Pan-Neotropical Genus Venada (Hesperiidae: Pyrginae) Is Not Monotypic: Four New Species Occur on One Volcano in the Area De Conservación Guanacaste, Costa Rica
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Approved Plant List 10/04/12
FLORIDA The best time to plant a tree is 20 years ago, the second best time to plant a tree is today. City of Sunrise Approved Plant List 10/04/12 Appendix A 10/4/12 APPROVED PLANT LIST FOR SINGLE FAMILY HOMES SG xx Slow Growing “xx” = minimum height in Small Mature tree height of less than 20 feet at time of planting feet OH Trees adjacent to overhead power lines Medium Mature tree height of between 21 – 40 feet U Trees within Utility Easements Large Mature tree height greater than 41 N Not acceptable for use as a replacement feet * Native Florida Species Varies Mature tree height depends on variety Mature size information based on Betrock’s Florida Landscape Plants Published 2001 GROUP “A” TREES Common Name Botanical Name Uses Mature Tree Size Avocado Persea Americana L Bahama Strongbark Bourreria orata * U, SG 6 S Bald Cypress Taxodium distichum * L Black Olive Shady Bucida buceras ‘Shady Lady’ L Lady Black Olive Bucida buceras L Brazil Beautyleaf Calophyllum brasiliense L Blolly Guapira discolor* M Bridalveil Tree Caesalpinia granadillo M Bulnesia Bulnesia arboria M Cinnecord Acacia choriophylla * U, SG 6 S Group ‘A’ Plant List for Single Family Homes Common Name Botanical Name Uses Mature Tree Size Citrus: Lemon, Citrus spp. OH S (except orange, Lime ect. Grapefruit) Citrus: Grapefruit Citrus paradisi M Trees Copperpod Peltophorum pterocarpum L Fiddlewood Citharexylum fruticosum * U, SG 8 S Floss Silk Tree Chorisia speciosa L Golden – Shower Cassia fistula L Green Buttonwood Conocarpus erectus * L Gumbo Limbo Bursera simaruba * L -
DNA Barcodes and Cryptic Species of Skipper Butterflies in the Genus Perichares in Area De Conservacio´ N Guanacaste, Costa Rica
DNA barcodes and cryptic species of skipper butterflies in the genus Perichares in Area de Conservacio´ n Guanacaste, Costa Rica John M. Burns*†, Daniel H. Janzen†‡, Mehrdad Hajibabaei§, Winnie Hallwachs‡, and Paul D. N. Hebert§ *Department of Entomology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, MRC 127, Washington, DC 20013-7012; ‡Department of Biology, University of Pennsylvania, Philadelphia, PA 19104; and §Biodiversity Institute of Ontario, Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1 Contributed by Daniel H. Janzen, December 23, 2007 (sent for review November 16, 2007) DNA barcodes can be used to identify cryptic species of skipper butterflies previously detected by classic taxonomic methods and to provide first clues to the existence of yet other cryptic species. A striking case is the common geographically and ecologically widespread neotropical skipper butterfly Perichares philetes (Lep- idoptera, Hesperiidae), described in 1775, which barcoding splits into a complex of four species in Area de Conservacio´ n Guanacaste (ACG) in northwestern Costa Rica. Three of the species are new, and all four are described. Caterpillars, pupae, and foodplants offer better distinguishing characters than do adults, whose differences are mostly average, subtle, and blurred by intraspecific variation. The caterpillars of two species are generalist grass-eaters; of the other two, specialist palm-eaters, each of which feeds on different genera. But all of these cryptic species are more specialized in their diet than was the morphospecies that held them. The four ACG taxa discovered to date belong to a panneotropical complex of at least eight species. This complex likely includes still more species, whose exposure may require barcoding. -
Reading the Complex Skipper Butterfly Fauna of One Tropical Place
