Deuterostomes Protostome Vs Deuterostome Protostome

Total Page:16

File Type:pdf, Size:1020Kb

Deuterostomes Protostome Vs Deuterostome Protostome Protostome vs Deuterostome First-Mouth Second - Mouth Deuterostomes Lab 7 Protostome vs Deuterostome Cleavage Gastrula Gastrula •Protostome • Deuterostome (Diploblastic) (Triploblastic) • Determinate Cleavage • Indeterminate Cleavage Ectoderm – Embryonic cell has a – Embryonic cells can destiny become anything Endoderm – Take one cell = loss of all – Take one cell away others tissues that would come compensate Mesoderm from that cell – You grow a twin from the one cell you took away Archenteron- Space within endoderm Blastopore Blastopore Archenteron: becomes adult digestive tract Blastopore: becomes the mouth or anus 1 Coelom Formation Cleavage •Deuterostome – Enterocoelom •Deuterostome • From the Archenteron – Radial • Folds/pinches from Endoderm •Protostome •Protostome – Schizocoelom –Spiral • Schizo = split • Spit from Endoderm Phylum Echinodermata (echino- spines or spiky, dermata- skin) • Pentaradical- 5 planes Today’s Phyla • Ossicles- CaCO3 endoskeleton • Large Coelom Echinodermata • Water vascular system Chordata • Tube feet •Spines 2 Phylum Echinodermata Class Asteroidea • Know the differences • Central Disk between the classes •5 Rays – Ossicle configuration • Pedicellariae – Type of pedicellariae, spines or spikes • Tube feet on base – Placement of mouth • Eye Spot – Size of tube feet •Predator – How does each exhibit – Feeds on Bivalvia pentaradial symmetry Class Ophiuroidea Class Echinoidea • Similar to Asteroidea • Long Spines (urchin) •Browsers • Smaller, thinner rays – Feed on algae, polyps, and detritus • Long tube feet • Coelom only in central disk • Test: fused ossicles • Pentaradial symmetry obscured • Faster, more flexible 3 Class Holothuroidea Class Crinoidea • Oblong, lateral plane of • Sea Lilies & Feather symmetry Stars • Tentacles at mouth • Sessile (don’t move) • Tube feet pentaradial place lengthwise • Central stalk with rays • Crawl or burrow • Filter feeder – Tube feet on branches • Feeds on detritus move catch food Phylum Chordata Common Traits Chordata 1. Notochord • Know the differences between the classes 2. Pharyngeal gill slits – When does it have a notochord? – When does it have gill slits? 3. Dorsal, tubular nerve – What do the gill slits turn into? (Vertabrata) chord – What kind of skeleton does it have? 4. Post anal tail – What kind of epidermis does it have? – What special epidermal structures does it have? – Exothermic or Endothermic? – Does the egg develop in the water or in an amniotic sac? 4 Subphylum Urochordata Subphylum Cephalochordata • All Marine • All Marine • Larvae – Pharyngeal gill slits • Fish-like – Post anal tail – Notochord – Dorsal, tubular nerve • Adults chord – Pharyngeal gill slits • Adults – Post anal tail – Pharyngeal gill slits – Notochord – Post anal tail – Dorsal, tubular nerve chord Subphylum Vertabrata Superclass Agnatha • Skull & vertebrae • No paired appendage column •No jaw • Components differ • Cartilage skeleton by class • All stages – Pharyngeal gill slits – Post anal tail – Notochord – Dorsal, tubular nerve chord 5 Superclass Gnathostomata Superclass Gnathostomata • Paired appendages • Know differences •Jaws between classes • Cartilage or bone – Chondrichthyes skeleton – Osteichthyes –Amphibia – Reptilia –Aves –Mammalia 6.
