclerotium-forming fungi, we conducted a literature review and sequenced DNA Chemical defense from fresh sclerotium collections. We found that sclerotium-forming fungi are ecologically Ectomycorrhizal diverse and phylogenetically dispersed among 85 genera in 20 orders of Dikarya, suggesting Plant pathogens that the ability to form sclerotia probably evolved 14 different times in fungi. Saprotrophic ª 2014 Elsevier Ltd and The British Mycological Society. All rights reserved. Sclerotium Fungi are among the most diverse lineages of eukaryotes with features such as a hyphal thallus, non-flagellated cells, and an estimated 5.1 million species (Blackwell, 2011). -
Xéromphale Des Feuillus (Xeromphalina Fraxiniphila) Sur Les Pas De Huijsman, Mycologue Néerlandais De Renom… François Freléchoux
SZP | BSM 4 | 2020 Pilzporträt 8 | Portrait d'un champignon 8 | Il fungo speciale 8 Xéromphale des feuillus (Xeromphalina fraxiniphila) Sur les pas de Huijsman, mycologue néerlandais de renom… FRANÇOIS FRELÉCHOUX H. S. C. Huijsman (1900-1986) était mé- d’altitude, à l’exemple du bas du canton et lisses qui roulent et glissent parfois decin-oculiste de formation (Bas 1987). de Neuchâtel. Les temps sont révolus sous nos pieds le long des sentiers. Très tôt, il s’est intéressé aux agaricales. où nous trouvions en quantité ces orga- Au-dessus de Neuchâtel, au sud du Il avait établi de très nombreux contacts nismes en septembre déjà, à la faveur Vallon de l’Ermitage, on trouve ces fa- avec des mycologues étrangers, en par- des pluies de fin d’été. Depuis quelques meux placages morainiques qui rendent ticulier avec des mycologues français. Il décennies, nos récoltes sont particulière- le milieu acide localement, en alternance prit sa retraite en 1953 puis, en 1958, ment maigres, malgré des prospections avec les formations calcicoles domi- il s’établit avec son épouse au pied du régulières. Alors, quelle surprise et quel nantes. En exposition sud, thermophile, Jura suisse, en pays neuchâtelois et y bonheur de voir autant de fructifications c’est le domaine de la chênaie pubes- resta durant 11 ans avant de regagner en cette fin d’automne 2019, particuliè- cente (Coronillo-Quercetum) qui est liée son pays natal. Cette période fut très rement arrosée. aux lapiez calcaires. En même exposition féconde pour ses recherches en mycolo- La géologie du lieu est très intéressante. -
Field Guide to Common Macrofungi in Eastern Forests and Their Ecosystem Functions
United States Department of Field Guide to Agriculture Common Macrofungi Forest Service in Eastern Forests Northern Research Station and Their Ecosystem General Technical Report NRS-79 Functions Michael E. Ostry Neil A. Anderson Joseph G. O’Brien Cover Photos Front: Morel, Morchella esculenta. Photo by Neil A. Anderson, University of Minnesota. Back: Bear’s Head Tooth, Hericium coralloides. Photo by Michael E. Ostry, U.S. Forest Service. The Authors MICHAEL E. OSTRY, research plant pathologist, U.S. Forest Service, Northern Research Station, St. Paul, MN NEIL A. ANDERSON, professor emeritus, University of Minnesota, Department of Plant Pathology, St. Paul, MN JOSEPH G. O’BRIEN, plant pathologist, U.S. Forest Service, Forest Health Protection, St. Paul, MN Manuscript received for publication 23 April 2010 Published by: For additional copies: U.S. FOREST SERVICE U.S. Forest Service 11 CAMPUS BLVD SUITE 200 Publications Distribution NEWTOWN SQUARE PA 19073 359 Main Road Delaware, OH 43015-8640 April 2011 Fax: (740)368-0152 Visit our homepage at: http://www.nrs.fs.fed.us/ CONTENTS Introduction: About this Guide 1 Mushroom Basics 2 Aspen-Birch Ecosystem Mycorrhizal On the ground associated with tree roots Fly Agaric Amanita muscaria 8 Destroying Angel Amanita virosa, A. verna, A. bisporigera 9 The Omnipresent Laccaria Laccaria bicolor 10 Aspen Bolete Leccinum aurantiacum, L. insigne 11 Birch Bolete Leccinum scabrum 12 Saprophytic Litter and Wood Decay On wood Oyster Mushroom Pleurotus populinus (P. ostreatus) 13 Artist’s Conk Ganoderma applanatum -
Title of Manuscript
Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 7(1): 8–18 (2017) ISSN 2229-2225 www.creamjournal.org Article Doi 10.5943/cream/7/1/2 Copyright © Beijing Academy of Agriculture and Forestry Sciences Eco-diversity, productivity and distribution frequency of mushrooms in Gurguripal Eco-forest, Paschim Medinipur, West Bengal, India Krishanu Singha, Amrita Banerjee, Bikash Ranjan Pati, Pradeep Kumar Das Mohapatra* Department of Microbiology, Vidyasagar University, Midnapore – 721 102, West Bengal, India Singha K, Banerjee A, Pati BR, Das Mohapatra PK 2017 – Eco-diversity, productivity and distribution frequency of mushrooms in Gurguripal Eco-forest, Paschim Medinipur, West Bengal, India. Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 7(1), 8–18, Doi 10.5943/cream/7/1/2 Abstract Gurguripal is a forest based rural area situated in Paschim Medinipur District, West Bengal, India. It is located at 22°25" - 35°8"N latitude and 87°13" - 42°4"E longitude, having an altitude about 60 M. This area represents tropical evergreen and deciduous mixed type of forest dominated mainly by „Sal‟. The present study deals with the status of mushroom diversity and productivity in Gurguripal Eco-forest. Field survey has been conducted from May 2014 to October 2015 and a total of 71 mushroom species of 41 genera belonging to 24 families were recorded including 32 edible, 39 inedible and altogether 19 medicinally potential mushrooms. The genus Russula exhibited the maximum number of species and the family Tricholomataceae represented the maximum number of individuals. According to Simpson‟s index of diversity, the calculated value of species richness was 0.92 and as to Shannon‟s diversity index, the relative abundance of species was found to be 2.206. -
Key Features for the Identification of the Fungi in This Guide
Further information Key features for the identifi cation Saprotrophic recycler fungi Books and References of the fungi in this guide Mushrooms. Roger Phillips (2006). Growth form. Fungi come in many different shapes and Fruit body colours. The different parts of the fruit body Collybia acervata Conifer Toughshank. Cap max. 5cm. Macmillan. Excellent photographs and descriptions including sizes. In this fi eld guide most species are the classic can be differently coloured and it is also important This species grows in large clusters often on the ground many species from pinewoods and other habitats. toadstool shape with a cap and stem but also included to remember that the caps sometimes change colour but possibly growing on buried wood. Sometimes there are are some that grow out of wood like small shelves or completely or as they dry out. Making notes or taking Fungi. Roy Watling and Stephen Ward (2003). several clusters growing ± in a ring. The caps are reddish brackets and others that have a coral- like shape. Take photographs can help you remember what they looked Naturally Scottish Series. Scottish Natural Heritage, Battleby, Perth. brown but dry out to a buff colour. The stems are smooth, note of whether the fungus is growing alone, trooping like when fresh. In some fungi the fl esh changes colour Good introduction to fungi in Scotland. and red brown and the gills are white and variably attached, or in a cluster. when it is damaged. Try cutting the fungus in half or Fungi. Brian Spooner and Peter Roberts (2005). adnate to free. Spore print white. -
Biodiversity and Threats in Non-Protected Areas: a Multidisciplinary and Multi-Taxa Approach Focused on the Atlantic Forest
Heliyon 5 (2019) e02292 Contents lists available at ScienceDirect Heliyon journal homepage: www.heliyon.com Biodiversity and threats in non-protected areas: A multidisciplinary and multi-taxa approach focused on the Atlantic Forest Esteban Avigliano a,b,*, Juan Jose Rosso c, Dario Lijtmaer d, Paola Ondarza e, Luis Piacentini d, Matías Izquierdo f, Adriana Cirigliano g, Gonzalo Romano h, Ezequiel Nunez~ Bustos d, Andres Porta d, Ezequiel Mabragana~ c, Emanuel Grassi i, Jorge Palermo h,j, Belen Bukowski d, Pablo Tubaro d, Nahuel Schenone a a Centro de Investigaciones Antonia Ramos (CIAR), Fundacion Bosques Nativos Argentinos, Camino Balneario s/n, Villa Bonita, Misiones, Argentina b Instituto de Investigaciones en Produccion Animal (INPA-CONICET-UBA), Universidad de Buenos Aires, Av. Chorroarín 280, (C1427CWO), Buenos Aires, Argentina c Grupo de Biotaxonomía Morfologica y Molecular de Peces (BIMOPE), Instituto de Investigaciones Marinas y Costeras, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (CONICET), Dean Funes 3350, (B7600), Mar del Plata, Argentina d Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” (MACN-CONICET), Av. Angel Gallardo 470, (C1405DJR), Buenos Aires, Argentina e Laboratorio de Ecotoxicología y Contaminacion Ambiental, Instituto de Investigaciones Marinas y Costeras, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (CONICET), Dean Funes 3350, (B7600), Mar del Plata, Argentina f Laboratorio de Biología Reproductiva y Evolucion, Instituto de Diversidad -
New Data on the Occurence of an Element Both