Reading the Complex Skipper Butterfly Fauna of One Tropical Place Daniel H. Janzen1*, Winnie Hallwachs1, John M. Burns2, Mehrdad Hajibabaei3, Claudia Bertrand3, Paul D. N. Hebert3 1 Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America, 2 Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America, 3 Department of Integrative Biology, Biodiversity Institute of Ontario, University of Guelph, Guelph, Canada Abstract Background: An intense, 30-year, ongoing biodiversity inventory of Lepidoptera, together with their food plants and parasitoids, is centered on the rearing of wild-caught caterpillars in the 120,000 terrestrial hectares of dry, rain, and cloud forest of Area de Conservacion Guanacaste (ACG) in northwestern Costa Rica. Since 2003, DNA barcoding of all species has aided their identification and discovery. We summarize the process and results for a large set of the species of two speciose subfamilies of ACG skipper butterflies (Hesperiidae) and emphasize the effectiveness of barcoding these species (which are often difficult and time-consuming to identify). Methodology/Principal Findings: Adults are DNA barcoded by the Biodiversity Institute of Ontario, Guelph, Canada; and they are identified by correlating the resulting COI barcode information with more traditional information such as food plant, facies, genitalia, microlocation within ACG, caterpillar traits, etc. This process has found about 303 morphologically defined species of eudamine and pyrgine Hesperiidae breeding in ACG (about 25% of the ACG butterfly fauna) and another 44 units indicated by distinct barcodes (n = 9,094), which may be additional species and therefore may represent as much as a 13% increase. -
Downloaded from Brill.Com10/07/2021 06:20:25PM Via Free Access 248 IAWA Journal, Vol
IAWA Journal, Vol. 18 (3),1997: 247-259 WOOD ANATOMY OF SOME ANAUERIA AND BEILSCHMIEDIA SPECIES (LAURACEAE) 1 by Catia H. Callado & Cecilia G. Costa Anatomy Sector, Rio de Janeiro Botanical Garden, Rua Jardim Botänico, 1008 Jardim Botänico, Rio de Janeiro, RJ / CEP 22400-000, Brazil SUMMARY The wood anatomy of the species Anaueria brasiliensis Kosterm., Beilschmiedia emarginata (Meissn.) Kosterm., B. rigida (Mez) Kosterm. and B. taubertiana (Schw. et Mez) Kosterm. (Lauraceae) is described. The taxonomy and ecology of these species, important components of the Amazonian forest or Atlantic forest of southeastern Brazil, are discussed as related to wood anatomy. The main anatomical differences are: presence, type, arrangement and location of inorganic inclusions and secretory cells, and the arrangement of the axial parenchyma. Key words: Wood anatomy,Anaueria. Beilschmiedia, Lauraceae, taxon omy, ecology. INTRODUCTION Anaueria Kosterm. is amonotypic genus, with the single speciesA. brasiliensis Kosterm. (Kostermans 1938; Van der Werff 1991).1t was once (1957) included in Beilschmiedia by Kostermans, but is anatomically closer to Mezilaurus Taubert (Rohwer 1993). The genus Beilschmiedia Nees consists of about 250 species and is found through out the tropics (Rohwer 1993); six species occur in the Atlantic forest of southeastern Brazil: Beilschmiedia angustifolia. B. emarginata. B. fluminensis. B. rigida. B. stricta and B. taubertiana. Three of these species were examined in this study. They were selected on the basis of availability of botanical material, whether fresh from the forest or through the exchange of wood sampies from collections in Brazil. Beilschmiedia rigida (Mez) Kosterm. and B. taubertiana (Schw. et Mez) Kosterm. are among the most important tree species at the Macae de Cima Munü;:ipal Ecological Reserve and the Parafso State Ecological Station (Relat6rio Tecnico do Programa Mata Atläntica do Jardim Botänico do Rio de Janeiro 1990). -
Two New Species of Beilschmiedia (Lauraceae) from Borneo
BLUMEA 51: 89–94 Published on 10 May 2006 http://dx.doi.org/10.3767/000651906X622355 TWO NEW SPECIES OF BEILSCHMIEDIA (LAURACEAE) FROM BORNEO SACHIKO NISHIDA The Nagoya University Museum, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan e-mail: [email protected] SUMMARY Two new species of Beilschmiedia Nees (Lauraceae) from Borneo, B. crassa and B. microcarpa, are described and illustrated. Beilschmiedia crassa is distinguished from the other Bornean Beilschmiedia species by its thick and strongly coriaceous, narrowly ovate leaves and flowers with a thick receptacle. Beilschmiedia microcarpa is distinct in the combination of the following characters: its glabrous narrow buds, opposite, elliptic, chartaceous leaves with raised veins on the upper surface, flowers with short filaments, and relatively small fruits. Key words: Beilschmiedia, Lauraceae, Borneo, new species. INTRODUCTION Beilschmiedia Nees is one of the larger genera of Lauraceae (Nishida, 2001) and includes about 250 species distributed mainly in the paleotropics (Van der Werff, 2001). It is usually distinguished from the other Lauraceae genera by its paniculate or racemose inflorescences not