Recommended publications
  • Mitochondrial Genomes of Two Polydora
    www.nature.com/scientificreports OPEN Mitochondrial genomes of two Polydora (Spionidae) species provide further evidence that mitochondrial architecture in the Sedentaria (Annelida) is not conserved Lingtong Ye1*, Tuo Yao1, Jie Lu1, Jingzhe Jiang1 & Changming Bai2 Contrary to the early evidence, which indicated that the mitochondrial architecture in one of the two major annelida clades, Sedentaria, is relatively conserved, a handful of relatively recent studies found evidence that some species exhibit elevated rates of mitochondrial architecture evolution. We sequenced complete mitogenomes belonging to two congeneric shell-boring Spionidae species that cause considerable economic losses in the commercial marine mollusk aquaculture: Polydora brevipalpa and Polydora websteri. The two mitogenomes exhibited very similar architecture. In comparison to other sedentarians, they exhibited some standard features, including all genes encoded on the same strand, uncommon but not unique duplicated trnM gene, as well as a number of unique features. Their comparatively large size (17,673 bp) can be attributed to four non-coding regions larger than 500 bp. We identifed an unusually large (putative) overlap of 14 bases between nad2 and cox1 genes in both species. Importantly, the two species exhibited completely rearranged gene orders in comparison to all other available mitogenomes. Along with Serpulidae and Sabellidae, Polydora is the third identifed sedentarian lineage that exhibits disproportionally elevated rates of mitogenomic architecture rearrangements. Selection analyses indicate that these three lineages also exhibited relaxed purifying selection pressures. Abbreviations NCR Non-coding region PCG Protein-coding gene Metazoan mitochondrial genomes (mitogenomes) usually encode the set of 37 genes, comprising 2 rRNAs, 22 tRNAs, and 13 proteins, encoded on both genomic strands.
    [Show full text]
  • Animal Phylum Poster Porifera
    Phylum PORIFERA CNIDARIA PLATYHELMINTHES ANNELIDA MOLLUSCA ECHINODERMATA ARTHROPODA CHORDATA Hexactinellida -- glass (siliceous) Anthozoa -- corals and sea Turbellaria -- free-living or symbiotic Polychaetes -- segmented Gastopods -- snails and slugs Asteroidea -- starfish Trilobitomorpha -- tribolites (extinct) Urochordata -- tunicates Groups sponges anemones flatworms (Dugusia) bristleworms Bivalves -- clams, scallops, mussels Echinoidea -- sea urchins, sand Chelicerata Cephalochordata -- lancelets (organisms studied in detail in Demospongia -- spongin or Hydrazoa -- hydras, some corals Trematoda -- flukes (parasitic) Oligochaetes -- earthworms (Lumbricus) Cephalopods -- squid, octopus, dollars Arachnida -- spiders, scorpions Mixini -- hagfish siliceous sponges Xiphosura -- horseshoe crabs Bio1AL are underlined) Cubozoa -- box jellyfish, sea wasps Cestoda -- tapeworms (parasitic) Hirudinea -- leeches nautilus Holothuroidea -- sea cucumbers Petromyzontida -- lamprey Mandibulata Calcarea -- calcareous sponges Scyphozoa -- jellyfish, sea nettles Monogenea -- parasitic flatworms Polyplacophora -- chitons Ophiuroidea -- brittle stars Chondrichtyes -- sharks, skates Crustacea -- crustaceans (shrimp, crayfish Scleropongiae -- coralline or Crinoidea -- sea lily, feather stars Actinipterygia -- ray-finned fish tropical reef sponges Hexapoda -- insects (cockroach, fruit fly) Sarcopterygia -- lobed-finned fish Myriapoda Amphibia (frog, newt) Chilopoda -- centipedes Diplopoda -- millipedes Reptilia (snake, turtle) Aves (chicken, hummingbird) Mammalia
    [Show full text]
  • BIOSC 041 Overview of Animal Diversity: Animal Body Plans
