Information to Users

Total Page:16

File Type:pdf, Size:1020Kb

Information to Users INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter ^ce, while others may t>e from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy subm itted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will t>e noted. Also, if unauthorized copyright material had to t>e removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, t>eginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Photographs included in ttie original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black arxt white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. Bell & Howell Information and Learning 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 800-521-0600 UMI* Phylogeny of Vestimentiferan Tube Worms by Anja Schulze Diplom, University of Bielefeld, 1995 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in the Department of Biology We accept this dissertation as conforming to the required standard Dr. '/TTunniphffe, Supervisor (Department of Biology) Dr. IvTR. Page (Ekpartment of Biology) Dr. R. IX Burke (Department of Biology and Department of Biochemistrv'/Microbioloav) _____________________________________________________________ Dr. C (School of Earth and Ocean Science) Dr. D. McHugh, External Examiner (ColgateUniversity) © Anja Schulze, 2000 University of Victoria Ail rights reserved. This dissertation may not be reproduced in whole or in part, by photocopying or other means, without the permission of the author. Abstract Supervisor; Dr. Verena Tunnicliffe Vestimentifera inhabit hydrothermal vents, cold-water seeps and other marine reducing habitats. The objectives of this study were to analyse phylogenetic relationships among the extant species and their affinities to perviate and moniliferan Pogonophora and Polychaeta. The phylogeny was reconstructed using morphological characters to test phylogenetic hypotheses based on molecular data. Morphological characters were partly extracted from the literature and partly gained throughout study of gross morphological and anatomical investigations and light, transmission and scanning electron microscopy. Three aspects of morphology were examined in detail in nine vestimentiferan species. The excretory system differs among the vestimentiferan species in the number of excretory pores, absence/presence of excretory papillae and grooves and shape of the excretory ducts. The anatomy of the excretory system resembles that shared by the polychaete families Serpulidae. Sabellidae and Sabellariidae. Chaetal ultrastructure and chaetogenesis show patterns similar to uncini in polychaetes. Contraiy to published accounts, the septa dividing the opisthosomal segments only bear musculature on their posterior faces. A rudimentary gut and anus are present in opisthosomes of specimens up to adult size. The blood vascular system includes an intravasal body in the dorsal vessel with ultrastructural characteristics similar to intravasal tissue in Terebellidae, Ampharetidae, Flabelligeridae and Serpulidae, and is probably involved in hemoglobin production. Hemocytes were detected in many blood vessels, most of them attached to the vascular lamina. The sinus valvatus is a specialised region of the anterior ventral vessel, apparently unique to vestimentiferans. The wall of the dorsal vessel is formed by myoepithelial cells, representing a coelomyarian type of double obliquely striated musculature. Phylogenetic analyses including a total of 17 vestimentiferan species and three perviate species as outgroups support molecular interpretations that the vestimentiferan species inhabiting basalt-hosted vents of the Eastern Pacific represent a derived monophyletic clade. According to the reconstructed phylogeny, the ancestral habitat of Vestimentifera was deep-water sedimented vent sites in the Western Pacific. Analysis of the relationships among Pogonophora and six polychaete families placed Ill Pogonophora at the base of a clade including Sabellidae, Serpulidae and Sabellariidae. The Oweniidae represent the sister group to this clade. Examiners: Dr. V. Tunnicliffe, supervisor (Department of Biology) :_ Dr. L. 1^ Page (D eg^m ent of Biology) Dr. R. D. Burke (Department of Biology and Department of Biochemistry/Microbiology) Dr. C. R. chool of Earth and Ocean Science) Dr. D. McHugh, External Examiner (Colgate University) IV Table of Contents page Title Page i Abstract ii Table of Contents iv List of Tables vi List of Figures viii Acknowledgments