Title Revisional Study of Neotropical Beilschmiedia Species (Lauraceae

Total Page:16

File Type:pdf, Size:1020Kb

Title Revisional Study of Neotropical Beilschmiedia Species (Lauraceae Revisional study of neotropical Beilschmiedia species Title (Lauraceae) with special reference to leaf anatomy( Dissertation_全文 ) Author(s) Nishida, Sachiko Citation 京都大学 Issue Date 1998-03-23 URL https://doi.org/10.11501/3135589 Right Type Thesis or Dissertation Textversion author Kyoto University 7 Revisional study of neotropical Beilschmiedia species (Lauraceae) with special reference to leaf anatomy by Sachiko Nishida March,1998 Contents Abstract u Chapter 1 General Introduction Chapter 2 Revisional study of neotropical Beilsch1niedia species Introduction - Taxonomic history 3 Materials and Methods 3 Morphology 5 Anatomy 10 Palynology 11 Karyology 12 Distribution 12 Reproductive biology and seed dispersal 13 Systematic position of the species in the Lauraceae 14 Relationships within neotropical Beilschmiedia species 15 Systematic treatment 15 Tables 91 Legends of figures 93 Figures 94 Chapter 3 Leaf anaton1y of neotropical Beilschntiedia species Introduction 106 Materials and Methods 107 Results 108 1. Venation patterns 108 2. Cuticular characters 111 3. Leaf sections 114 Discussion 116 Tables 124 Legends of figures 128 Figures 131 Acknowledgments 155 References 156 Abstract Lauraceae contain n1any species which are important constituents in tropical forests both ecologically and econon1ically, however, taxonomy of the family is still not sufficiently clarified at the genus or species level. Beilschmiedia is an exan1ple of such a poorly understood genus. Taking advantage of recent intensive collecting of neotropical Lauraceae species, this study revised neotropical Beilschmiedia species, with general descriptions of morphology, anatomy, palynology, karyology, distribution, reproductive biology, seed dispersal, systematic position of the species in the family, and the systematic treatment. As a result, 27 species were recognized with four species newly described and two species newly con1bined in the genus. Additionally, leaf anatomy of neotropical Beilschmiedia species was employed for better understanding of the species relationships. In leaf anatomy, groupings of cuticular characters was accepted as representing the species relationships, which resulted to recognize five groups among the species. 11 Chapter 1 General Introduction Lauraceae are the largest family in the order Laurales of the Magnoliidae (sensu Cronquist 1981), with about 50 genera. It is a pantropical family with a few temperate members, and main centers of the diversity are the Indomalayan region and Central to South America (Rohwer 1993 b). All species are trees or shrubs except for the species of Cassytha which are herbaceous parasites. Although the family contains tnany species which are very important constituents in tropical forests ecologically and econon1ically, taxonomy of the family is still not sufficiently clarified at genus or species level. TI1e number of the species in the family is still difficult to estimate, probably between 2500 and 3500 (Rohwer 1993 b). In the neotropics, Lauraceae have a reputation of being one of the most difficult families in angiosperms (Burger 1988). It is due to the following facts; that the generic concepts are still not clear in some cases, that the species are difficult to recognize, and that the representation in herbarium collections is poor (Burger 1988). Systematic revisions of the family with more intensive collecting is sorely needed. Beilschmiedia is an exan1ple of such a poorly understood genus. This genus is pan tropical, distributed fron1 Mexico and southern islands in Japan at the northern limit and to central Chile and New Zealand at the southern limit. It comprises about 250 species and is usually distinguished frotn the other laurel genera by a con1bination of the following characters; bisexual and trin1erous flowers, six equal to sub-equal tepals, six to nine fertile stamens, 2-celled anthers, stan1inal glands only in the third whorl, shallow receptacle, and fruit without cupule. Since Meissner (1864) revised the entire family, no revision for the whole genus Beilschmiedia has been made. Regional treatments were made by Liou (1934) for the species in China and Indochina, by Robyns and Wilczek (1951) for the African species, by Fouilloy (1974) for the species in Cameroon, by Li et al. ( 1982) for the Chinese species, by Wright (1984) for the species in New Zealand, and by Hyland (1989) for the Australian species. For the neotropical species, Kostermans 's work (1938) was the most recent comprehensive revision, and Allen ( 1945) treated the Mexican and Central American species. These revisional works for neotropical Beilschmiedia species were not based on abundant n1aterial, 7 of 15 species in Kostermans 's revision and 4 of 8 