    BIOSC 041 Overview of Animal Diversity: Animal Body Plans Reference: Chapter 32 Outline v Definition and major characteristics of animals v Dividing animals into groups based on: § Body symmetry § Tissues § Type of body cavity § Protostome vs deuterostome development v Animal Phylogeny What is an Animal? v Scientists have identified 1.3 million living species of animals v The definition of an animal § Multicellular § Heterotrophic eukaryotes § Possess tissues that develop from embryonic layers v Common characteristics describe the group 1. Common mode of nutrition 2. Cell structure and specialization 3. Reproduction and development 1. Characteristics of Animals: Nutrition v Animals are heterotrophs (“other-eater”) § Obtain nutrition either from other living organisms or from nonliving organic material § Primary consumers (herbivores), secondary consumers (eat herbivores), tertiary consumers (eat carnivores), and/or detritovores (eat detritus- decaying plants/ animals, feces) 2. Characteristics of Animals: Cell Structure and Specialization 1. Animals are multicellular eukaryotes (Note: single-celled eukaryotes with animal-like behavior are grouped as Protists, such as amoeba) 2. Animal cells lack cell walls 3. Bodies are held together by structural proteins like collagen 4. Bodies are organized into tissues, organs, and organ systems § Tissues are groups of cells that have a common structure, and/or function § Nervous tissue and muscle tissue are unique to animals Amoeba: a protist, not a true animal 3. Characteristics of Animals: Reproduction and Development v Most animals reproduce sexually, with the diploid stage dominating the life cycle v Development occurs in specific stages 1. Fertilization to form zygote 2. Zygote undergoes rapid cell division called cleavage 3. Cleavage leads to formation of a multicellular, hollow blastula (ex: whitefish blastula slides from lab, with cells undergoing rapid mitosis) 4.
    [Show full text]
  • Analysis of the Complete Mitochondrial DNA Sequence of the Brachiopod Terebratulina Retusa Places Brachiopoda Within the Protostomes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/12415870 Analysis of the complete mitochondrial DNA sequence of the brachiopod Terebratulina retusa places Brachiopoda within the protostomes Article in Proceedings of the Royal Society B: Biological Sciences · November 1999 DOI: 10.1098/rspb.1999.0885 · Source: PubMed CITATIONS READS 83 50 2 authors, including: Martin Schlegel University of Leipzig 151 PUBLICATIONS 2,931 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Rare for a reason? Scale-dependence of factors influencing rarity and diversity of xylobiont beetles View project Bat diversity and vertical niche activity in the fluvial flood forest Leipzig View project All content following this page was uploaded by Martin Schlegel on 22 May 2014. The user has requested enhancement of the downloaded file. Analysis of the complete mitochondrial DNA sequence of the brachiopod Terebratulina retusa places Brachiopoda within the protostomes Alexandra Stechmann* and Martin Schlegel UniversitÌt Leipzig, Institut fÏr Zoologie/Spezielle Zoologie,Talstr. 33, 04103 Leipzig, Germany Brachiopod phylogeny is still a controversial subject. Analyses using nuclear 18SrRNA and mitochondrial 12SrDNA sequences place them within the protostomes but some recent interpretations of morphological data support a relationship with deuterostomes. In order to investigate brachiopod a¤nities within the metazoa further,we compared the gene arrangement on the brachiopod mitochondrial genome with several metazoan taxa. The complete (15 451bp) mitochondrial DNA (mtDNA) sequence of the articulate brachiopod Terebratulina retusa was determined from two overlapping long polymerase chain reaction products. All the genes are encoded on the same strand and gene order comparisons showed that only one major rearrangement is required to interconvert the T.retusa and Katharina tunicata (Mollusca: Polyplaco- phora) mitochondrial genomes.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter ^ce, while others may t>e from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy subm itted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will t>e noted. Also, if unauthorized copyright material had to t>e removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, t>eginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Photographs included in ttie original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black arxt white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. Bell & Howell Information and Learning 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 800-521-0600 UMI* Phylogeny of Vestimentiferan Tube Worms by Anja Schulze Diplom, University of Bielefeld, 1995 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in the Department of Biology We accept this dissertation as conforming to the required standard Dr.