x Chapter 1: Introduction 1 Literature Cited 8 Chapter 2: Comparative Anatomy of Excretory Organs in 12 Vestimentiferan Tube Worms (Pogonophora, Obturata) Abstract 12 Introduction 12 Material and Methods 13 Results 15 Discussion 34 Literature Cited 37 Chapter 3: The Opisthosome: Ultrastructure of Opisthosomal Chaetae 39 in Vestimentifera (Pogonophora, Obturata) and Implications for Phylogeny Abstract 39 Introduction 40 Material and Methods 43 Results 45 Discussion 56 Literature Cited 59 Appendix: Additional Characters of the Opisthosome 63 Chapter 4: The Blood Vascular System: Histological and 71 Ultrastructural Characterisation with an Emphasis on the Intravasal Body Introduction 71 Material and Methods 74 Results 74 Discussion 89 Literature Cited 93 Chapter 5: Phylogenetic Relationships among Vestimentiferans from 97 Hydrothermal Vents and Cold-Water Seeps Introduction 97 Methods 102 Results 120 Discussion 133 Literature Cited 143 Appendix 5: Characters Used in Phylogenetic Analysis 150 Chapter 6: Affinities bet^veen Pogonophora and Polychaeta 157 Introduction 157 Methods 159 Results 166 Discussion 168 Literature Cited 176 Appendix 6.1 : Characters for Reconstruction of the Ancestral 184 Pogonophoran Appendix 6.2: Characters for Family Level Analysis 188 Chapter 7: Summary 192 Literature cited 192 Appendix: Vestimentiferans (Pogonophora) in the Pacific and Indian 197 Oceans: a new genus from Lihir Island (Papua New Guinea) and the Java Trench, with the first report of Arcovestia ivanovi from the North Fiji Basin List of Tables page Table 1 : History of classification of Vestimentifera and Pogonophora 4 Table 2: Differences among eight vestimentiferan species with regard to their 19 excretory systems Table 3 .1 : Presence of uncini and rod-shaped chaetae in juvenile and adult 42 Pogonophora Table 3.2: Material examined, fixation and use 44 Table 3.3: Proportion of total number of segments and chaetal rows per 48 segment in ten species of Vestimentifera Table 3.4: Comparison of uncini in three polychaete orders and Pogonophora 57 Table 4.1 : Geographic origin, body regions examined, diameter of specimen in 75 vestimentaJ region and maximum diameter of intravasal body Table 4.2: Results of different staining procedures in Riftia pachyptila 79 Table 5.1 : Vestimentiferan species described or mentioned in the literature to 98 date, their inclusion in the present study, general geographic area, specific sites, depth ranges and type of habitat Table 5.2: Characters and character states used in the conventional coding and 104 multistate coding analysis Table 5.3: Species level dataset, multistate coding 108 Table 5.4: Species level dataset, conventional coding 109 Table 5.5: Genus level dataset, multistate coding 110 Table 5.6: Genus level dataset, conventional coding 111 Table 5.7: Coding strategies illustrated with an example from the present 112 analysis Table 5.8: Species ranked according to mean obturaculum/vestimentum length 115 Table 5.9: Species ranked according to mean vestimentum length/diameter 115 Table 5.10: Species ranked according to their number of branchial lamellae 118 vu Table 5 .11 : Species ranked according to mean number of opisthosomal 118 segments Table 5.12: Summary of results of the species level analyses 121 Table 5.13: Summary of results of the species level analyses excluding Alaysia 121 spiralis and Lamellibrachia victori Table 5.14: Summary of results of the genus level analyses 122 Table 5.15: Summary of results of the genus level analyses excluding Alaysia 122 Table 6.1 : Species used in initial analysis and their traditional classification 160 Table 6.2: Characters and character states used in initial analysis 162 Table 6.3: Dataset for reconstruction of the ancestral pogonophoran 163 Table 6.4: Characters and character states used in family level analysis 164 Table 6.5: Dataset for family level analysis, excluding larval characters 165 Table 6.5: Larval characters 165 Table A1 : Dimensions of Paraescarpia echinospica sp. nov. gen. nov (type 207 material) Table A2: Characteristics of vestimentiferan genera 217 VIII List of Figures page Figure 1 2 Figure 2.1 17 Figure 2.2 22 Figure 2.3 25 Figure 2.4 27 Figure 2.5 29 Figure 2.6 33 Figure 3.1 47 Figure 3.2 50 Figure 3.3 52 Figure 3.4 55 Figure 3.5 65 Figure 3.6 68 Figure 3.7 70 Figure 4.1 77 Figure 4.2 81 Figure 4.3 83 Figure 4.4 86 Figure 4.5 88
Recommended publications
  • Mitochondrial Genomes of Two Polydora