strictly cymose at the terminal division, bisexual and trimerous flow- ers with six equal to subequal tepals, six to nine fertile stamens with 2-celled anthers, and fruits lacking cupules (Nishida, 1999). Revisional studies have been made for the genus in several regions: in China and Indochina (Liou, 1934), Taiwan (Liao, 1995), Congo and tropical Africa (Robyns & Wilczek, 1949), Cameroon (Fouilloy, 1974), Madagascar (Van der Werff, 2003), the neotropics (Kostermans, 1938; Nishida, 1999), New Zealand (Wright, 1984) and Australia (Hyland, 1989). However, the genus has still to be revised for the Flora Malesiana region, except for the fact that Kochummen (1989) treated the genus for the Tree Flora of Peninsular Malaysia. -
With Descriptions of Nine New Species
European Journal of Taxonomy 551: 1–67 ISSN 2118-9773 https://doi.org/10.5852/ejt.2019.551 www.europeanjournaloftaxonomy.eu 2019 · Nakahara S. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Monograph urn:lsid:zoobank.org:pub:C3C851C3-0F12-412C-A15B-56F0F263CD00 Revision of the poorly known Neotropical butterfly genus Zischkaia Forster, 1964 (Lepidoptera, Nymphalidae, Satyrinae), with descriptions of nine new species Shinichi NAKAHARA 1,*, Thamara ZACCA 2, Fernando M.S. DIAS 3, Diego R. DOLIBAINA 4, Lei XIAO 5, Marianne ESPELAND 6, Mirna M. CASAGRANDE 7, Olaf H.H. MIELKE 8, Gerardo LAMAS 9, Blanca HUERTAS 10, Kaylin KLECKNER 11 & Keith R. WILLMOTT 12 1,5,11,12 McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, USA. 1,11 Department of Entomology and Nematology, University of Florida, Gainesville, Florida 32611, USA. 2 Departamento de Biologia Animal and Museu de Zoologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil. 3,4,7,8 Laboratório de Estudos de Lepidoptera Neotropical, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil. 6 Arthropoda Department, Zoological Research Museum Alexander Koenig, Adenauer Allee 160, 53113 Bonn, Germany. 1,9 Departamento de Entomología, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru. 10 Life Sciences Department, Natural History Museum, London, UK. * Corresponding author: [email protected] -
Endiandric Acid Derivatives and Other Constituents of Plants from the Genera Beilschmiedia and Endiandra (Lauraceae)
Biomolecules 2015, 5, 910-942; doi:10.3390/biom5020910 OPEN ACCESS biomolecules ISSN 2218-273X www.mdpi.com/journal/biomolecules/ Review Endiandric Acid Derivatives and Other Constituents of Plants from the Genera Beilschmiedia and Endiandra (Lauraceae) Bruno Ndjakou Lenta 1,2,*, Jean Rodolphe Chouna 3, Pepin Alango Nkeng-Efouet 3 and Norbert Sewald 2 1 Department of Chemistry, Higher Teacher Training College, University of Yaoundé 1, P.O. Box 47, Yaoundé, Cameroon 2 Organic and Bioorganic Chemistry, Chemistry Department, Bielefeld University, P.O. Box 100131, 33501 Bielefeld, Germany; E-Mail: [email protected] 3 Department of Chemistry, University of Dschang, P.O. Box 67, Dschang, Cameroon; E-Mails:[email protected] (J.R.C.); [email protected] (P.A.N.-E.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +2376-7509-7561. Academic Editor: Jürg Bähler Received: 3 March 2015 / Accepted: 6 May 2015 / Published: 14 May 2015 Abstract: Plants of the Lauraceae family are widely used in traditional medicine and are sources of various classes of secondary metabolites. Two genera of this family, Beilschmiedia and Endiandra, have been the subject of numerous investigations over the past decades because of their application in traditional medicine. They are the only source of bioactive endiandric acid derivatives. Noteworthy is that their biosynthesis contains two consecutive non-enzymatic electrocyclic reactions. Several interesting biological activities for this specific class of secondary metabolites and other constituents of the two genera have been reported, including antimicrobial, enzymes inhibitory and cytotoxic properties. This review compiles information on the structures of the compounds described between January 1960 and March 2015, their biological activities and information on endiandric acid biosynthesis, with 104 references being cited. -
Phylogeny and Historical Biogeography of Lauraceae