    [Show full text]
  • Tropical Marine Invertebrates CAS BI 569 Phylum ANNELIDA by J
    Tropical Marine Invertebrates CAS BI 569 Phylum ANNELIDA by J. R. Finnerty Phylum ANNELIDA Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata Nematoda Platyhelminthes Acoelomorpha Silicispongiae Calcispongia PROTOSTOMIA “BILATERIA” (=TRIPLOBLASTICA) Bilateral symmetry (?) Mesoderm (triploblasty) Phylum ANNELIDA Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata Nematoda Platyhelminthes Acoelomorpha Silicispongiae Calcispongia PROTOSTOMIA “COELOMATA” True coelom Coelomata gut cavity endoderm mesoderm coelom ectoderm [note: dorso-ventral inversion] Phylum ANNELIDA Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata Nematoda Platyhelminthes Acoelomorpha Silicispongiae Calcispongia PROTOSTOMIA PROTOSTOMIA “first mouth” blastopore contributes to mouth ventral nerve cord The Blastopore ! Forms during gastrulation ectoderm blastocoel blastocoel endoderm gut blastoderm BLASTULA blastopore The Gut “internal, epithelium-lined cavity for the digestion and absorption of food sponges lack a gut simplest gut = blind sac (Cnidaria) blastopore gives rise to dual- function mouth/anus through-guts evolve later Protostome = blastopore contributes to the mouth Deuterostome = blastopore becomes the anus; mouth is a second opening Protostomy blastopore mouth anus Deuterostomy blastopore
    [Show full text]
  • Evolutionary Crossroads in Developmental Biology: Cyclostomes (Lamprey and Hagfish) Sebastian M
    PRIMER SERIES PRIMER 2091 Development 139, 2091-2099 (2012) doi:10.1242/dev.074716 © 2012. Published by The Company of Biologists Ltd Evolutionary crossroads in developmental biology: cyclostomes (lamprey and hagfish) Sebastian M. Shimeld1,* and Phillip C. J. Donoghue2 Summary and is appealing because it implies a gradual assembly of vertebrate Lampreys and hagfish, which together are known as the characters, and supports the hagfish and lampreys as experimental cyclostomes or ‘agnathans’, are the only surviving lineages of models for distinct craniate and vertebrate evolutionary grades (i.e. jawless fish. They diverged early in vertebrate evolution, perceived ‘stages’ in evolution). However, only comparative before the origin of the hinged jaws that are characteristic of morphology provides support for this phylogenetic hypothesis. The gnathostome (jawed) vertebrates and before the evolution of competing hypothesis, which unites lampreys and hagfish as sister paired appendages. However, they do share numerous taxa in the clade Cyclostomata, thus equally related to characteristics with jawed vertebrates. Studies of cyclostome gnathostomes, has enjoyed unequivocal support from phylogenetic development can thus help us to understand when, and how, analyses of protein-coding sequence data (e.g. Delarbre et al., 2002; key aspects of the vertebrate body evolved. Here, we Furlong and Holland, 2002; Kuraku et al., 1999). Support for summarise the development of cyclostomes, highlighting the cyclostome theory is now overwhelming, with the recognition of key species studied and experimental methods available. We novel families of non-coding microRNAs that are shared then discuss how studies of cyclostomes have provided exclusively by hagfish and lampreys (Heimberg et al., 2010).
    [Show full text]
  • Phylum Porifera
    790 Chapter 28 | Invertebrates updated as new information is collected about the organisms of each phylum. 28.1 | Phylum Porifera By the end of this section, you will be able to do the following: • Describe the organizational features of the simplest multicellular organisms • Explain the various body forms and bodily functions of sponges As we have seen, the vast majority of invertebrate animals do not possess a defined bony vertebral endoskeleton, or a bony cranium. However, one of the most ancestral groups of deuterostome invertebrates, the Echinodermata, do produce tiny skeletal “bones” called ossicles that make up a true endoskeleton, or internal skeleton, covered by an epidermis. We will start our investigation with the simplest of all the invertebrates—animals sometimes classified within the clade Parazoa (“beside the animals”). This clade currently includes only the phylum Placozoa (containing a single species, Trichoplax adhaerens), and the phylum Porifera, containing the more familiar sponges (Figure 28.2). The split between the Parazoa and the Eumetazoa (all animal clades above Parazoa) likely took place over a billion years ago. We should reiterate here that the Porifera do not possess “true” tissues that are embryologically homologous to those of all other derived animal groups such as the insects and mammals. This is because they do not create a true gastrula during embryogenesis, and as a result do not produce a true endoderm or ectoderm. But even though they are not considered to have true tissues, they do have specialized cells that perform specific functions like tissues (for example, the external “pinacoderm” of a sponge acts like our epidermis).