species in Allen's revision were known only from the type collections. And since Kostermans' s revision, 15 names have been already described under Beilschmiedia in the neotropics. A revision for neotropical Beilschmiedia species, being up to date and with n1ore material, is needed for an understanding of the whole genus and also the neotropical Lauraceae. Fortunately, as Burger (1988) mentions, Latin American botanists are actively collecting neotropical plants including Lauraceae these days. Especially, van der Werff in the Missouri Botanical Garden has been working on a number of projects on a systematic study of Lauraceae coupled with intensive collecting of the family in the neotropics. I had an opportunity to study at Missouri Botanical Garden from fall in 1994 to spring in 1997, and took the advantage to work on neotropical Beilschmiedia species under van der Werff's supervision. In this study I revised neotropical Beilschmiedia species in which I recognize 27 species, with general descriptions of morphology, anatomy, palynology, karyology, distribution, reproductive biology, seed dispersal, and systematic position of the species in the fmnily in the second chapter. And for better understanding of relationships of the species, I employed leaf anatomy in the third chapter. Neotropical Beilschmiedia species have relatively similar flowers and fruits except for a few species, and it is more reasonable to study vegetative n1orphology rather than reproductive morphology for systen1atics of the species. An1ong neotropical Beilscluniedia species, there appear to be two groups, one group of the species alternate leaves and fine ramification (ramification is here defined as ultimate branching patterns in leaf veins), and another group of the species with opposite leaves and coarse ratnification. Preliminary observation (Christophel, pers. comm.) indicated that the two groups also differ in characters of the cuticle. Therefore, I investigated leaf anaton1ical characters (venation patterns, cuticular and leaf section characters) for all the neotropical Beilschrniedia species available in order to discuss the following; 1) whether the cuticular and leaf section characters support the grouping based on phyllotaxis and venation patterns, and 2) how we can incorporate leaf-anatomical characters in the classification of neotropical Beilschmiedia species. These studies would not only help to know neotropical Beilschmiedia species further, but would also give an important step to understand whole Beilschmiedia, one of the largest genera in Lauraceae. 2 Chapter 2 Revisional study of neotropical Beilschnliedia species Introduction - Taxonon1ic history The genus Beilschmiedia was described by Nees (1831), with two Asian species B . raxburghiana and B. fagifoiia. Nees (1833) described f!ujefandia with two neotropical species, H. pendufa and H. thamaea. Since then 12 species had been described under Hujefandia. But Hemsley (1882) transferred the type species H . pendula (as well as H. thomaea) under Beifschmiedia. Mez ( 1889) restored Hufelandia to generic rank, but Kostermans (1938) included Hufelandia in Beifschmiedia again. In this study, I follow Kostem1ans 's sense about the generic treatment, because Beilschmiedia in Asia where the type species of the genus occurs is poorly known and it is impossible to clarify the relationship between the neotropical and Asian species before a better understanding of the Asian species. In addition to Hujefandia Nees, Beifschmiedia has another synonym, Beffota Gay, for the Chilean species. Kostern1ans (1938) listed other three synonyms, Bafdu Nees (non Feuilee), Baldus 0. Kuntze (non Adanson) and Wimmeria Nees ex Meissner, but they are not valid or legitimately published. First, Boldu Nees is a superfluous name. And Baldus is the natne which Kuntze did not desctibe but only reestablished from Baldus Molina, and Baldus Molina actually belongs to the Monimiaceae. Wimm.eria is the name written on a specimen label of B . pendula and not validly published. Gay (1849) described a new genus Bellata with one species, Bellata miersii. The genus Gay described, Bellota, was combined in Beilsch1niedia by Kostern1ans ( 1938). For the palaeotropical species, Beilschmiedia has the following synonyms; Nesadaphne Hooker f., Bernieria Baillon, Tyloste1non Engler, Afrodaphne Stapf, Thouvenotia Danguy, Purkayasthaea Purkayastha, and Lauramerrillia C. K. Allen. Kostem1ans (1952) con1bined a neotropical genus, Anaueria, in Beilschmiedia. But Richter ( 1981) found that Anaueria differs strongly fron1 Beilschmiedia in wood anaton1y; this, combined with differences in flower and fruit morphology, resulted in the current recognition of Anaueria as a distinct genus. Materials and Methods 3 Most of the revisional study was done at Missouri Botanical Garden (MO), St. Louis,
Recommended publications