    www.nature.com/scientificreports OPEN Mitochondrial genomes of two Polydora (Spionidae) species provide further evidence that mitochondrial architecture in the Sedentaria (Annelida) is not conserved Lingtong Ye1*, Tuo Yao1, Jie Lu1, Jingzhe Jiang1 & Changming Bai2 Contrary to the early evidence, which indicated that the mitochondrial architecture in one of the two major annelida clades, Sedentaria, is relatively conserved, a handful of relatively recent studies found evidence that some species exhibit elevated rates of mitochondrial architecture evolution. We sequenced complete mitogenomes belonging to two congeneric shell-boring Spionidae species that cause considerable economic losses in the commercial marine mollusk aquaculture: Polydora brevipalpa and Polydora websteri. The two mitogenomes exhibited very similar architecture. In comparison to other sedentarians, they exhibited some standard features, including all genes encoded on the same strand, uncommon but not unique duplicated trnM gene, as well as a number of unique features. Their comparatively large size (17,673 bp) can be attributed to four non-coding regions larger than 500 bp. We identifed an unusually large (putative) overlap of 14 bases between nad2 and cox1 genes in both species. Importantly, the two species exhibited completely rearranged gene orders in comparison to all other available mitogenomes. Along with Serpulidae and Sabellidae, Polydora is the third identifed sedentarian lineage that exhibits disproportionally elevated rates of mitogenomic architecture rearrangements. Selection analyses indicate that these three lineages also exhibited relaxed purifying selection pressures. Abbreviations NCR Non-coding region PCG Protein-coding gene Metazoan mitochondrial genomes (mitogenomes) usually encode the set of 37 genes, comprising 2 rRNAs, 22 tRNAs, and 13 proteins, encoded on both genomic strands.
    [Show full text]
  • Animal Phylum Poster Porifera
    Phylum PORIFERA CNIDARIA PLATYHELMINTHES ANNELIDA MOLLUSCA ECHINODERMATA ARTHROPODA CHORDATA Hexactinellida -- glass (siliceous) Anthozoa -- corals and sea Turbellaria -- free-living or symbiotic Polychaetes -- segmented Gastopods -- snails and slugs Asteroidea -- starfish Trilobitomorpha -- tribolites (extinct) Urochordata -- tunicates Groups sponges anemones flatworms (Dugusia) bristleworms Bivalves -- clams, scallops, mussels Echinoidea -- sea urchins, sand Chelicerata Cephalochordata -- lancelets (organisms studied in detail in Demospongia -- spongin or Hydrazoa -- hydras, some corals Trematoda -- flukes (parasitic) Oligochaetes -- earthworms (Lumbricus) Cephalopods -- squid, octopus, dollars Arachnida -- spiders, scorpions Mixini -- hagfish siliceous sponges Xiphosura -- horseshoe crabs Bio1AL are underlined) Cubozoa -- box jellyfish, sea wasps Cestoda -- tapeworms (parasitic) Hirudinea -- leeches nautilus Holothuroidea -- sea cucumbers Petromyzontida -- lamprey Mandibulata Calcarea -- calcareous sponges Scyphozoa -- jellyfish, sea nettles Monogenea -- parasitic flatworms Polyplacophora -- chitons Ophiuroidea -- brittle stars Chondrichtyes -- sharks, skates Crustacea -- crustaceans (shrimp, crayfish Scleropongiae -- coralline or Crinoidea -- sea lily, feather stars Actinipterygia -- ray-finned fish tropical reef sponges Hexapoda -- insects (cockroach, fruit fly) Sarcopterygia -- lobed-finned fish Myriapoda Amphibia (frog, newt) Chilopoda -- centipedes Diplopoda -- millipedes Reptilia (snake, turtle) Aves (chicken, hummingbird) Mammalia
    [Show full text]
  • A Microbiological and Biogeochemical Investigation of the Cold Seep
    Deep Sea Research Part I: Oceanographic Archimer Research Papers http://archimer.ifremer.fr August 2014, Volume 90, Pages 105-114 he publisher Web site Webpublisher he http://dx.doi.org/10.1016/j.dsr.2014.05.006 © 2014 Elsevier Ltd. All rights reserved. A microbiological and biogeochemical investigation of the cold seep is available on t on available is tubeworm Escarpia southwardae (Annelida: Siboglinidae): Symbiosis and trace element composition of the tube Sébastien Duperrona, *, Sylvie M. Gaudrona, Nolwenn Lemaitreb, c, d, Germain Bayonb authenticated version authenticated - a Sorbonne Universités, Université Pierre et Marie Curie Paris 06, UMR7208 Laboratoire Biologie des Organismes Aquatiques et Ecosystèmes, 7 quai St Bernard, 75005 Paris, France b IFREMER, Unité de Recherche Géosciences Marines, F-29280 Plouzané, France c UEB, Université Européenne de Bretagne, F-35000 Rennes, France d IUEM, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, CNRS