    [Show full text]
  • Jonsc Vol2-7.PDF
    http://www.natsca.org Journal of Natural Science Collections Title: 100 years of deep‐sea tube worms in the collections of the Natural History Museum, London Author(s): Sherlock, E., Neal, L. & Glover, A. Source: Sherlock, E., Neal, L. & Glover, A. (2014). 100 years of deep‐sea tube worms in the collections of the Natural History Museum, London. Journal of Natural Science Collections, Volume 2, 47 ‐ 53. URL: http://www.natsca.org/article/2079 NatSCA supports open access publication as part of its mission is to promote and support natural science collections. NatSCA uses the Creative Commons Attribution License (CCAL) http://creativecommons.org/licenses/by/2.5/ for all works we publish. Under CCAL authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in NatSCA publications, so long as the original authors and source are cited. Journal of Natural Science Collections 2015: Volume 2 100 years of deep-sea tubeworms in the collections of the Natural History Museum, London Emma Sherlock, Lenka Neal & Adrian G. Glover Life Sciences Department, The Natural History Museum, Cromwell Rd, London SW7 5BD, UK Received: 14th Sept 2014 Corresponding author: [email protected] Accepted: 18th Dec 2014 Abstract Despite having being discovered relatively recently, the Siboglinidae family of poly- chaetes have a controversial taxonomic history. They are predominantly deep sea tube- dwelling worms, often referred to simply as ‘tubeworms’ that include the magnificent me- tre-long Riftia pachyptila from hydrothermal vents, the recently discovered ‘bone-eating’ Osedax and a diverse range of other thin, tube-dwelling species.
    [Show full text]
  • New Insights from Phylogenetic Analyses of Deuterostome Phyla
    Evolution of the chordate body plan: New insights from phylogenetic analyses of deuterostome phyla Chris B. Cameron*†, James R. Garey‡, and Billie J. Swalla†§¶ *Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; †Station Biologique, BP° 74, 29682 Roscoff Cedex, France; ‡Department of Biological Sciences, University of South Florida, Tampa, FL 33620-5150; and §Zoology Department, University of Washington, Seattle, WA 98195 Edited by Walter M. Fitch, University of California, Irvine, CA, and approved February 24, 2000 (received for review January 12, 2000) The deuterostome phyla include Echinodermata, Hemichordata, have a tornaria larva or are direct developers (17, 21). The and Chordata. Chordata is composed of three subphyla, Verte- three body parts are the proboscis (protosome), collar (me- brata, Cephalochordata (Branchiostoma), and Urochordata (Tuni- sosome), and trunk (metasome) (17, 18). Enteropneust adults cata). Careful analysis of a new 18S rDNA data set indicates that also exhibit chordate characteristics, including pharyngeal gill deuterostomes are composed of two major clades: chordates and pores, a partially neurulated dorsal cord, and a stomochord ,echinoderms ؉ hemichordates. This analysis strongly supports the that has some similarities to the chordate notochord (17, 18 monophyly of each of the four major deuterostome taxa: Verte- 24). On the other hand, hemichordates lack a dorsal postanal ,brata ؉ Cephalochordata, Urochordata, Hemichordata, and Echi- tail and segmentation of the muscular and nervous systems (9 nodermata. Hemichordates include two distinct classes, the en- 12, 17). teropneust worms and the colonial pterobranchs. Most previous Pterobranchs are colonial (Fig. 1 C and D), live in secreted hypotheses of deuterostome origins have assumed that the mor- tubular coenecia, and reproduce via a short-lived planula- phology of extant colonial pterobranchs resembles the ancestral shaped larvae or by asexual budding (17, 18).