  • Principles and Practice of Forest Landscape Restoration Case Studies from the Drylands of Latin America Edited by A.C
    Principles and Practice of Forest Landscape Restoration Case studies from the drylands of Latin America Edited by A.C. Newton and N. Tejedor About IUCN IUCN, International Union for Conservation of Nature, helps the world find pragmatic solutions to our most pressing environment and development challenges. IUCN works on biodiversity, climate change, energy, human livelihoods and greening the world economy by supporting scientific research, managing field projects all over the world, and bringing governments, NGOs, the UN and companies together to develop policy, laws and best practice. IUCN is the world’s oldest and largest global environmental organization, with more than 1,000 government and NGO members and almost 11,000 volunteer experts in some 160 countries. IUCN’s work is supported by over 1,000 staff in 60 offices and hundreds of partners in public, NGO and private sectors around the world. www.iucn.org Principles and Practice of Forest Landscape Restoration Case studies from the drylands of Latin America Principles and Practice of Forest Landscape Restoration Case studies from the drylands of Latin America Edited by A.C. Newton and N. Tejedor This book is dedicated to the memory of Margarito Sánchez Carrada, a student who worked on the research project described in these pages. The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN or the European Commission concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Principles and Practice of Forest Landscape Restoration Case Studies from the Drylands of Latin America Edited by A.C
    Principles and Practice of Forest Landscape Restoration Case studies from the drylands of Latin America Edited by A.C. Newton and N. Tejedor About IUCN IUCN, International Union for Conservation of Nature, helps the world find pragmatic solutions to our most pressing environment and development challenges. IUCN works on biodiversity, climate change, energy, human livelihoods and greening the world economy by supporting scientific research, managing field projects all over the world, and bringing governments, NGOs, the UN and companies together to develop policy, laws and best practice. IUCN is the world’s oldest and largest global environmental organization, with more than 1,000 government and NGO members and almost 11,000 volunteer experts in some 160 countries. IUCN’s work is supported by over 1,000 staff in 60 offices and hundreds of partners in public, NGO and private sectors around the world. www.iucn.org Principles and Practice of Forest Landscape Restoration Case studies from the drylands of Latin America Principles and Practice of Forest Landscape Restoration Case studies from the drylands of Latin America Edited by A.C. Newton and N. Tejedor This book is dedicated to the memory of Margarito Sánchez Carrada, a student who worked on the research project described in these pages. The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN or the European Commission concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Pan-Neotropical Genus Venada (Hesperiidae: Pyrginae) Is Not Monotypic: Four New Species Occur on One Volcano in the Area De Conservación Guanacaste, Costa Rica
    VOLUME 59, NUMBER 1 19 Journal of the Lepidopterists’ Society 59(1), 2005, 19–34 PAN-NEOTROPICAL GENUS VENADA (HESPERIIDAE: PYRGINAE) IS NOT MONOTYPIC: FOUR NEW SPECIES OCCUR ON ONE VOLCANO IN THE AREA DE CONSERVACIÓN GUANACASTE, COSTA RICA JOHN M. BURNS Department of Entomology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, MRC 127, room E-515, Washington, DC 20013-7012, USA email: [email protected] AND DANIEL H. JANZEN Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA email: [email protected] ABSTRACT. Between 1995 and 2004, as part of an ongoing macrolepidopteran inventory of the Area de Conservación Gua- nacaste (ACG), Costa Rica, 327 adults of the hesperiid genus Venada were reared from 636 wild-caught caterpillars and pupae. Al- though Venada was thought to be monotypic over its wide range (Mexico to Bolivia), there are four new species on Volcán Cacao in the ACG: Venada nevada, V. daneva, V. cacao, and V. naranja — all described by Burns, using characters of adult facies, male and female genitalia, caterpillar color pattern, and ecologic distribution. These skippers inhabit both rain and cloud forest, but not dry forest. The caterpillars feed on mature leaves of saplings in five genera of Lauraceae: Beilschmiedia, Licaria, Nectandra, Ocotea, and Persea. Caterpillars of Ridens also eat plants in the family Lauraceae, and Ridens and Venada may be closely related. Additional key words: caterpillars, foodplants (Lauraceae), genitalia (male and female), parasitoids, taxonomy, variation. There are far more species of skipper butterflies in Oddly enough, adults of Venada and males of those the neotropics than current literature suggests.