Analele UniversităĠii din Oradea, Fascicula Biologie Tom. XVI / 2, 2009, pp. 53-59 CONTRIBUTIONS TO THE KNOWLEDGE DIVERSITY OF LIGNICOLOUS MACROMYCETES (BASIDIOMYCETES) FROM CĂ3ĂğÂNII MOUNTAINS Ioana CIORTAN* *,,Alexandru. Buia” Botanical Garden, Craiova, Romania Corresponding author: Ioana Ciortan, ,,Alexandru Buia” Botanical Garden, 26 Constantin Lecca Str., zip code: 200217,Craiova, Romania, tel.: 0040251413820, e-mail: [email protected] Abstract. This paper presents partial results of research conducted between 2005 and 2009 in different forests (beech forests, mixed forests of beech with spruce, pure spruce) in CăSăĠânii Mountains (Romania). 123 species of wood inhabiting Basidiomycetes are reported from the CăSăĠânii Mountains, both saprotrophs and parasites, as identified by various species of trees. Keywords: diversity, macromycetes, Basidiomycetes, ecology, substrate, saprotroph, parasite, lignicolous INTRODUCTION MATERIALS AND METHODS The data presented are part of an extensive study, The research was conducted using transects and which will complete the PhD thesis. The CăSăĠânii setting fixed locations in some vegetable formations, Mountains are a mountain group of the ùureanu- which were visited several times a year beginning with Parâng-Lotru Mountains, belonging to the mountain the months April-May until October-November. chain of the Southern Carpathians. They are situated in Fungi were identified on the basis of both the SE parth of the Parâng Mountain, between OlteĠ morphological and anatomical properties of fruiting River in the west, Olt River in the east, Lotru and bodies and according to specific chemical reactions LaroriĠa Rivers in the north. Our area is 900 Km2 large using the bibliography [1-8, 10-13]. Special (Fig. 1). The vegetation presents typical levers: major presentation was made in phylogenetic order, the associations characteristic of each lever are present in system of classification used was that adopted by Kirk this massif. -
A Preliminary Checklist of Arizona Macrofungi
A PRELIMINARY CHECKLIST OF ARIZONA MACROFUNGI Scott T. Bates School of Life Sciences Arizona State University PO Box 874601 Tempe, AZ 85287-4601 ABSTRACT A checklist of 1290 species of nonlichenized ascomycetaceous, basidiomycetaceous, and zygomycetaceous macrofungi is presented for the state of Arizona. The checklist was compiled from records of Arizona fungi in scientific publications or herbarium databases. Additional records were obtained from a physical search of herbarium specimens in the University of Arizona’s Robert L. Gilbertson Mycological Herbarium and of the author’s personal herbarium. This publication represents the first comprehensive checklist of macrofungi for Arizona. In all probability, the checklist is far from complete as new species await discovery and some of the species listed are in need of taxonomic revision. The data presented here serve as a baseline for future studies related to fungal biodiversity in Arizona and can contribute to state or national inventories of biota. INTRODUCTION Arizona is a state noted for the diversity of its biotic communities (Brown 1994). Boreal forests found at high altitudes, the ‘Sky Islands’ prevalent in the southern parts of the state, and ponderosa pine (Pinus ponderosa P.& C. Lawson) forests that are widespread in Arizona, all provide rich habitats that sustain numerous species of macrofungi. Even xeric biomes, such as desertscrub and semidesert- grasslands, support a unique mycota, which include rare species such as Itajahya galericulata A. Møller (Long & Stouffer 1943b, Fig. 2c). Although checklists for some groups of fungi present in the state have been published previously (e.g., Gilbertson & Budington 1970, Gilbertson et al. 1974, Gilbertson & Bigelow 1998, Fogel & States 2002), this checklist represents the first comprehensive listing of all macrofungi in the kingdom Eumycota (Fungi) that are known from Arizona. -
Short Title: Lentinus, Polyporellus, Neofavolus
In Press at Mycologia, preliminary version published on February 6, 2015 as doi:10.3852/14-084 Short title: Lentinus, Polyporellus, Neofavolus Phylogenetic relationships and morphological evolution in Lentinus, Polyporellus and Neofavolus, emphasizing southeastern Asian taxa Jaya Seelan Sathiya Seelan Biology Department, Clark University, 950 Main Street, Worcester, Massachusetts 01610, and Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia Alfredo Justo Laszlo G. Nagy Biology Department, Clark University, 950 Main Street, Worcester, Massachusetts 01610 Edward A. Grand Mahidol University International College (Science Division), 999 Phuttamonthon, Sai 4, Salaya, Nakorn Pathom 73170, Thailand Scott A. Redhead