PHYLOGENY Andre'S. Chanderbali,2'3Henk van der AND HISTORICAL Werff,3 and Susanne S. Renner3 BIOGEOGRAPHY OF LAURACEAE: EVIDENCE FROM THE CHLOROPLAST AND NUCLEAR GENOMES1 ABSTRACT Phylogenetic relationships among 122 species of Lauraceae representing 44 of the 55 currentlyrecognized genera are inferredfrom sequence variation in the chloroplast and nuclear genomes. The trnL-trnF,trnT-trnL, psbA-trnH, and rpll6 regions of cpDNA, and the 5' end of 26S rDNA resolved major lineages, while the ITS/5.8S region of rDNA resolved a large terminal lade. The phylogenetic estimate is used to assess morphology-based views of relationships and, with a temporal dimension added, to reconstructthe biogeographic historyof the family.Results suggest Lauraceae radiated when trans-Tethyeanmigration was relatively easy, and basal lineages are established on either Gondwanan or Laurasian terrains by the Late Cretaceous. Most genera with Gondwanan histories place in Cryptocaryeae, but a small group of South American genera, the Chlorocardium-Mezilauruls lade, represent a separate Gondwanan lineage. Caryodaphnopsis and Neocinnamomum may be the only extant representatives of the ancient Lauraceae flora docu- mented in Mid- to Late Cretaceous Laurasian strata. Remaining genera place in a terminal Perseeae-Laureae lade that radiated in Early Eocene Laurasia. Therein, non-cupulate genera associate as the Persea group, and cupuliferous genera sort to Laureae of most classifications or Cinnamomeae sensu Kostermans. Laureae are Laurasian relicts in Asia. The Persea group -
Forest Inventory and Analysis National Core Field Guide
National Core Field Guide, Version 5.1 October, 2011 FOREST INVENTORY AND ANALYSIS NATIONAL CORE FIELD GUIDE VOLUME I: FIELD DATA COLLECTION PROCEDURES FOR PHASE 2 PLOTS Version 5.1 National Core Field Guide, Version 5.1 October, 2011 Changes from the Phase 2 Field Guide version 5.0 to version 5.1 Changes documented in change proposals are indicated in bold type. The corresponding proposal name can be seen using the comments feature in the electronic file. • Section 8. Phase 2 (P2) Vegetation Profile (Core Optional). Corrected several figure numbers and figure references in the text. • 8.2. General definitions. NRCS PLANTS database. Changed text from: “USDA, NRCS. 2000. The PLANTS Database (http://plants.usda.gov, 1 January 2000). National Plant Data Center, Baton Rouge, LA 70874-4490 USA. FIA currently uses a stable codeset downloaded in January of 2000.” To: “USDA, NRCS. 2010. The PLANTS Database (http://plants.usda.gov, 1 January 2010). National Plant Data Center, Baton Rouge, LA 70874-4490 USA. FIA currently uses a stable codeset downloaded in January of 2010”. • 8.6.2. SPECIES CODE. Changed the text in the first paragraph from: “Record a code for each sampled vascular plant species found rooted in or overhanging the sampled condition of the subplot at any height. Species codes must be the standardized codes in the Natural Resource Conservation Service (NRCS) PLANTS database (currently January 2000 version). Identification to species only is expected. However, if subspecies information is known, enter the appropriate NRCS code. For graminoids, genus and unknown codes are acceptable, but do not lump species of the same genera or unknown code. -
Extreme Diversity of Tropical Parasitoid Wasps Exposed by Iterative Integration of Natural History, DNA Barcoding, Morphology, and Collections
Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections M. Alex Smith*†, Josephine J. Rodriguez‡, James B. Whitfield‡, Andrew R. Deans§, Daniel H. Janzen†¶, Winnie Hallwachs¶, and Paul D. N. Hebert* *The Biodiversity Institute of Ontario, University of Guelph, Guelph Ontario, N1G 2W1 Canada; ‡Department of Entomology, 320 Morrill Hall, University of Illinois, 505 S. Goodwin Avenue, Urbana, IL 61801; §Department of Entomology, North Carolina State University, Campus Box 7613, 2301 Gardner Hall, Raleigh, NC 27695-7613; and ¶Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018 Contributed by Daniel H. Janzen, May 31, 2008 (sent for review April 18, 2008) We DNA barcoded 2,597 parasitoid wasps belonging to 6 microgas- A detailed recognition of species in parasitoid communities is trine braconid genera reared from parapatric tropical dry forest, cloud necessary because of the pivotal role parasitoids play in food web forest, and rain forest in Area de Conservacio´ n Guanacaste (ACG) in structure and dynamics. While generalizations about the effects of northwestern Costa Rica and combined these data with records of parasitoids on community diversity are complex (7), a common- caterpillar hosts and morphological analyses. We asked whether place predictor of the impact of a parasitoid species on local host barcoding and morphology discover the same provisional species and dynamics is whether the parasitoid is a generalist or specialist. A whether the biological entities revealed by our analysis are congruent generalist, especially a mobile one, is viewed as stabilizing food webs with wasp host specificity. Morphological analysis revealed 171 (see ref. -