    [Show full text]
  • Downloaded from Brill.Com10/07/2021 06:20:25PM Via Free Access 248 IAWA Journal, Vol
    IAWA Journal, Vol. 18 (3),1997: 247-259 WOOD ANATOMY OF SOME ANAUERIA AND BEILSCHMIEDIA SPECIES (LAURACEAE) 1 by Catia H. Callado & Cecilia G. Costa Anatomy Sector, Rio de Janeiro Botanical Garden, Rua Jardim Botänico, 1008 Jardim Botänico, Rio de Janeiro, RJ / CEP 22400-000, Brazil SUMMARY The wood anatomy of the species Anaueria brasiliensis Kosterm., Beilschmiedia emarginata (Meissn.) Kosterm., B. rigida (Mez) Kosterm. and B. taubertiana (Schw. et Mez) Kosterm. (Lauraceae) is described. The taxonomy and ecology of these species, important components of the Amazonian forest or Atlantic forest of southeastern Brazil, are discussed as related to wood anatomy. The main anatomical differences are: presence, type, arrangement and location of inorganic inclusions and secretory cells, and the arrangement of the axial parenchyma. Key words: Wood anatomy,Anaueria. Beilschmiedia, Lauraceae, taxon­ omy, ecology. INTRODUCTION Anaueria Kosterm. is amonotypic genus, with the single speciesA. brasiliensis Kosterm. (Kostermans 1938; Van der Werff 1991).1t was once (1957) included in Beilschmiedia by Kostermans, but is anatomically closer to Mezilaurus Taubert (Rohwer 1993). The genus Beilschmiedia Nees consists of about 250 species and is found through­ out the tropics (Rohwer 1993); six species occur in the Atlantic forest of southeastern Brazil: Beilschmiedia angustifolia. B. emarginata. B. fluminensis. B. rigida. B. stricta and B. taubertiana. Three of these species were examined in this study. They were selected on the basis of availability of botanical material, whether fresh from the forest or through the exchange of wood sampies from collections in Brazil. Beilschmiedia rigida (Mez) Kosterm. and B. taubertiana (Schw. et Mez) Kosterm. are among the most important tree species at the Macae de Cima Munü;:ipal Ecological Reserve and the Parafso State Ecological Station (Relat6rio Tecnico do Programa Mata Atläntica do Jardim Botänico do Rio de Janeiro 1990).
    [Show full text]
  • Trade-Offs Between Drought Survival and Rooting Strategy of Two South American Mediterranean Tree Species: Implications for Dryland Forests Restoration
    Forests 2015, 6, 3733-3747; doi:10.3390/f6103733 OPEN ACCESS forests ISSN 1999-4907 www.mdpi.com/journal/forests Article Trade-Offs between Drought Survival and Rooting Strategy of Two South American Mediterranean Tree Species: Implications for Dryland Forests Restoration Juan F. Ovalle 1, Eduardo C. Arellano 1,2,* and Rosanna Ginocchio 1,2 1 Center of Applied Ecology & Sustainability, Avenida Libertador Bernardo O’Higgins 340, Santiago 8320000, Chile; E-Mails: [email protected] (J.F.O.); [email protected] (R.G.) 2 Departamento de Ecosistemas y Medio Ambiente, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 8320000, Chile * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +56-2-2354-1216. Academic Editors: M. Altaf Arain and Eric J. Jokela Received: 18 August 2015 / Accepted: 10 October 2015 / Published: 15 October 2015 Abstract: Differences in water-acquisition strategies of tree root systems can determine the capacity to survive under severe drought. We evaluate the effects of field water shortage on early survival, growth and root morphological variables of two South American Mediterranean tree species with different rooting strategies during two growing seasons. One year-old Quillaja saponaria (deep-rooted) and Cryptocarya alba (shallow-rooted) seedlings were established under two watering treatments (2 L·week−1·plant−1 and no water) in a complete randomized design. Watering improved the final survival of both species, but the increase was only significantly higher for the shallow-rooted species. The survival rates of deep- and shallow-rooted species was 100% and 71% with watering treatment, and 96% and 10% for the unwatered treatment, respectively.