UMS 3113, IUEM, F-29280 Plouzané, France *: Corresponding author : Sébastien Duperron, t el.: +33 0 1 44 27 39 95 ; fax: +33 0 1 44 27 58 01 ; email address : [email protected] Abstract: Tubeworms within the annelid family Siboglinidae rely on sulfur-oxidizing autotrophic bacterial symbionts for their nutrition, and are among the dominant metazoans occurring at deep-sea hydrocarbon seeps. Contrary to their relatives from hydrothermal vents, sulfide uptake for symbionts occurs within the anoxic subsurface sediment, in the posterior „root‟ region of the animal. This study reports on an integrated microbiological and geochemical investigation of the cold seep tubeworm Escarpia southwardae collected at the Regab pockmark (Gulf of Guinea). Our aim was to further constrain the links between the animal and its symbiotic bacteria, and their environment.
    [Show full text]
  • Evolutionary Crossroads in Developmental Biology: Cyclostomes (Lamprey and Hagfish) Sebastian M
    PRIMER SERIES PRIMER 2091 Development 139, 2091-2099 (2012) doi:10.1242/dev.074716 © 2012. Published by The Company of Biologists Ltd Evolutionary crossroads in developmental biology: cyclostomes (lamprey and hagfish) Sebastian M. Shimeld1,* and Phillip C. J. Donoghue2 Summary and is appealing because it implies a gradual assembly of vertebrate Lampreys and hagfish, which together are known as the characters, and supports the hagfish and lampreys as experimental cyclostomes or ‘agnathans’, are the only surviving lineages of models for distinct craniate and vertebrate evolutionary grades (i.e. jawless fish. They diverged early in vertebrate evolution, perceived ‘stages’ in evolution). However, only comparative before the origin of the hinged jaws that are characteristic of morphology provides support for this phylogenetic hypothesis. The gnathostome (jawed) vertebrates and before the evolution of competing hypothesis, which unites lampreys and hagfish as sister paired appendages. However, they do share numerous taxa in the clade Cyclostomata, thus equally related to characteristics with jawed vertebrates. Studies of cyclostome gnathostomes, has enjoyed unequivocal support from phylogenetic development can thus help us to understand when, and how, analyses of protein-coding sequence data (e.g. Delarbre et al., 2002; key aspects of the vertebrate body evolved. Here, we Furlong and Holland, 2002; Kuraku et al., 1999). Support for summarise the development of cyclostomes, highlighting the cyclostome theory is now overwhelming, with the recognition of key species studied and experimental methods available. We novel families of non-coding microRNAs that are shared then discuss how studies of cyclostomes have provided exclusively by hagfish and lampreys (Heimberg et al., 2010).
    [Show full text]
  • Phylum Porifera
    790 Chapter 28 | Invertebrates updated as new information is collected about the organisms of each phylum. 28.1 | Phylum Porifera By the end of this section, you will be able to do the following: • Describe the organizational features of the simplest multicellular organisms • Explain the various body forms and bodily functions of sponges As we have seen, the vast majority of invertebrate animals do not possess a defined bony vertebral endoskeleton, or a bony cranium. However, one of the most ancestral groups of deuterostome invertebrates, the Echinodermata, do produce tiny skeletal “bones” called ossicles that make up a true endoskeleton, or internal skeleton, covered by an epidermis. We will start our investigation with the simplest of all the invertebrates—animals sometimes classified within the clade Parazoa (“beside the animals”). This clade currently includes only the phylum Placozoa (containing a single species, Trichoplax adhaerens), and the phylum Porifera, containing the more familiar sponges (Figure 28.2). The split between the Parazoa and the Eumetazoa (all animal clades above Parazoa) likely took place over a billion years ago. We should reiterate here that the Porifera do not possess “true” tissues that are embryologically homologous to those of all other derived animal groups such as the insects and mammals. This is because they do not create a true gastrula during embryogenesis, and as a result do not produce a true endoderm or ectoderm. But even though they are not considered to have true tissues, they do have specialized cells that perform specific functions like tissues (for example, the external “pinacoderm” of a sponge acts like our epidermis).