ECORC, Science & Technology Branch, Agriculture & Agri-Food Canada, CEF, Neatby Building, Ottawa, Ontario, K1A 0C6 Canada David Hibbett1 Biology Department, Clark University, 950 Main Street Worcester, Massachusetts 01610 Abstract: The genus Lentinus (Polyporaceae, Basidiomycota) is widely documented from tropical and temperate forests and is taxonomically controversial. Here we studied the relationships between Lentinus subg. Lentinus sensu Pegler (i.e. sections Lentinus, Tigrini, Dicholamellatae, Rigidi, Lentodiellum and Pleuroti and polypores that share similar morphological characters). We generated sequences of internal transcribed spacers (ITS) and Copyright 2015 by The Mycological Society of America. partial 28S regions of nuc rDNA and genes encoding the largest subunit of RNA polymerase II (RPB1), focusing on Lentinus subg. Lentinus sensu Pegler and the Neofavolus group, combined these data with sequences from GenBank (including RPB2 gene sequences) and performed phylogenetic analyses with maximum likelihood and Bayesian methods. We also evaluated the transition in hymenophore morphology between Lentinus, Neofavolus and related polypores with ancestral state reconstruction. -
Fungal Allergy and Pathogenicity 20130415 112934.Pdf
Fungal Allergy and Pathogenicity Chemical Immunology Vol. 81 Series Editors Luciano Adorini, Milan Ken-ichi Arai, Tokyo Claudia Berek, Berlin Anne-Marie Schmitt-Verhulst, Marseille Basel · Freiburg · Paris · London · New York · New Delhi · Bangkok · Singapore · Tokyo · Sydney Fungal Allergy and Pathogenicity Volume Editors Michael Breitenbach, Salzburg Reto Crameri, Davos Samuel B. Lehrer, New Orleans, La. 48 figures, 11 in color and 22 tables, 2002 Basel · Freiburg · Paris · London · New York · New Delhi · Bangkok · Singapore · Tokyo · Sydney Chemical Immunology Formerly published as ‘Progress in Allergy’ (Founded 1939) Edited by Paul Kallos 1939–1988, Byron H. Waksman 1962–2002 Michael Breitenbach Professor, Department of Genetics and General Biology, University of Salzburg, Salzburg Reto Crameri Professor, Swiss Institute of Allergy and Asthma Research (SIAF), Davos Samuel B. Lehrer Professor, Clinical Immunology and Allergy, Tulane University School of Medicine, New Orleans, LA Bibliographic Indices. This publication is listed in bibliographic services, including Current Contents® and Index Medicus. Drug Dosage. The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means electronic or mechanical, including photocopying, recording, microcopy- ing, or by any information storage and retrieval system, without permission in writing from the publisher. -
AR TICLE New Sequestrate Fungi from Guyana: Jimtrappea Guyanensis
IMA FUNGUS · 6(2): 297–317 (2015) doi:10.5598/imafungus.2015.06.02.03 New sequestrate fungi from Guyana: Jimtrappea guyanensis gen. sp. nov., ARTICLE Castellanea pakaraimophila gen. sp. nov., and Costatisporus cyanescens gen. sp. nov. (Boletaceae, Boletales) Matthew E. Smith1, Kevin R. Amses2, Todd F. Elliott3, Keisuke Obase1, M. Catherine Aime4, and Terry W. Henkel2 1Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA 2Department of Biological Sciences, Humboldt State University, Arcata, CA 95521, USA; corresponding author email: Terry.Henkel@humboldt. edu 3Department of Integrative Studies, Warren Wilson College, Asheville, NC 28815, USA 4Department of Botany & Plant Pathology, Purdue University, West Lafayette, IN 47907, USA Abstract: Jimtrappea guyanensis gen. sp. nov., Castellanea pakaraimophila gen. sp. nov., and Costatisporus Key words: cyanescens gen. sp. nov. are described as new to science. These sequestrate, hypogeous fungi were collected Boletineae in Guyana under closed canopy tropical forests in association with ectomycorrhizal (ECM) host tree genera Caesalpinioideae Dicymbe (Fabaceae subfam. Caesalpinioideae), Aldina (Fabaceae subfam. Papilionoideae), and Pakaraimaea Dipterocarpaceae (Dipterocarpaceae). Molecular data place these fungi in Boletaceae (Boletales, Agaricomycetes, Basidiomycota) ectomycorrhizal fungi and inform their relationships to other known epigeous and sequestrate taxa within that family. Macro- and gasteroid fungi micromorphological characters, habitat, and multi-locus DNA sequence data are provided for each new taxon. Guiana Shield Unique morphological features and a molecular phylogenetic analysis of 185 taxa across the order Boletales justify the recognition of the three new genera. Article info: Submitted: 31 May 2015; Accepted: 19 September 2015; Published: 2 October 2015. INTRODUCTION 2010, Gube & Dorfelt 2012, Lebel & Syme 2012, Ge & Smith 2013).