    [Show full text]
  • Two New Species of Beilschmiedia (Lauraceae) from Borneo
    BLUMEA 51: 89–94 Published on 10 May 2006 http://dx.doi.org/10.3767/000651906X622355 TWO NEW SPECIES OF BEILSCHMIEDIA (LAURACEAE) FROM BORNEO SACHIKO NISHIDA The Nagoya University Museum, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan e-mail: [email protected] SUMMARY Two new species of Beilschmiedia Nees (Lauraceae) from Borneo, B. crassa and B. microcarpa, are described and illustrated. Beilschmiedia crassa is distinguished from the other Bornean Beilschmiedia species by its thick and strongly coriaceous, narrowly ovate leaves and flowers with a thick receptacle. Beilschmiedia microcarpa is distinct in the combination of the following characters: its glabrous narrow buds, opposite, elliptic, chartaceous leaves with raised veins on the upper surface, flowers with short filaments, and relatively small fruits. Key words: Beilschmiedia, Lauraceae, Borneo, new species. INTRODUCTION Beilschmiedia Nees is one of the larger genera of Lauraceae (Nishida, 2001) and includes about 250 species distributed mainly in the paleotropics (Van der Werff, 2001). It is usually distinguished from the other Lauraceae genera by its paniculate or racemose inflorescences not strictly cymose at the terminal division, bisexual and trimerous flow- ers with six equal to subequal tepals, six to nine fertile stamens with 2-celled anthers, and fruits lacking cupules (Nishida, 1999). Revisional studies have been made for the genus in several regions: in China and Indochina (Liou, 1934), Taiwan (Liao, 1995), Congo and tropical Africa (Robyns & Wilczek, 1949), Cameroon (Fouilloy, 1974), Madagascar (Van der Werff, 2003), the neotropics (Kostermans, 1938; Nishida, 1999), New Zealand (Wright, 1984) and Australia (Hyland, 1989). However, the genus has still to be revised for the Flora Malesiana region, except for the fact that Kochummen (1989) treated the genus for the Tree Flora of Peninsular Malaysia.
    [Show full text]
  • Endiandric Acid Derivatives and Other Constituents of Plants from the Genera Beilschmiedia and Endiandra (Lauraceae)
    Biomolecules 2015, 5, 910-942; doi:10.3390/biom5020910 OPEN ACCESS biomolecules ISSN 2218-273X www.mdpi.com/journal/biomolecules/ Review Endiandric Acid Derivatives and Other Constituents of Plants from the Genera Beilschmiedia and Endiandra (Lauraceae) Bruno Ndjakou Lenta 1,2,*, Jean Rodolphe Chouna 3, Pepin Alango Nkeng-Efouet 3 and Norbert Sewald 2 1 Department of Chemistry, Higher Teacher Training College, University of Yaoundé 1, P.O. Box 47, Yaoundé, Cameroon 2 Organic and Bioorganic Chemistry, Chemistry Department, Bielefeld University, P.O. Box 100131, 33501 Bielefeld, Germany; E-Mail: [email protected] 3 Department of Chemistry, University of Dschang, P.O. Box 67, Dschang, Cameroon; E-Mails:[email protected] (J.R.C.); [email protected] (P.A.N.-E.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +2376-7509-7561. Academic Editor: Jürg Bähler Received: 3 March 2015 / Accepted: 6 May 2015 / Published: 14 May 2015 Abstract: Plants of the Lauraceae family are widely used in traditional medicine and are sources of various classes of secondary metabolites. Two genera of this family, Beilschmiedia and Endiandra, have been the subject of numerous investigations over the past decades because of their application in traditional medicine. They are the only source of bioactive endiandric acid derivatives. Noteworthy is that their biosynthesis contains two consecutive non-enzymatic electrocyclic reactions. Several interesting biological activities for this specific class of secondary metabolites and other constituents of the two genera have been reported, including antimicrobial, enzymes inhibitory and cytotoxic properties. This review compiles information on the structures of the compounds described between January 1960 and March 2015, their biological activities and information on endiandric acid biosynthesis, with 104 references being cited.