    [Show full text]
  • Jonsc Vol2-7.PDF
    http://www.natsca.org Journal of Natural Science Collections Title: 100 years of deep‐sea tube worms in the collections of the Natural History Museum, London Author(s): Sherlock, E., Neal, L. & Glover, A. Source: Sherlock, E., Neal, L. & Glover, A. (2014). 100 years of deep‐sea tube worms in the collections of the Natural History Museum, London. Journal of Natural Science Collections, Volume 2, 47 ‐ 53. URL: http://www.natsca.org/article/2079 NatSCA supports open access publication as part of its mission is to promote and support natural science collections. NatSCA uses the Creative Commons Attribution License (CCAL) http://creativecommons.org/licenses/by/2.5/ for all works we publish. Under CCAL authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in NatSCA publications, so long as the original authors and source are cited. Journal of Natural Science Collections 2015: Volume 2 100 years of deep-sea tubeworms in the collections of the Natural History Museum, London Emma Sherlock, Lenka Neal & Adrian G. Glover Life Sciences Department, The Natural History Museum, Cromwell Rd, London SW7 5BD, UK Received: 14th Sept 2014 Corresponding author: [email protected] Accepted: 18th Dec 2014 Abstract Despite having being discovered relatively recently, the Siboglinidae family of poly- chaetes have a controversial taxonomic history. They are predominantly deep sea tube- dwelling worms, often referred to simply as ‘tubeworms’ that include the magnificent me- tre-long Riftia pachyptila from hydrothermal vents, the recently discovered ‘bone-eating’ Osedax and a diverse range of other thin, tube-dwelling species.
    [Show full text]
  • New Insights from Phylogenetic Analyses of Deuterostome Phyla
    Evolution of the chordate body plan: New insights from phylogenetic analyses of deuterostome phyla Chris B. Cameron*†, James R. Garey‡, and Billie J. Swalla†§¶ *Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; †Station Biologique, BP° 74, 29682 Roscoff Cedex, France; ‡Department of Biological Sciences, University of South Florida, Tampa, FL 33620-5150; and §Zoology Department, University of Washington, Seattle, WA 98195 Edited by Walter M. Fitch, University of California, Irvine, CA, and approved February 24, 2000 (received for review January 12, 2000) The deuterostome phyla include Echinodermata, Hemichordata, have a tornaria larva or are direct developers (17, 21). The and Chordata. Chordata is composed of three subphyla, Verte- three body parts are the proboscis (protosome), collar (me- brata, Cephalochordata (Branchiostoma), and Urochordata (Tuni- sosome), and trunk (metasome) (17, 18). Enteropneust adults cata). Careful analysis of a new 18S rDNA data set indicates that also exhibit chordate characteristics, including pharyngeal gill deuterostomes are composed of two major clades: chordates and pores, a partially neurulated dorsal cord, and a stomochord ,echinoderms ؉ hemichordates. This analysis strongly supports the that has some similarities to the chordate notochord (17, 18 monophyly of each of the four major deuterostome taxa: Verte- 24). On the other hand, hemichordates lack a dorsal postanal ,brata ؉ Cephalochordata, Urochordata, Hemichordata, and Echi- tail and segmentation of the muscular and nervous systems (9 nodermata. Hemichordates include two distinct classes, the en- 12, 17). teropneust worms and the colonial pterobranchs. Most previous Pterobranchs are colonial (Fig. 1 C and D), live in secreted hypotheses of deuterostome origins have assumed that the mor- tubular coenecia, and reproduce via a short-lived planula- phology of extant colonial pterobranchs resembles the ancestral shaped larvae or by asexual budding (17, 18).