    [Show full text]
  • Introduction to the Bilateria and the Phylum Xenacoelomorpha Triploblasty and Bilateral Symmetry Provide New Avenues for Animal Radiation
    CHAPTER 9 Introduction to the Bilateria and the Phylum Xenacoelomorpha Triploblasty and Bilateral Symmetry Provide New Avenues for Animal Radiation long the evolutionary path from prokaryotes to modern animals, three key innovations led to greatly expanded biological diversification: (1) the evolution of the eukaryote condition, (2) the emergence of the A Metazoa, and (3) the evolution of a third germ layer (triploblasty) and, perhaps simultaneously, bilateral symmetry. We have already discussed the origins of the Eukaryota and the Metazoa, in Chapters 1 and 6, and elsewhere. The invention of a third (middle) germ layer, the true mesoderm, and evolution of a bilateral body plan, opened up vast new avenues for evolutionary expan- sion among animals. We discussed the embryological nature of true mesoderm in Chapter 5, where we learned that the evolution of this inner body layer fa- cilitated greater specialization in tissue formation, including highly specialized organ systems and condensed nervous systems (e.g., central nervous systems). In addition to derivatives of ectoderm (skin and nervous system) and endoderm (gut and its de- Classification of The Animal rivatives), triploblastic animals have mesoder- Kingdom (Metazoa) mal derivatives—which include musculature, the circulatory system, the excretory system, Non-Bilateria* Lophophorata and the somatic portions of the gonads. Bilater- (a.k.a. the diploblasts) PHYLUM PHORONIDA al symmetry gives these animals two axes of po- PHYLUM PORIFERA PHYLUM BRYOZOA larity (anteroposterior and dorsoventral) along PHYLUM PLACOZOA PHYLUM BRACHIOPODA a single body plane that divides the body into PHYLUM CNIDARIA ECDYSOZOA two symmetrically opposed parts—the left and PHYLUM CTENOPHORA Nematoida PHYLUM NEMATODA right sides.
    [Show full text]
  • Deuterostome Animals Echinoderms and Chordates Deuterostome Roots • We Deuterostomes Develop Butt-First, and We’Re Proud of It
    Deuterostome Animals Echinoderms and Chordates Deuterostome Roots • We deuterostomes develop butt-first, and we’re proud of it.. • But not many other clades of animals develop this way… Sponges No true tissues Cnidarians Radial symmetry Ancestral protist Molluscs Flatworms Tissues Annelids Protostomes Roundworms Arthropods Bilateral symmetry Echinoderms Chordates Deuterostomes Figure 17.5 Two major kinds of Coelomates: • Protostome – mouth develops from blastopore. Rotifers, Flatworms, Annelids, Molluscs, Arthropods • Deuterostome – anus forms from blastopore Echinoderms, Chordates Cleavage Spiral- third division and subsequent are unequal…typical of protostomes Radial- third division is equal…typical of deuterostomes Based mainly on 18S RNA, Cameron, et al. 2000 PNAS 97(9): 4469-4474 Deuterostome Phyla • Echinodermata (sea stars, urchins, crinoids) • Hemichordata (acorn worms, pterobranchs, extinct graptolites) • Urochordata (tunicates, salps) • Chordata (cephalochordates, vertebrates) Phylum Echinodermata Sea stars, sea urchins, sea cucumbers, sand dollars Marine animals with: • Spiny “skin” • Water vascular system • Tube feet • Endoskeleton plates • Radial symmetry as adults • Bilateral symmetry as larvae Sea star Tube feet Sea urchin Sea cucumber Sand dollar Class Asteroidea (Sea Stars) • Mainly carnivorous – evert stomach to carry out digestion. • Locomotion mainly by tube feet- arms move only slowly • Arms are short and thick, with coelomic extensions containing digestive glands and gonads Sea stars in time lapse https://www.youtube.com/watch?v=CYN0J3HCihI
    [Show full text]