    [Show full text]
  • Forest Inventory and Analysis National Core Field Guide
    National Core Field Guide, Version 5.1 October, 2011 FOREST INVENTORY AND ANALYSIS NATIONAL CORE FIELD GUIDE VOLUME I: FIELD DATA COLLECTION PROCEDURES FOR PHASE 2 PLOTS Version 5.1 National Core Field Guide, Version 5.1 October, 2011 Changes from the Phase 2 Field Guide version 5.0 to version 5.1 Changes documented in change proposals are indicated in bold type. The corresponding proposal name can be seen using the comments feature in the electronic file. • Section 8. Phase 2 (P2) Vegetation Profile (Core Optional). Corrected several figure numbers and figure references in the text. • 8.2. General definitions. NRCS PLANTS database. Changed text from: “USDA, NRCS. 2000. The PLANTS Database (http://plants.usda.gov, 1 January 2000). National Plant Data Center, Baton Rouge, LA 70874-4490 USA. FIA currently uses a stable codeset downloaded in January of 2000.” To: “USDA, NRCS. 2010. The PLANTS Database (http://plants.usda.gov, 1 January 2010). National Plant Data Center, Baton Rouge, LA 70874-4490 USA. FIA currently uses a stable codeset downloaded in January of 2010”. • 8.6.2. SPECIES CODE. Changed the text in the first paragraph from: “Record a code for each sampled vascular plant species found rooted in or overhanging the sampled condition of the subplot at any height. Species codes must be the standardized codes in the Natural Resource Conservation Service (NRCS) PLANTS database (currently January 2000 version). Identification to species only is expected. However, if subspecies information is known, enter the appropriate NRCS code. For graminoids, genus and unknown codes are acceptable, but do not lump species of the same genera or unknown code.
    [Show full text]
  • Leaf Anatomy of Beilschmiedia (Lauraceae) in the Neotropics
    Article Leaf anatomy of Beilschmiedia (Lauraceae) in the neotropics Sachiko Nishida1 and David C. Christophel2 1 Division of Phylogenetics, Museum of Nature and Human Activities, Hyogo, Yayoigaoka 6, Sanda, 669-1546, Japan 2 Botany Department, University of Adelaide, Adelaide, S.A. 5005, Australia Abstract Beilschmiedia comprises 28 species in the neotropics, but the relationships among the species were not well known because of the similarity in their reproductive morphology. This study employed leaf anatomy including studies of venation patterns, cuticle and leaf sections to discuss the relationships. As a result, five groups are recognized by cuticular characters, and the groups are compatible with the other leaf characters, phyllotaxis and geographic distributions. The five groups are mainly characterized by; 1) alternate leaves, fine venation pattern, epidermal cells with smooth or beaded cell walls, and vascular bundles in the midrib arranged in a ring, 2) opposite leaves, coarse venation pattern, epidermal cells with dotted or granular periclinal walls and mostly branched anticlinal walls, and vascular bundles in the midrib arranged in a ring, 3) opposite leaves, coarse venation pattern, butterfly-shaped stomatal ledges, and vascular bundles in the midrib arranged in a flattened arc, 4) opposite leaves, coarse venation pattern, epidermal cells larger on the adaxial surface than the abaxial surface, and vascular bundles in the midrib arranged in a flattened arc, 5) opposite leaves, coarse venation pattern, box- shaped stomatal ledges, and vascular bundles in the midrib arranged in a flattened arc. Key words: Beilschmiedia, leaf anatomy, venation, cuticle, vascular bundle Introduction botanists. Christophel and Rowett (1996) recently published a leaf and cuticle atlas of Australian Lauraceae, Beilschmiedia is one of the largest genera of Lauraceae, which includes the leaf architecture and cuticular features comprising about 250 tree or shrub species.
    [Show full text]
  • Effect of Large and Small Herbivores on Seed and Seedling Survival of Beilschmiedia Miersii in Central Chile
    BOSQUE 36(1): 127-132, 2015 DOI: 10.4067/S0717-92002015000100014 Effect of large and small herbivores on seed and seedling survival of Beilschmiedia miersii in central Chile Efecto de herbívoros mamíferos pequeños y grandes sobre la sobrevivencia de semillas y plántulas en la restauración de Beilschmiedia miersii en Chile central Narkis S Morales a,b*, Pablo I Becerra c,d, Eduardo C Arellano c,d and Horacio B Gilabert c *Corresponding author: a Macquarie University, Faculty of Science and Engineering, Department of Biological Sciences, Building E8A Room 281, NSW 2109, Sydney, Australia, tel.: +61 45 7333053, [email protected] b Fundación para la Conservación y Manejo Sustentable de la Biodiversidad, Ahumada 312, oficina 425, Santiago Centro, Santiago, Chile, tel.: +56 2 2426996. c Pontificia Universidad Católica de Chile, Facultad de Agronomía e Ingeniería Forestal, Departamento de Ecosistemas y Medio Ambiente, Av. Vicuña Mackenna 4860, Santiago, Chile, tel.: +56 2 3544169, fax: +56 2 3545982. d Center of Applied Ecology and Sustainability (CAPES), Av Libertador Bernardo O’higgins 340, Santiago Chile. SUMMARY In the Mediterranean region of Chile, populations of the threatened tree Beilschmiedia miersii have been strongly affected by anthropic disturbances, causing a critical state of conservation. Herbivory has been proposed as the main factor that currently limits the regeneration of this species. We studied the effect of large vs. small herbivores on seed and seedling survival of B. miersii under two contrasting habitat conditions (forest and shrubland), using plots with fenced enclosures which differentially excluded mammalian herbivores according to body size. Results show that herbivory had a significant negative effect on B.