    [Show full text]
  • Introduction to the Bilateria and the Phylum Xenacoelomorpha Triploblasty and Bilateral Symmetry Provide New Avenues for Animal Radiation
    CHAPTER 9 Introduction to the Bilateria and the Phylum Xenacoelomorpha Triploblasty and Bilateral Symmetry Provide New Avenues for Animal Radiation long the evolutionary path from prokaryotes to modern animals, three key innovations led to greatly expanded biological diversification: (1) the evolution of the eukaryote condition, (2) the emergence of the A Metazoa, and (3) the evolution of a third germ layer (triploblasty) and, perhaps simultaneously, bilateral symmetry. We have already discussed the origins of the Eukaryota and the Metazoa, in Chapters 1 and 6, and elsewhere. The invention of a third (middle) germ layer, the true mesoderm, and evolution of a bilateral body plan, opened up vast new avenues for evolutionary expan- sion among animals. We discussed the embryological nature of true mesoderm in Chapter 5, where we learned that the evolution of this inner body layer fa- cilitated greater specialization in tissue formation, including highly specialized organ systems and condensed nervous systems (e.g., central nervous systems). In addition to derivatives of ectoderm (skin and nervous system) and endoderm (gut and its de- Classification of The Animal rivatives), triploblastic animals have mesoder- Kingdom (Metazoa) mal derivatives—which include musculature, the circulatory system, the excretory system, Non-Bilateria* Lophophorata and the somatic portions of the gonads. Bilater- (a.k.a. the diploblasts) PHYLUM PHORONIDA al symmetry gives these animals two axes of po- PHYLUM PORIFERA PHYLUM BRYOZOA larity (anteroposterior and dorsoventral) along PHYLUM PLACOZOA PHYLUM BRACHIOPODA a single body plane that divides the body into PHYLUM CNIDARIA ECDYSOZOA two symmetrically opposed parts—the left and PHYLUM CTENOPHORA Nematoida PHYLUM NEMATODA right sides.
    [Show full text]
  • Deuterostome Animals Echinoderms and Chordates Deuterostome Roots • We Deuterostomes Develop Butt-First, and We’Re Proud of It
    Deuterostome Animals Echinoderms and Chordates Deuterostome Roots • We deuterostomes develop butt-first, and we’re proud of it.. • But not many other clades of animals develop this way… Sponges No true tissues Cnidarians Radial symmetry Ancestral protist Molluscs Flatworms Tissues Annelids Protostomes Roundworms Arthropods Bilateral symmetry Echinoderms Chordates Deuterostomes Figure 17.5 Two major kinds of Coelomates: • Protostome – mouth develops from blastopore. Rotifers, Flatworms, Annelids, Molluscs, Arthropods • Deuterostome – anus forms from blastopore Echinoderms, Chordates Cleavage Spiral- third division and subsequent are unequal…typical of protostomes Radial- third division is equal…typical of deuterostomes Based mainly on 18S RNA, Cameron, et al. 2000 PNAS 97(9): 4469-4474 Deuterostome Phyla • Echinodermata (sea stars, urchins, crinoids) • Hemichordata (acorn worms, pterobranchs, extinct graptolites) • Urochordata (tunicates, salps) • Chordata (cephalochordates, vertebrates) Phylum Echinodermata Sea stars, sea urchins, sea cucumbers, sand dollars Marine animals with: • Spiny “skin” • Water vascular system • Tube feet • Endoskeleton plates • Radial symmetry as adults • Bilateral symmetry as larvae Sea star Tube feet Sea urchin Sea cucumber Sand dollar Class Asteroidea (Sea Stars) • Mainly carnivorous – evert stomach to carry out digestion. • Locomotion mainly by tube feet- arms move only slowly • Arms are short and thick, with coelomic extensions containing digestive glands and gonads Sea stars in time lapse https://www.youtube.com/watch?v=CYN0J3HCihI
    [Show full text]
  • Biology 3 Animal Diversity