Leaf Anatomy of Beilschmiedia (Lauraceae) in the Neotropics
Article Leaf anatomy of Beilschmiedia (Lauraceae) in the neotropics Sachiko Nishida1 and David C. Christophel2 1 Division of Phylogenetics, Museum of Nature and Human Activities, Hyogo, Yayoigaoka 6, Sanda, 669-1546, Japan 2 Botany Department, University of Adelaide, Adelaide, S.A. 5005, Australia Abstract Beilschmiedia comprises 28 species in the neotropics, but the relationships among the species were not well known because of the similarity in their reproductive morphology. This study employed leaf anatomy including studies of venation patterns, cuticle and leaf sections to discuss the relationships. As a result, five groups are recognized by cuticular characters, and the groups are compatible with the other leaf characters, phyllotaxis and geographic distributions. The five groups are mainly characterized by; 1) alternate leaves, fine venation pattern, epidermal cells with smooth or beaded cell walls, and vascular bundles in the midrib arranged in a ring, 2) opposite leaves, coarse venation pattern, epidermal cells with dotted or granular periclinal walls and mostly branched anticlinal walls, and vascular bundles in the midrib arranged in a ring, 3) opposite leaves, coarse venation pattern, butterfly-shaped stomatal ledges, and vascular bundles in the midrib arranged in a flattened arc, 4) opposite leaves, coarse venation pattern, epidermal cells larger on the adaxial surface than the abaxial surface, and vascular bundles in the midrib arranged in a flattened arc, 5) opposite leaves, coarse venation pattern, box- shaped stomatal ledges, and vascular bundles in the midrib arranged in a flattened arc. Key words: Beilschmiedia, leaf anatomy, venation, cuticle, vascular bundle Introduction botanists. Christophel and Rowett (1996) recently published a leaf and cuticle atlas of Australian Lauraceae, Beilschmiedia is one of the largest genera of Lauraceae, which includes the leaf architecture and cuticular features comprising about 250 tree or shrub species. -
(Lepidoptera). Zootaxa 3198: 1-28
INSECTA MUNDI A Journal of World Insect Systematics 0327 Thorax and abdomen morphology of some Neotropical Hesperiidae (Lepidoptera) Eduardo Carneiro, Olaf H. H. Mielke, Mirna M. Casagrande Laboratório de Estudos de Lepidoptera Neotropical Departamento de Zoologia, UFPR Caixa Postal 19020, 81531-980 Curitiba, Paraná, Brasil Date of Issue: October 25, 2013 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Eduardo Carneiro, Olaf H. H. Mielke, and Mirna M. Casagrande Thorax and abdomen morphology of some Neotropical Hesperiidae (Lepidoptera) Insecta Mundi 0327: 1-47 ZooBank Registered: urn:lsid:zoobank.org: pub:074AC2A8-83D9-4B8A-9F1B-7860E1AFF172IM Published in 2013 by Center for Systematic Entomology, Inc. P. O. Box 141874 Gainesville, FL 32614-1874 USA http://www.centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non- marine arthropod. Topics considered for publication include systematics, taxonomy, nomenclature, checklists, faunal works, and natural history. Insecta Mundi will not consider works in the applied sciences (i.e. medical entomology, pest control research, etc.), and no longer publishes book reviews or editorials. Insecta Mundi pub- lishes original research or discoveries in an inexpensive and timely manner, distributing them free via open access on the internet on the date of publication. Insecta Mundi is referenced or abstracted by several sources including the Zoological Record, CAB Abstracts, etc. Insecta Mundi is published irregularly throughout the year, with completed manuscripts assigned an indi- vidual number. Manuscripts must be peer reviewed prior to submission, after which they are reviewed by the editorial board to ensure quality. One author of each submitted manuscript must be a current member of the Center for Systematic Entomology.