    [Show full text]
  • Isolation and Identification of Cyclic Polyketides From
    ISOLATION AND IDENTIFICATION OF CYCLIC POLYKETIDES FROM ENDIANDRA KINGIANA GAMBLE (LAURACEAE), AS BCL-XL/BAK AND MCL-1/BID DUAL INHIBITORS, AND APPROACHES TOWARD THE SYNTHESIS OF KINGIANINS Mohamad Nurul Azmi Mohamad Taib, Yvan Six, Marc Litaudon, Khalijah Awang To cite this version: Mohamad Nurul Azmi Mohamad Taib, Yvan Six, Marc Litaudon, Khalijah Awang. ISOLATION AND IDENTIFICATION OF CYCLIC POLYKETIDES FROM ENDIANDRA KINGIANA GAMBLE (LAURACEAE), AS BCL-XL/BAK AND MCL-1/BID DUAL INHIBITORS, AND APPROACHES TOWARD THE SYNTHESIS OF KINGIANINS . Chemical Sciences. Ecole Doctorale Polytechnique; Laboratoires de Synthase Organique (LSO), 2015. English. tel-01260359 HAL Id: tel-01260359 https://pastel.archives-ouvertes.fr/tel-01260359 Submitted on 22 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ISOLATION AND IDENTIFICATION OF CYCLIC POLYKETIDES FROM ENDIANDRA KINGIANA GAMBLE (LAURACEAE), AS BCL-XL/BAK AND MCL-1/BID DUAL INHIBITORS, AND APPROACHES TOWARD THE SYNTHESIS OF KINGIANINS MOHAMAD NURUL AZMI BIN MOHAMAD TAIB FACULTY OF SCIENCE UNIVERSITY
    [Show full text]
  • Patterns of Composition, Richness and Phylogenetic Diversity of Woody
    Gayana Bot. 74(1):74(1), 2017X-X, 2017 ISSN 0016-5301 Original Article Patterns of composition, richness and phylogenetic diversity of woody plant communities of Quillaja saponaria Molina (Quillajaceae) in the Chilean sclerophyllous forest Patrones de composición, riqueza y diversidad filogenética de las comunidades de plantas leñosas de Quillaja saponaria Molina (Quillajaceae) en el bosque esclerófilo de Chile LUIS LETELIER1,2*, ALY VALDERRAMA2, ALEXANDRA STOLL3, ROLANDO GARCÍA-GONZÁLES4 & ANTONIO GONZÁLEZ-RODRÍGUEZ1 1Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro Nº 8701, Col. Ex -Hacienda de San José de la Huerta, Morelia, CP 58190, México. 2Universidad Bernardo O`Higgins, Centro de Investigación en Recursos Naturales y Sustentabilidad, Avenida Viel 1497, Santiago, Chile. 3Centro de Estudios Avanzados en Zonas Áridas, Campus Andrés Bello, Universidad de La Serena, La Serena, Chile. 4Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Avenida San Miguel Nº 3605, Casilla 617, Talca, Chile. *[email protected] ABSTRACT Sclerophyllous forest is among the most representative types of woody plant communities in central Chile where Quillaja saponaria is considered to be one of the most important species. In this study, we analysed the main factors that explain the geographical patterns of variation in composition, richness and phylogenetic diversity of woody plant communities in the Chilean sclerophyllous forest where Quillaja saponaria is present. Vegetation surveys were performed for trees and shrubs in thirty-nine sites from 30° to 38° of latitude South in the Mediterranean biome of Chile. Composition, richness, alfa diversity and phylogenetic diversity metrics of the communities were calculated and associated with spatial (latitude, longitude and altitude), climate (annual mean temperature, annual precipitation, aridity), and disturbance variables (type of adjacent vegetation matrix) using multiple regression models.
    [Show full text]