    Biology 3 Animal Diversity Dr. Terence Lee Protostomes and Deuterostomes Symmetry • Asymmetry – no symmetry • Radial Symmetry – circular or round • Bilateral Symmetry – usually has a head and tail 1 Sponges • Asymmetrical • No true tissues Jellies • Ctenophores • Cnidarians Cnidarians • Named after their stinging cells • Radially symmetrical • First true tissues 2 Cnidarians Sea Anemone Coral Coral Reef Alternation of Generations Protostomes and Deuterostomes 3 Protostomes and Deuterostomes • Name comes from embryonic development – Protostome = As the embryo develops, the first opening becomes the mouth – Deuterostome = As embryo develops, the first opening becomes the anus . The Worms 1. Flatworms 2. Roundworms 3. Segmented Worms Flatworms • Playhelminthes – First with bilateral symmetry – Only one opening to gut planarians 4 Round Worms • Nematoda – One-way digestive tract 5 Nematodes Segmented Worms •Annelids –Body is divided into sections –Lives in many different habitats Annelids • Polychaetes are marine worms • Means “many feet” 6 Annelids This plan most Mollusks resembles the chiton body plan • Major Characteristics 1. Mantle – secretes the shell Mollusks • Live in very diverse habitats (aquatic and terrestrial) • Very diverse body plans – Some have shells while others are soft bodied • Very diverse locomotion 7 Mollusks Types of Mollusks: 1.Chitons – this is the most primitive 2.Bivalves – clams, oysters, mussels, etc. Chitons Bivalves • Two shells attached by a hinge • All are filter feeders • Mostly immobile but some species
    [Show full text]
  • José Eriberto De Assis Análise Filogenética Dos Poliquetas Portadores De Tori: a Linhagem Dos Enterocoela
    UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE SISTEMÁTICA E ECOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS JOSÉ ERIBERTO DE ASSIS ANÁLISE FILOGENÉTICA DOS POLIQUETAS PORTADORES DE TORI: A LINHAGEM DOS ENTEROCOELA João Pessoa - PB 2013 i JOSÉ ERIBERTO DE ASSIS ANÁLISE FILOGENÉTICA DOS POLIQUETAS PORTADORES DE TORI: A LINHAGEM DOS ENTEROCOELA Tese apresentada ao Programa de Pós- Graduação em Ciências Biológicas (Área de Concentração em Zoologia) do departamento de Sistemática e Ecologia CCEN/UFPB, como critério básico para obtenção do título de doutor em ciências. Orientador: Prof. Dr. Martin Lindsey Christoffersen João Pessoa - PB 2013 ii JOSÉ ERIBERTO DE ASSIS ANÁLISE FILOGENÉTICA DOS POLIQUETAS PORTADORES DE TORI: A LINHAGEM DOS ENTEROCOELA Tese Universidade Federal da Paraíba Banca examinadora Prof. Dr. Martin Lindsey Christoffersen - UFPB (Orientador) _________________________________________ Prof (a). Dr (a). Elineí Araújo-de-Almeida – UFRN (Examinador externo - titular) _________________________________________ Prof. Dr. Gustavo Sene Silva – UFPR (Examinador externo - titular) _________________________________________ Prof. Dr. Antônio Creão-Duarte – UFPB (Examinador interno - titular) _________________________________________ Prof. Dr. Márcio Bernardino Da-Silva – UFPB (Examinador interno - titular) _________________________________________ Prof. Dr. Douglas Zeppelini – UEPB (Examinador externo - suplente) _________________________________________ Prof. Dr. Ricardo de Souza Rosa
    [Show full text]
  • 1 the Evolutionary Origin of Bilaterian Smooth and Striated Myocytes 1 2 3
    bioRxiv preprint doi: https://doi.org/10.1101/064881; this version posted July 20, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The evolutionary origin of bilaterian smooth and striated myocytes 2 3 4 Thibaut Brunet1, Antje H. L. Fischer1,2, Patrick R. H. Steinmetz1,3, Antonella Lauri1,4, 5 Paola Bertucci1, and Detlev Arendt1,* 6 7 8 1. Developmental Biology Unit, European Molecular Biology Laboratory, 9 Meyerhofstraße, 1, 69117 Heidelberg, Germany 10 2. Present address: Ludwig-Maximilians University Munich, Biochemistry, Feodor- 11 Lynen Straße 17, 81377 Munich 12 3. Present address: Sars International Centre for Marine Molecular Biology, 13 University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway. 14 4. Present address: Institute for Biological and Medical Imaging (IBMI), Helmholtz 15 Zentrum München, Neuherberg, Germany 16 17 * For correspondence: [email protected] 18 19 1 bioRxiv preprint doi: https://doi.org/10.1101/064881; this version posted July 20, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Abstract 2 The dichotomy between smooth and striated myocytes is fundamental for bilaterian 3 musculature, but its evolutionary origin remains unsolved. Given their absence in 4 Drosophila and Caenorhabditis, smooth muscles have so far been considered a 5 vertebrate innovation.
    [Show full text]